forked from OSchip/llvm-project
Start partitioning ExprEngine.cpp into separate .cpp files that handle different parts
of the analysis (e.g., analysis of C expressions, analysis of Objective-C expressions, and so on). llvm-svn: 138194
This commit is contained in:
parent
10e2503177
commit
a9ce612fa2
|
@ -20,7 +20,10 @@ add_clang_library(clangStaticAnalyzerCore
|
|||
Environment.cpp
|
||||
ExplodedGraph.cpp
|
||||
ExprEngine.cpp
|
||||
ExprEngineC.cpp
|
||||
ExprEngineCXX.cpp
|
||||
ExprEngineCallAndReturn.cpp
|
||||
ExprEngineObjC.cpp
|
||||
HTMLDiagnostics.cpp
|
||||
MemRegion.cpp
|
||||
ObjCMessage.cpp
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,781 @@
|
|||
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines ExprEngine's support for C expressions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
||||
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
||||
#include "clang/Analysis/Support/SaveAndRestore.h"
|
||||
|
||||
using namespace clang;
|
||||
using namespace ento;
|
||||
using llvm::APSInt;
|
||||
|
||||
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
ExplodedNodeSet Tmp1;
|
||||
Expr *LHS = B->getLHS()->IgnoreParens();
|
||||
Expr *RHS = B->getRHS()->IgnoreParens();
|
||||
|
||||
Visit(LHS, Pred, Tmp1);
|
||||
ExplodedNodeSet Tmp3;
|
||||
|
||||
for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) {
|
||||
SVal LeftV = (*I1)->getState()->getSVal(LHS);
|
||||
ExplodedNodeSet Tmp2;
|
||||
Visit(RHS, *I1, Tmp2);
|
||||
|
||||
ExplodedNodeSet CheckedSet;
|
||||
getCheckerManager().runCheckersForPreStmt(CheckedSet, Tmp2, B, *this);
|
||||
|
||||
// With both the LHS and RHS evaluated, process the operation itself.
|
||||
|
||||
for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end();
|
||||
I2 != E2; ++I2) {
|
||||
|
||||
const ProgramState *state = (*I2)->getState();
|
||||
SVal RightV = state->getSVal(RHS);
|
||||
|
||||
BinaryOperator::Opcode Op = B->getOpcode();
|
||||
|
||||
if (Op == BO_Assign) {
|
||||
// EXPERIMENTAL: "Conjured" symbols.
|
||||
// FIXME: Handle structs.
|
||||
if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV))
|
||||
{
|
||||
unsigned Count = Builder->getCurrentBlockCount();
|
||||
RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count);
|
||||
}
|
||||
|
||||
SVal ExprVal = B->isLValue() ? LeftV : RightV;
|
||||
|
||||
// Simulate the effects of a "store": bind the value of the RHS
|
||||
// to the L-Value represented by the LHS.
|
||||
evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!B->isAssignmentOp()) {
|
||||
// Process non-assignments except commas or short-circuited
|
||||
// logical expressions (LAnd and LOr).
|
||||
SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
|
||||
|
||||
if (Result.isUnknown()) {
|
||||
MakeNode(Tmp3, B, *I2, state);
|
||||
continue;
|
||||
}
|
||||
|
||||
state = state->BindExpr(B, Result);
|
||||
|
||||
MakeNode(Tmp3, B, *I2, state);
|
||||
continue;
|
||||
}
|
||||
|
||||
assert (B->isCompoundAssignmentOp());
|
||||
|
||||
switch (Op) {
|
||||
default:
|
||||
assert(0 && "Invalid opcode for compound assignment.");
|
||||
case BO_MulAssign: Op = BO_Mul; break;
|
||||
case BO_DivAssign: Op = BO_Div; break;
|
||||
case BO_RemAssign: Op = BO_Rem; break;
|
||||
case BO_AddAssign: Op = BO_Add; break;
|
||||
case BO_SubAssign: Op = BO_Sub; break;
|
||||
case BO_ShlAssign: Op = BO_Shl; break;
|
||||
case BO_ShrAssign: Op = BO_Shr; break;
|
||||
case BO_AndAssign: Op = BO_And; break;
|
||||
case BO_XorAssign: Op = BO_Xor; break;
|
||||
case BO_OrAssign: Op = BO_Or; break;
|
||||
}
|
||||
|
||||
// Perform a load (the LHS). This performs the checks for
|
||||
// null dereferences, and so on.
|
||||
ExplodedNodeSet Tmp4;
|
||||
SVal location = state->getSVal(LHS);
|
||||
evalLoad(Tmp4, LHS, *I2, state, location);
|
||||
|
||||
for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4;
|
||||
++I4) {
|
||||
state = (*I4)->getState();
|
||||
SVal V = state->getSVal(LHS);
|
||||
|
||||
// Get the computation type.
|
||||
QualType CTy =
|
||||
cast<CompoundAssignOperator>(B)->getComputationResultType();
|
||||
CTy = getContext().getCanonicalType(CTy);
|
||||
|
||||
QualType CLHSTy =
|
||||
cast<CompoundAssignOperator>(B)->getComputationLHSType();
|
||||
CLHSTy = getContext().getCanonicalType(CLHSTy);
|
||||
|
||||
QualType LTy = getContext().getCanonicalType(LHS->getType());
|
||||
|
||||
// Promote LHS.
|
||||
V = svalBuilder.evalCast(V, CLHSTy, LTy);
|
||||
|
||||
// Compute the result of the operation.
|
||||
SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
|
||||
B->getType(), CTy);
|
||||
|
||||
// EXPERIMENTAL: "Conjured" symbols.
|
||||
// FIXME: Handle structs.
|
||||
|
||||
SVal LHSVal;
|
||||
|
||||
if (Result.isUnknown() ||
|
||||
!getConstraintManager().canReasonAbout(Result)) {
|
||||
|
||||
unsigned Count = Builder->getCurrentBlockCount();
|
||||
|
||||
// The symbolic value is actually for the type of the left-hand side
|
||||
// expression, not the computation type, as this is the value the
|
||||
// LValue on the LHS will bind to.
|
||||
LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count);
|
||||
|
||||
// However, we need to convert the symbol to the computation type.
|
||||
Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
|
||||
}
|
||||
else {
|
||||
// The left-hand side may bind to a different value then the
|
||||
// computation type.
|
||||
LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
|
||||
}
|
||||
|
||||
// In C++, assignment and compound assignment operators return an
|
||||
// lvalue.
|
||||
if (B->isLValue())
|
||||
state = state->BindExpr(B, location);
|
||||
else
|
||||
state = state->BindExpr(B, Result);
|
||||
|
||||
evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
getCheckerManager().runCheckersForPostStmt(Dst, Tmp3, B, *this);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
CanQualType T = getContext().getCanonicalType(BE->getType());
|
||||
SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
|
||||
Pred->getLocationContext());
|
||||
|
||||
ExplodedNodeSet Tmp;
|
||||
MakeNode(Tmp, BE, Pred, Pred->getState()->BindExpr(BE, V),
|
||||
ProgramPoint::PostLValueKind);
|
||||
|
||||
// FIXME: Move all post/pre visits to ::Visit().
|
||||
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
|
||||
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
||||
|
||||
ExplodedNodeSet dstPreStmt;
|
||||
getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
|
||||
|
||||
if (CastE->getCastKind() == CK_LValueToRValue ||
|
||||
CastE->getCastKind() == CK_GetObjCProperty) {
|
||||
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
|
||||
I!=E; ++I) {
|
||||
ExplodedNode *subExprNode = *I;
|
||||
const ProgramState *state = subExprNode->getState();
|
||||
evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// All other casts.
|
||||
QualType T = CastE->getType();
|
||||
QualType ExTy = Ex->getType();
|
||||
|
||||
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
|
||||
T = ExCast->getTypeAsWritten();
|
||||
|
||||
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
|
||||
I != E; ++I) {
|
||||
|
||||
Pred = *I;
|
||||
|
||||
switch (CastE->getCastKind()) {
|
||||
case CK_LValueToRValue:
|
||||
assert(false && "LValueToRValue casts handled earlier.");
|
||||
case CK_GetObjCProperty:
|
||||
assert(false && "GetObjCProperty casts handled earlier.");
|
||||
case CK_ToVoid:
|
||||
Dst.Add(Pred);
|
||||
continue;
|
||||
// The analyzer doesn't do anything special with these casts,
|
||||
// since it understands retain/release semantics already.
|
||||
case CK_ObjCProduceObject:
|
||||
case CK_ObjCConsumeObject:
|
||||
case CK_ObjCReclaimReturnedObject: // Fall-through.
|
||||
// True no-ops.
|
||||
case CK_NoOp:
|
||||
case CK_FunctionToPointerDecay: {
|
||||
// Copy the SVal of Ex to CastE.
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal V = state->getSVal(Ex);
|
||||
state = state->BindExpr(CastE, V);
|
||||
MakeNode(Dst, CastE, Pred, state);
|
||||
continue;
|
||||
}
|
||||
case CK_Dependent:
|
||||
case CK_ArrayToPointerDecay:
|
||||
case CK_BitCast:
|
||||
case CK_LValueBitCast:
|
||||
case CK_IntegralCast:
|
||||
case CK_NullToPointer:
|
||||
case CK_IntegralToPointer:
|
||||
case CK_PointerToIntegral:
|
||||
case CK_PointerToBoolean:
|
||||
case CK_IntegralToBoolean:
|
||||
case CK_IntegralToFloating:
|
||||
case CK_FloatingToIntegral:
|
||||
case CK_FloatingToBoolean:
|
||||
case CK_FloatingCast:
|
||||
case CK_FloatingRealToComplex:
|
||||
case CK_FloatingComplexToReal:
|
||||
case CK_FloatingComplexToBoolean:
|
||||
case CK_FloatingComplexCast:
|
||||
case CK_FloatingComplexToIntegralComplex:
|
||||
case CK_IntegralRealToComplex:
|
||||
case CK_IntegralComplexToReal:
|
||||
case CK_IntegralComplexToBoolean:
|
||||
case CK_IntegralComplexCast:
|
||||
case CK_IntegralComplexToFloatingComplex:
|
||||
case CK_AnyPointerToObjCPointerCast:
|
||||
case CK_AnyPointerToBlockPointerCast:
|
||||
case CK_ObjCObjectLValueCast: {
|
||||
// Delegate to SValBuilder to process.
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal V = state->getSVal(Ex);
|
||||
V = svalBuilder.evalCast(V, T, ExTy);
|
||||
state = state->BindExpr(CastE, V);
|
||||
MakeNode(Dst, CastE, Pred, state);
|
||||
continue;
|
||||
}
|
||||
case CK_DerivedToBase:
|
||||
case CK_UncheckedDerivedToBase: {
|
||||
// For DerivedToBase cast, delegate to the store manager.
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal val = state->getSVal(Ex);
|
||||
val = getStoreManager().evalDerivedToBase(val, T);
|
||||
state = state->BindExpr(CastE, val);
|
||||
MakeNode(Dst, CastE, Pred, state);
|
||||
continue;
|
||||
}
|
||||
// Various C++ casts that are not handled yet.
|
||||
case CK_Dynamic:
|
||||
case CK_ToUnion:
|
||||
case CK_BaseToDerived:
|
||||
case CK_NullToMemberPointer:
|
||||
case CK_BaseToDerivedMemberPointer:
|
||||
case CK_DerivedToBaseMemberPointer:
|
||||
case CK_UserDefinedConversion:
|
||||
case CK_ConstructorConversion:
|
||||
case CK_VectorSplat:
|
||||
case CK_MemberPointerToBoolean: {
|
||||
// Recover some path-sensitivty by conjuring a new value.
|
||||
QualType resultType = CastE->getType();
|
||||
if (CastE->isLValue())
|
||||
resultType = getContext().getPointerType(resultType);
|
||||
|
||||
SVal result =
|
||||
svalBuilder.getConjuredSymbolVal(NULL, CastE, resultType,
|
||||
Builder->getCurrentBlockCount());
|
||||
|
||||
const ProgramState *state = Pred->getState()->BindExpr(CastE, result);
|
||||
MakeNode(Dst, CastE, Pred, state);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
const InitListExpr *ILE
|
||||
= cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
|
||||
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal ILV = state->getSVal(ILE);
|
||||
const LocationContext *LC = Pred->getLocationContext();
|
||||
state = state->bindCompoundLiteral(CL, LC, ILV);
|
||||
|
||||
if (CL->isLValue())
|
||||
MakeNode(Dst, CL, Pred, state->BindExpr(CL, state->getLValue(CL, LC)));
|
||||
else
|
||||
MakeNode(Dst, CL, Pred, state->BindExpr(CL, ILV));
|
||||
}
|
||||
|
||||
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
// FIXME: static variables may have an initializer, but the second
|
||||
// time a function is called those values may not be current.
|
||||
// This may need to be reflected in the CFG.
|
||||
|
||||
// Assumption: The CFG has one DeclStmt per Decl.
|
||||
const Decl *D = *DS->decl_begin();
|
||||
|
||||
if (!D || !isa<VarDecl>(D))
|
||||
return;
|
||||
|
||||
// FIXME: all pre/post visits should eventually be handled by ::Visit().
|
||||
ExplodedNodeSet dstPreVisit;
|
||||
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
|
||||
|
||||
const VarDecl *VD = dyn_cast<VarDecl>(D);
|
||||
|
||||
for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
|
||||
I!=E; ++I) {
|
||||
ExplodedNode *N = *I;
|
||||
const ProgramState *state = N->getState();
|
||||
|
||||
// Decls without InitExpr are not initialized explicitly.
|
||||
const LocationContext *LC = N->getLocationContext();
|
||||
|
||||
if (const Expr *InitEx = VD->getInit()) {
|
||||
SVal InitVal = state->getSVal(InitEx);
|
||||
|
||||
// We bound the temp obj region to the CXXConstructExpr. Now recover
|
||||
// the lazy compound value when the variable is not a reference.
|
||||
if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() &&
|
||||
!VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
|
||||
InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
|
||||
assert(isa<nonloc::LazyCompoundVal>(InitVal));
|
||||
}
|
||||
|
||||
// Recover some path-sensitivity if a scalar value evaluated to
|
||||
// UnknownVal.
|
||||
if ((InitVal.isUnknown() ||
|
||||
!getConstraintManager().canReasonAbout(InitVal)) &&
|
||||
!VD->getType()->isReferenceType()) {
|
||||
InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx,
|
||||
Builder->getCurrentBlockCount());
|
||||
}
|
||||
|
||||
evalBind(Dst, DS, N, state,
|
||||
loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true);
|
||||
}
|
||||
else {
|
||||
MakeNode(Dst, DS, N, state->bindDeclWithNoInit(state->getRegion(VD, LC)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
assert(B->getOpcode() == BO_LAnd ||
|
||||
B->getOpcode() == BO_LOr);
|
||||
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal X = state->getSVal(B);
|
||||
assert(X.isUndef());
|
||||
|
||||
const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
|
||||
assert(Ex);
|
||||
|
||||
if (Ex == B->getRHS()) {
|
||||
X = state->getSVal(Ex);
|
||||
|
||||
// Handle undefined values.
|
||||
if (X.isUndef()) {
|
||||
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
|
||||
return;
|
||||
}
|
||||
|
||||
DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
|
||||
|
||||
// We took the RHS. Because the value of the '&&' or '||' expression must
|
||||
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
|
||||
// or 1. Alternatively, we could take a lazy approach, and calculate this
|
||||
// value later when necessary. We don't have the machinery in place for
|
||||
// this right now, and since most logical expressions are used for branches,
|
||||
// the payoff is not likely to be large. Instead, we do eager evaluation.
|
||||
if (const ProgramState *newState = state->assume(XD, true))
|
||||
MakeNode(Dst, B, Pred,
|
||||
newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType())));
|
||||
|
||||
if (const ProgramState *newState = state->assume(XD, false))
|
||||
MakeNode(Dst, B, Pred,
|
||||
newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType())));
|
||||
}
|
||||
else {
|
||||
// We took the LHS expression. Depending on whether we are '&&' or
|
||||
// '||' we know what the value of the expression is via properties of
|
||||
// the short-circuiting.
|
||||
X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
|
||||
B->getType());
|
||||
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
|
||||
}
|
||||
}
|
||||
|
||||
void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
const ProgramState *state = Pred->getState();
|
||||
QualType T = getContext().getCanonicalType(IE->getType());
|
||||
unsigned NumInitElements = IE->getNumInits();
|
||||
|
||||
if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
|
||||
llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
|
||||
|
||||
// Handle base case where the initializer has no elements.
|
||||
// e.g: static int* myArray[] = {};
|
||||
if (NumInitElements == 0) {
|
||||
SVal V = svalBuilder.makeCompoundVal(T, vals);
|
||||
MakeNode(Dst, IE, Pred, state->BindExpr(IE, V));
|
||||
return;
|
||||
}
|
||||
|
||||
for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
|
||||
ei = IE->rend(); it != ei; ++it) {
|
||||
vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it)), vals);
|
||||
}
|
||||
|
||||
MakeNode(Dst, IE, Pred,
|
||||
state->BindExpr(IE, svalBuilder.makeCompoundVal(T, vals)));
|
||||
return;
|
||||
}
|
||||
|
||||
if (Loc::isLocType(T) || T->isIntegerType()) {
|
||||
assert(IE->getNumInits() == 1);
|
||||
const Expr *initEx = IE->getInit(0);
|
||||
MakeNode(Dst, IE, Pred, state->BindExpr(IE, state->getSVal(initEx)));
|
||||
return;
|
||||
}
|
||||
|
||||
llvm_unreachable("unprocessed InitListExpr type");
|
||||
}
|
||||
|
||||
void ExprEngine::VisitGuardedExpr(const Expr *Ex,
|
||||
const Expr *L,
|
||||
const Expr *R,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal X = state->getSVal(Ex);
|
||||
assert (X.isUndef());
|
||||
const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
|
||||
assert(SE);
|
||||
X = state->getSVal(SE);
|
||||
|
||||
// Make sure that we invalidate the previous binding.
|
||||
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true));
|
||||
}
|
||||
|
||||
void ExprEngine::
|
||||
VisitOffsetOfExpr(const OffsetOfExpr *OOE,
|
||||
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
||||
Expr::EvalResult Res;
|
||||
if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) {
|
||||
const APSInt &IV = Res.Val.getInt();
|
||||
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
|
||||
assert(OOE->getType()->isIntegerType());
|
||||
assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
|
||||
SVal X = svalBuilder.makeIntVal(IV);
|
||||
MakeNode(Dst, OOE, Pred, Pred->getState()->BindExpr(OOE, X));
|
||||
return;
|
||||
}
|
||||
// FIXME: Handle the case where __builtin_offsetof is not a constant.
|
||||
Dst.Add(Pred);
|
||||
}
|
||||
|
||||
|
||||
void ExprEngine::
|
||||
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
QualType T = Ex->getTypeOfArgument();
|
||||
|
||||
if (Ex->getKind() == UETT_SizeOf) {
|
||||
if (!T->isIncompleteType() && !T->isConstantSizeType()) {
|
||||
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
|
||||
|
||||
// FIXME: Add support for VLA type arguments, not just VLA expressions.
|
||||
// When that happens, we should probably refactor VLASizeChecker's code.
|
||||
if (Ex->isArgumentType()) {
|
||||
Dst.Add(Pred);
|
||||
return;
|
||||
}
|
||||
|
||||
// Get the size by getting the extent of the sub-expression.
|
||||
// First, visit the sub-expression to find its region.
|
||||
const Expr *Arg = Ex->getArgumentExpr();
|
||||
const ProgramState *state = Pred->getState();
|
||||
const MemRegion *MR = state->getSVal(Arg).getAsRegion();
|
||||
|
||||
// If the subexpression can't be resolved to a region, we don't know
|
||||
// anything about its size. Just leave the state as is and continue.
|
||||
if (!MR) {
|
||||
Dst.Add(Pred);
|
||||
return;
|
||||
}
|
||||
|
||||
// The result is the extent of the VLA.
|
||||
SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder);
|
||||
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, Extent));
|
||||
|
||||
return;
|
||||
}
|
||||
else if (T->getAs<ObjCObjectType>()) {
|
||||
// Some code tries to take the sizeof an ObjCObjectType, relying that
|
||||
// the compiler has laid out its representation. Just report Unknown
|
||||
// for these.
|
||||
Dst.Add(Pred);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Expr::EvalResult Result;
|
||||
Ex->Evaluate(Result, getContext());
|
||||
CharUnits amt = CharUnits::fromQuantity(Result.Val.getInt().getZExtValue());
|
||||
|
||||
const ProgramState *state = Pred->getState();
|
||||
state = state->BindExpr(Ex, svalBuilder.makeIntVal(amt.getQuantity(),
|
||||
Ex->getType()));
|
||||
MakeNode(Dst, Ex, Pred, state);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
switch (U->getOpcode()) {
|
||||
default:
|
||||
break;
|
||||
case UO_Real: {
|
||||
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
||||
ExplodedNodeSet Tmp;
|
||||
Visit(Ex, Pred, Tmp);
|
||||
|
||||
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
||||
|
||||
// FIXME: We don't have complex SValues yet.
|
||||
if (Ex->getType()->isAnyComplexType()) {
|
||||
// Just report "Unknown."
|
||||
Dst.Add(*I);
|
||||
continue;
|
||||
}
|
||||
|
||||
// For all other types, UO_Real is an identity operation.
|
||||
assert (U->getType() == Ex->getType());
|
||||
const ProgramState *state = (*I)->getState();
|
||||
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
case UO_Imag: {
|
||||
|
||||
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
||||
ExplodedNodeSet Tmp;
|
||||
Visit(Ex, Pred, Tmp);
|
||||
|
||||
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
||||
// FIXME: We don't have complex SValues yet.
|
||||
if (Ex->getType()->isAnyComplexType()) {
|
||||
// Just report "Unknown."
|
||||
Dst.Add(*I);
|
||||
continue;
|
||||
}
|
||||
|
||||
// For all other types, UO_Imag returns 0.
|
||||
const ProgramState *state = (*I)->getState();
|
||||
SVal X = svalBuilder.makeZeroVal(Ex->getType());
|
||||
MakeNode(Dst, U, *I, state->BindExpr(U, X));
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
case UO_Plus:
|
||||
assert(!U->isLValue());
|
||||
// FALL-THROUGH.
|
||||
case UO_Deref:
|
||||
case UO_AddrOf:
|
||||
case UO_Extension: {
|
||||
|
||||
// Unary "+" is a no-op, similar to a parentheses. We still have places
|
||||
// where it may be a block-level expression, so we need to
|
||||
// generate an extra node that just propagates the value of the
|
||||
// subexpression.
|
||||
|
||||
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
||||
ExplodedNodeSet Tmp;
|
||||
Visit(Ex, Pred, Tmp);
|
||||
|
||||
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
||||
const ProgramState *state = (*I)->getState();
|
||||
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
case UO_LNot:
|
||||
case UO_Minus:
|
||||
case UO_Not: {
|
||||
assert (!U->isLValue());
|
||||
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
||||
ExplodedNodeSet Tmp;
|
||||
Visit(Ex, Pred, Tmp);
|
||||
|
||||
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
||||
const ProgramState *state = (*I)->getState();
|
||||
|
||||
// Get the value of the subexpression.
|
||||
SVal V = state->getSVal(Ex);
|
||||
|
||||
if (V.isUnknownOrUndef()) {
|
||||
MakeNode(Dst, U, *I, state->BindExpr(U, V));
|
||||
continue;
|
||||
}
|
||||
|
||||
switch (U->getOpcode()) {
|
||||
default:
|
||||
assert(false && "Invalid Opcode.");
|
||||
break;
|
||||
|
||||
case UO_Not:
|
||||
// FIXME: Do we need to handle promotions?
|
||||
state = state->BindExpr(U, evalComplement(cast<NonLoc>(V)));
|
||||
break;
|
||||
|
||||
case UO_Minus:
|
||||
// FIXME: Do we need to handle promotions?
|
||||
state = state->BindExpr(U, evalMinus(cast<NonLoc>(V)));
|
||||
break;
|
||||
|
||||
case UO_LNot:
|
||||
|
||||
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
|
||||
//
|
||||
// Note: technically we do "E == 0", but this is the same in the
|
||||
// transfer functions as "0 == E".
|
||||
SVal Result;
|
||||
|
||||
if (isa<Loc>(V)) {
|
||||
Loc X = svalBuilder.makeNull();
|
||||
Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
|
||||
U->getType());
|
||||
}
|
||||
else {
|
||||
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
|
||||
Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
|
||||
U->getType());
|
||||
}
|
||||
|
||||
state = state->BindExpr(U, Result);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
MakeNode(Dst, U, *I, state);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle ++ and -- (both pre- and post-increment).
|
||||
assert (U->isIncrementDecrementOp());
|
||||
ExplodedNodeSet Tmp;
|
||||
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
||||
Visit(Ex, Pred, Tmp);
|
||||
|
||||
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
|
||||
|
||||
const ProgramState *state = (*I)->getState();
|
||||
SVal loc = state->getSVal(Ex);
|
||||
|
||||
// Perform a load.
|
||||
ExplodedNodeSet Tmp2;
|
||||
evalLoad(Tmp2, Ex, *I, state, loc);
|
||||
|
||||
for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) {
|
||||
|
||||
state = (*I2)->getState();
|
||||
SVal V2_untested = state->getSVal(Ex);
|
||||
|
||||
// Propagate unknown and undefined values.
|
||||
if (V2_untested.isUnknownOrUndef()) {
|
||||
MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested));
|
||||
continue;
|
||||
}
|
||||
DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
|
||||
|
||||
// Handle all other values.
|
||||
BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add
|
||||
: BO_Sub;
|
||||
|
||||
// If the UnaryOperator has non-location type, use its type to create the
|
||||
// constant value. If the UnaryOperator has location type, create the
|
||||
// constant with int type and pointer width.
|
||||
SVal RHS;
|
||||
|
||||
if (U->getType()->isAnyPointerType())
|
||||
RHS = svalBuilder.makeArrayIndex(1);
|
||||
else
|
||||
RHS = svalBuilder.makeIntVal(1, U->getType());
|
||||
|
||||
SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
|
||||
|
||||
// Conjure a new symbol if necessary to recover precision.
|
||||
if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){
|
||||
DefinedOrUnknownSVal SymVal =
|
||||
svalBuilder.getConjuredSymbolVal(NULL, Ex,
|
||||
Builder->getCurrentBlockCount());
|
||||
Result = SymVal;
|
||||
|
||||
// If the value is a location, ++/-- should always preserve
|
||||
// non-nullness. Check if the original value was non-null, and if so
|
||||
// propagate that constraint.
|
||||
if (Loc::isLocType(U->getType())) {
|
||||
DefinedOrUnknownSVal Constraint =
|
||||
svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
|
||||
|
||||
if (!state->assume(Constraint, true)) {
|
||||
// It isn't feasible for the original value to be null.
|
||||
// Propagate this constraint.
|
||||
Constraint = svalBuilder.evalEQ(state, SymVal,
|
||||
svalBuilder.makeZeroVal(U->getType()));
|
||||
|
||||
|
||||
state = state->assume(Constraint, false);
|
||||
assert(state);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Since the lvalue-to-rvalue conversion is explicit in the AST,
|
||||
// we bind an l-value if the operator is prefix and an lvalue (in C++).
|
||||
if (U->isLValue())
|
||||
state = state->BindExpr(U, loc);
|
||||
else
|
||||
state = state->BindExpr(U, U->isPostfix() ? V2 : Result);
|
||||
|
||||
// Perform the store.
|
||||
evalStore(Dst, NULL, U, *I2, state, loc, Result);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,163 @@
|
|||
//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines ExprEngine's support for calls and returns.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
||||
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
||||
#include "clang/AST/DeclCXX.h"
|
||||
#include "clang/Analysis/Support/SaveAndRestore.h"
|
||||
|
||||
using namespace clang;
|
||||
using namespace ento;
|
||||
|
||||
namespace {
|
||||
// Trait class for recording returned expression in the state.
|
||||
struct ReturnExpr {
|
||||
static int TagInt;
|
||||
typedef const Stmt *data_type;
|
||||
};
|
||||
int ReturnExpr::TagInt;
|
||||
}
|
||||
|
||||
void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) {
|
||||
const ProgramState *state =
|
||||
B.getState()->enterStackFrame(B.getCalleeContext());
|
||||
B.generateNode(state);
|
||||
}
|
||||
|
||||
void ExprEngine::processCallExit(CallExitNodeBuilder &B) {
|
||||
const ProgramState *state = B.getState();
|
||||
const ExplodedNode *Pred = B.getPredecessor();
|
||||
const StackFrameContext *calleeCtx =
|
||||
cast<StackFrameContext>(Pred->getLocationContext());
|
||||
const Stmt *CE = calleeCtx->getCallSite();
|
||||
|
||||
// If the callee returns an expression, bind its value to CallExpr.
|
||||
const Stmt *ReturnedExpr = state->get<ReturnExpr>();
|
||||
if (ReturnedExpr) {
|
||||
SVal RetVal = state->getSVal(ReturnedExpr);
|
||||
state = state->BindExpr(CE, RetVal);
|
||||
// Clear the return expr GDM.
|
||||
state = state->remove<ReturnExpr>();
|
||||
}
|
||||
|
||||
// Bind the constructed object value to CXXConstructExpr.
|
||||
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
|
||||
const CXXThisRegion *ThisR =
|
||||
getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx);
|
||||
|
||||
SVal ThisV = state->getSVal(ThisR);
|
||||
// Always bind the region to the CXXConstructExpr.
|
||||
state = state->BindExpr(CCE, ThisV);
|
||||
}
|
||||
|
||||
B.generateNode(state);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
|
||||
ExplodedNodeSet &dst) {
|
||||
// Perform the previsit of the CallExpr.
|
||||
ExplodedNodeSet dstPreVisit;
|
||||
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
|
||||
|
||||
// Now evaluate the call itself.
|
||||
class DefaultEval : public GraphExpander {
|
||||
ExprEngine &Eng;
|
||||
const CallExpr *CE;
|
||||
public:
|
||||
|
||||
DefaultEval(ExprEngine &eng, const CallExpr *ce)
|
||||
: Eng(eng), CE(ce) {}
|
||||
virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) {
|
||||
// Should we inline the call?
|
||||
if (Eng.getAnalysisManager().shouldInlineCall() &&
|
||||
Eng.InlineCall(Dst, CE, Pred)) {
|
||||
return;
|
||||
}
|
||||
|
||||
StmtNodeBuilder &Builder = Eng.getBuilder();
|
||||
assert(&Builder && "StmtNodeBuilder must be defined.");
|
||||
|
||||
// Dispatch to the plug-in transfer function.
|
||||
unsigned oldSize = Dst.size();
|
||||
SaveOr OldHasGen(Builder.hasGeneratedNode);
|
||||
|
||||
// Dispatch to transfer function logic to handle the call itself.
|
||||
const Expr *Callee = CE->getCallee()->IgnoreParens();
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal L = state->getSVal(Callee);
|
||||
Eng.getTF().evalCall(Dst, Eng, Builder, CE, L, Pred);
|
||||
|
||||
// Handle the case where no nodes where generated. Auto-generate that
|
||||
// contains the updated state if we aren't generating sinks.
|
||||
if (!Builder.BuildSinks && Dst.size() == oldSize &&
|
||||
!Builder.hasGeneratedNode)
|
||||
Eng.MakeNode(Dst, CE, Pred, state);
|
||||
}
|
||||
};
|
||||
|
||||
// Finally, evaluate the function call. We try each of the checkers
|
||||
// to see if the can evaluate the function call.
|
||||
ExplodedNodeSet dstCallEvaluated;
|
||||
DefaultEval defEval(*this, CE);
|
||||
getCheckerManager().runCheckersForEvalCall(dstCallEvaluated,
|
||||
dstPreVisit,
|
||||
CE, *this, &defEval);
|
||||
|
||||
// Finally, perform the post-condition check of the CallExpr and store
|
||||
// the created nodes in 'Dst'.
|
||||
getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
|
||||
*this);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
ExplodedNodeSet Src;
|
||||
if (const Expr *RetE = RS->getRetValue()) {
|
||||
// Record the returned expression in the state. It will be used in
|
||||
// processCallExit to bind the return value to the call expr.
|
||||
{
|
||||
static SimpleProgramPointTag tag("ExprEngine: ReturnStmt");
|
||||
const ProgramState *state = Pred->getState();
|
||||
state = state->set<ReturnExpr>(RetE);
|
||||
Pred = Builder->generateNode(RetE, state, Pred, &tag);
|
||||
}
|
||||
// We may get a NULL Pred because we generated a cached node.
|
||||
if (Pred)
|
||||
Visit(RetE, Pred, Src);
|
||||
}
|
||||
else {
|
||||
Src.Add(Pred);
|
||||
}
|
||||
|
||||
ExplodedNodeSet CheckedSet;
|
||||
getCheckerManager().runCheckersForPreStmt(CheckedSet, Src, RS, *this);
|
||||
|
||||
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
||||
I != E; ++I) {
|
||||
|
||||
assert(Builder && "StmtNodeBuilder must be defined.");
|
||||
|
||||
Pred = *I;
|
||||
unsigned size = Dst.size();
|
||||
|
||||
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
||||
SaveOr OldHasGen(Builder->hasGeneratedNode);
|
||||
|
||||
getTF().evalReturn(Dst, *this, *Builder, RS, Pred);
|
||||
|
||||
// Handle the case where no nodes where generated.
|
||||
if (!Builder->BuildSinks && Dst.size() == size &&
|
||||
!Builder->hasGeneratedNode)
|
||||
MakeNode(Dst, RS, Pred, Pred->getState());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,245 @@
|
|||
//=-- ExprEngineObjC.cpp - ExprEngine support for Objective-C ---*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines ExprEngine's support for Objective-C expressions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
||||
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
||||
#include "clang/Analysis/Support/SaveAndRestore.h"
|
||||
|
||||
using namespace clang;
|
||||
using namespace ento;
|
||||
|
||||
void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr *Ex,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal baseVal = state->getSVal(Ex->getBase());
|
||||
SVal location = state->getLValue(Ex->getDecl(), baseVal);
|
||||
|
||||
ExplodedNodeSet dstIvar;
|
||||
MakeNode(dstIvar, Ex, Pred, state->BindExpr(Ex, location));
|
||||
|
||||
// Perform the post-condition check of the ObjCIvarRefExpr and store
|
||||
// the created nodes in 'Dst'.
|
||||
getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
getCheckerManager().runCheckersForPreStmt(Dst, Pred, S, *this);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
// ObjCForCollectionStmts are processed in two places. This method
|
||||
// handles the case where an ObjCForCollectionStmt* occurs as one of the
|
||||
// statements within a basic block. This transfer function does two things:
|
||||
//
|
||||
// (1) binds the next container value to 'element'. This creates a new
|
||||
// node in the ExplodedGraph.
|
||||
//
|
||||
// (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
|
||||
// whether or not the container has any more elements. This value
|
||||
// will be tested in ProcessBranch. We need to explicitly bind
|
||||
// this value because a container can contain nil elements.
|
||||
//
|
||||
// FIXME: Eventually this logic should actually do dispatches to
|
||||
// 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
|
||||
// This will require simulating a temporary NSFastEnumerationState, either
|
||||
// through an SVal or through the use of MemRegions. This value can
|
||||
// be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
|
||||
// terminates we reclaim the temporary (it goes out of scope) and we
|
||||
// we can test if the SVal is 0 or if the MemRegion is null (depending
|
||||
// on what approach we take).
|
||||
//
|
||||
// For now: simulate (1) by assigning either a symbol or nil if the
|
||||
// container is empty. Thus this transfer function will by default
|
||||
// result in state splitting.
|
||||
|
||||
const Stmt *elem = S->getElement();
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal elementV;
|
||||
|
||||
if (const DeclStmt *DS = dyn_cast<DeclStmt>(elem)) {
|
||||
const VarDecl *elemD = cast<VarDecl>(DS->getSingleDecl());
|
||||
assert(elemD->getInit() == 0);
|
||||
elementV = state->getLValue(elemD, Pred->getLocationContext());
|
||||
}
|
||||
else {
|
||||
elementV = state->getSVal(elem);
|
||||
}
|
||||
|
||||
ExplodedNodeSet dstLocation;
|
||||
evalLocation(dstLocation, elem, Pred, state, elementV, NULL, false);
|
||||
|
||||
if (dstLocation.empty())
|
||||
return;
|
||||
|
||||
for (ExplodedNodeSet::iterator NI = dstLocation.begin(),
|
||||
NE = dstLocation.end(); NI!=NE; ++NI) {
|
||||
Pred = *NI;
|
||||
const ProgramState *state = Pred->getState();
|
||||
|
||||
// Handle the case where the container still has elements.
|
||||
SVal TrueV = svalBuilder.makeTruthVal(1);
|
||||
const ProgramState *hasElems = state->BindExpr(S, TrueV);
|
||||
|
||||
// Handle the case where the container has no elements.
|
||||
SVal FalseV = svalBuilder.makeTruthVal(0);
|
||||
const ProgramState *noElems = state->BindExpr(S, FalseV);
|
||||
|
||||
if (loc::MemRegionVal *MV = dyn_cast<loc::MemRegionVal>(&elementV))
|
||||
if (const TypedValueRegion *R =
|
||||
dyn_cast<TypedValueRegion>(MV->getRegion())) {
|
||||
// FIXME: The proper thing to do is to really iterate over the
|
||||
// container. We will do this with dispatch logic to the store.
|
||||
// For now, just 'conjure' up a symbolic value.
|
||||
QualType T = R->getValueType();
|
||||
assert(Loc::isLocType(T));
|
||||
unsigned Count = Builder->getCurrentBlockCount();
|
||||
SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count);
|
||||
SVal V = svalBuilder.makeLoc(Sym);
|
||||
hasElems = hasElems->bindLoc(elementV, V);
|
||||
|
||||
// Bind the location to 'nil' on the false branch.
|
||||
SVal nilV = svalBuilder.makeIntVal(0, T);
|
||||
noElems = noElems->bindLoc(elementV, nilV);
|
||||
}
|
||||
|
||||
// Create the new nodes.
|
||||
MakeNode(Dst, S, Pred, hasElems);
|
||||
MakeNode(Dst, S, Pred, noElems);
|
||||
}
|
||||
}
|
||||
|
||||
void ExprEngine::VisitObjCMessage(const ObjCMessage &msg,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
|
||||
// Handle the previsits checks.
|
||||
ExplodedNodeSet dstPrevisit;
|
||||
getCheckerManager().runCheckersForPreObjCMessage(dstPrevisit, Pred,
|
||||
msg, *this);
|
||||
|
||||
// Proceed with evaluate the message expression.
|
||||
ExplodedNodeSet dstEval;
|
||||
|
||||
for (ExplodedNodeSet::iterator DI = dstPrevisit.begin(),
|
||||
DE = dstPrevisit.end(); DI != DE; ++DI) {
|
||||
|
||||
ExplodedNode *Pred = *DI;
|
||||
bool RaisesException = false;
|
||||
unsigned oldSize = dstEval.size();
|
||||
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
||||
SaveOr OldHasGen(Builder->hasGeneratedNode);
|
||||
|
||||
if (const Expr *Receiver = msg.getInstanceReceiver()) {
|
||||
const ProgramState *state = Pred->getState();
|
||||
SVal recVal = state->getSVal(Receiver);
|
||||
if (!recVal.isUndef()) {
|
||||
// Bifurcate the state into nil and non-nil ones.
|
||||
DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal);
|
||||
|
||||
const ProgramState *notNilState, *nilState;
|
||||
llvm::tie(notNilState, nilState) = state->assume(receiverVal);
|
||||
|
||||
// There are three cases: can be nil or non-nil, must be nil, must be
|
||||
// non-nil. We ignore must be nil, and merge the rest two into non-nil.
|
||||
if (nilState && !notNilState) {
|
||||
dstEval.insert(Pred);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if the "raise" message was sent.
|
||||
assert(notNilState);
|
||||
if (msg.getSelector() == RaiseSel)
|
||||
RaisesException = true;
|
||||
|
||||
// Check if we raise an exception. For now treat these as sinks.
|
||||
// Eventually we will want to handle exceptions properly.
|
||||
if (RaisesException)
|
||||
Builder->BuildSinks = true;
|
||||
|
||||
// Dispatch to plug-in transfer function.
|
||||
evalObjCMessage(dstEval, msg, Pred, notNilState);
|
||||
}
|
||||
}
|
||||
else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) {
|
||||
IdentifierInfo* ClsName = Iface->getIdentifier();
|
||||
Selector S = msg.getSelector();
|
||||
|
||||
// Check for special instance methods.
|
||||
if (!NSExceptionII) {
|
||||
ASTContext &Ctx = getContext();
|
||||
NSExceptionII = &Ctx.Idents.get("NSException");
|
||||
}
|
||||
|
||||
if (ClsName == NSExceptionII) {
|
||||
enum { NUM_RAISE_SELECTORS = 2 };
|
||||
|
||||
// Lazily create a cache of the selectors.
|
||||
if (!NSExceptionInstanceRaiseSelectors) {
|
||||
ASTContext &Ctx = getContext();
|
||||
NSExceptionInstanceRaiseSelectors =
|
||||
new Selector[NUM_RAISE_SELECTORS];
|
||||
SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
|
||||
unsigned idx = 0;
|
||||
|
||||
// raise:format:
|
||||
II.push_back(&Ctx.Idents.get("raise"));
|
||||
II.push_back(&Ctx.Idents.get("format"));
|
||||
NSExceptionInstanceRaiseSelectors[idx++] =
|
||||
Ctx.Selectors.getSelector(II.size(), &II[0]);
|
||||
|
||||
// raise:format::arguments:
|
||||
II.push_back(&Ctx.Idents.get("arguments"));
|
||||
NSExceptionInstanceRaiseSelectors[idx++] =
|
||||
Ctx.Selectors.getSelector(II.size(), &II[0]);
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
|
||||
if (S == NSExceptionInstanceRaiseSelectors[i]) {
|
||||
RaisesException = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we raise an exception. For now treat these as sinks.
|
||||
// Eventually we will want to handle exceptions properly.
|
||||
if (RaisesException)
|
||||
Builder->BuildSinks = true;
|
||||
|
||||
// Dispatch to plug-in transfer function.
|
||||
evalObjCMessage(dstEval, msg, Pred, Pred->getState());
|
||||
}
|
||||
|
||||
// Handle the case where no nodes where generated. Auto-generate that
|
||||
// contains the updated state if we aren't generating sinks.
|
||||
if (!Builder->BuildSinks && dstEval.size() == oldSize &&
|
||||
!Builder->hasGeneratedNode)
|
||||
MakeNode(dstEval, msg.getOriginExpr(), Pred, Pred->getState());
|
||||
}
|
||||
|
||||
// Finally, perform the post-condition check of the ObjCMessageExpr and store
|
||||
// the created nodes in 'Dst'.
|
||||
getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this);
|
||||
}
|
||||
|
||||
void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex,
|
||||
ExplodedNode *Pred,
|
||||
ExplodedNodeSet &Dst) {
|
||||
MakeNode(Dst, Ex, Pred, Pred->getState()->BindExpr(Ex, loc::ObjCPropRef(Ex)));
|
||||
}
|
Loading…
Reference in New Issue