[mlir:Async] Remove async operations if it is statically known that the parallel operation has a single compute block

Depends On D104850

Add a test that verifies that canonicalization removes all async overheads if it is statically known that the scf.parallel operation will be computed using a single block.

Reviewed By: herhut

Differential Revision: https://reviews.llvm.org/D104891
This commit is contained in:
Eugene Zhulenev 2021-06-27 17:44:31 -07:00
parent a37f558682
commit a8f819c6d8
6 changed files with 113 additions and 12 deletions

View File

@ -20,6 +20,7 @@
#include "mlir/IR/Dialect.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"

View File

@ -177,6 +177,8 @@ def Async_CreateGroupOp : Async_Op<"create_group", [NoSideEffect]> {
let arguments = (ins Index:$size);
let results = (outs Async_GroupType:$result);
let hasCanonicalizeMethod = 1;
let assemblyFormat = "$size `:` type($result) attr-dict";
}

View File

@ -245,6 +245,36 @@ static LogicalResult verify(ExecuteOp op) {
return success();
}
//===----------------------------------------------------------------------===//
/// CreateGroupOp
//===----------------------------------------------------------------------===//
LogicalResult CreateGroupOp::canonicalize(CreateGroupOp op,
PatternRewriter &rewriter) {
// Find all `await_all` users of the group.
llvm::SmallVector<AwaitAllOp> awaitAllUsers;
auto isAwaitAll = [&](Operation *op) -> bool {
if (AwaitAllOp awaitAll = dyn_cast<AwaitAllOp>(op)) {
awaitAllUsers.push_back(awaitAll);
return true;
}
return false;
};
// Check if all users of the group are `await_all` operations.
if (!llvm::all_of(op->getUsers(), isAwaitAll))
return failure();
// If group is only awaited without adding anything to it, we can safely erase
// the create operation and all users.
for (AwaitAllOp awaitAll : awaitAllUsers)
rewriter.eraseOp(awaitAll);
rewriter.eraseOp(op);
return success();
}
//===----------------------------------------------------------------------===//
/// AwaitOp
//===----------------------------------------------------------------------===//

View File

@ -513,18 +513,48 @@ static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
Value groupSize = b.create<SubIOp>(blockCount, c1);
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
// Pack the async dispath function operands to launch the work splitting.
SmallVector<Value> asyncDispatchOperands = {group, c0, blockCount, blockSize};
asyncDispatchOperands.append(tripCounts);
asyncDispatchOperands.append(op.lowerBound().begin(), op.lowerBound().end());
asyncDispatchOperands.append(op.upperBound().begin(), op.upperBound().end());
asyncDispatchOperands.append(op.step().begin(), op.step().end());
asyncDispatchOperands.append(parallelComputeFunction.captures);
// Appends operands shared by async dispatch and parallel compute functions to
// the given operands vector.
auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
operands.append(tripCounts);
operands.append(op.lowerBound().begin(), op.lowerBound().end());
operands.append(op.upperBound().begin(), op.upperBound().end());
operands.append(op.step().begin(), op.step().end());
operands.append(parallelComputeFunction.captures);
};
// Launch async dispatch function for [0, blockCount) range.
b.create<CallOp>(asyncDispatchFunction.sym_name(),
asyncDispatchFunction.getCallableResults(),
asyncDispatchOperands);
// Check if the block size is one, in this case we can skip the async dispatch
// completely. If this will be known statically, then canonicalization will
// erase async group operations.
Value isSingleBlock = b.create<CmpIOp>(CmpIPredicate::eq, blockCount, c1);
auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder nb(loc, nestedBuilder);
// Call parallel compute function for the single block.
SmallVector<Value> operands = {c0, blockSize};
appendBlockComputeOperands(operands);
nb.create<CallOp>(parallelComputeFunction.func.sym_name(),
parallelComputeFunction.func.getCallableResults(),
operands);
nb.create<scf::YieldOp>();
};
auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder nb(loc, nestedBuilder);
// Launch async dispatch function for [0, blockCount) range.
SmallVector<Value> operands = {group, c0, blockCount, blockSize};
appendBlockComputeOperands(operands);
nb.create<CallOp>(asyncDispatchFunction.sym_name(),
asyncDispatchFunction.getCallableResults(), operands);
nb.create<scf::YieldOp>();
};
// Dispatch either single block compute function, or launch async dispatch.
b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
// Wait for the completion of all parallel compute operations.
b.create<AwaitAllOp>(group);

View File

@ -3,8 +3,13 @@
// CHECK-LABEL: @loop_1d
func @loop_1d(%arg0: index, %arg1: index, %arg2: index, %arg3: memref<?xf32>) {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[GROUP:.*]] = async.create_group
// CHECK: call @async_dispatch_fn
// CHECK: scf.if {{.*}} {
// CHECK: call @parallel_compute_fn(%[[C0]]
// CHECK: } else {
// CHECK: call @async_dispatch_fn
// CHECK: }
// CHECK: async.await_all %[[GROUP]]
scf.parallel (%i) = (%arg0) to (%arg1) step (%arg2) {
%one = constant 1.0 : f32

View File

@ -0,0 +1,33 @@
// RUN: mlir-opt %s \
// RUN: -async-parallel-for=async-dispatch=true \
// RUN: -canonicalize -inline -symbol-dce \
// RUN: | FileCheck %s
// RUN: mlir-opt %s \
// RUN: -async-parallel-for=async-dispatch=false \
// RUN: -canonicalize -inline -symbol-dce \
// RUN: | FileCheck %s
// Check that if we statically know that the parallel operation has a single
// block then all async operations will be canonicalized away and we will
// end up with a single synchonous compute function call.
// CHECK-LABEL: @loop_1d(
// CHECK: %[[MEMREF:.*]]: memref<?xf32>
func @loop_1d(%arg0: memref<?xf32>) {
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
// CHECK-DAG: %[[C1:.*]] = constant 1 : index
// CHECK-DAG: %[[C100:.*]] = constant 100 : index
// CHECK-DAG: %[[ONE:.*]] = constant 1.000000e+00 : f32
// CHECK: scf.for %[[I:.*]] = %[[C0]] to %[[C100]] step %[[C1]]
// CHECK: memref.store %[[ONE]], %[[MEMREF]][%[[I]]]
%lb = constant 0 : index
%ub = constant 100 : index
%st = constant 1 : index
scf.parallel (%i) = (%lb) to (%ub) step (%st) {
%one = constant 1.0 : f32
memref.store %one, %arg0[%i] : memref<?xf32>
}
return
}