forked from OSchip/llvm-project
[mlir:Async] Remove async operations if it is statically known that the parallel operation has a single compute block
Depends On D104850 Add a test that verifies that canonicalization removes all async overheads if it is statically known that the scf.parallel operation will be computed using a single block. Reviewed By: herhut Differential Revision: https://reviews.llvm.org/D104891
This commit is contained in:
parent
a37f558682
commit
a8f819c6d8
|
@ -20,6 +20,7 @@
|
|||
#include "mlir/IR/Dialect.h"
|
||||
#include "mlir/IR/OpDefinition.h"
|
||||
#include "mlir/IR/OpImplementation.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
||||
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
||||
|
||||
|
|
|
@ -177,6 +177,8 @@ def Async_CreateGroupOp : Async_Op<"create_group", [NoSideEffect]> {
|
|||
let arguments = (ins Index:$size);
|
||||
let results = (outs Async_GroupType:$result);
|
||||
|
||||
let hasCanonicalizeMethod = 1;
|
||||
|
||||
let assemblyFormat = "$size `:` type($result) attr-dict";
|
||||
}
|
||||
|
||||
|
|
|
@ -245,6 +245,36 @@ static LogicalResult verify(ExecuteOp op) {
|
|||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// CreateGroupOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
LogicalResult CreateGroupOp::canonicalize(CreateGroupOp op,
|
||||
PatternRewriter &rewriter) {
|
||||
// Find all `await_all` users of the group.
|
||||
llvm::SmallVector<AwaitAllOp> awaitAllUsers;
|
||||
|
||||
auto isAwaitAll = [&](Operation *op) -> bool {
|
||||
if (AwaitAllOp awaitAll = dyn_cast<AwaitAllOp>(op)) {
|
||||
awaitAllUsers.push_back(awaitAll);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
// Check if all users of the group are `await_all` operations.
|
||||
if (!llvm::all_of(op->getUsers(), isAwaitAll))
|
||||
return failure();
|
||||
|
||||
// If group is only awaited without adding anything to it, we can safely erase
|
||||
// the create operation and all users.
|
||||
for (AwaitAllOp awaitAll : awaitAllUsers)
|
||||
rewriter.eraseOp(awaitAll);
|
||||
rewriter.eraseOp(op);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// AwaitOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -513,18 +513,48 @@ static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
|
|||
Value groupSize = b.create<SubIOp>(blockCount, c1);
|
||||
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
|
||||
|
||||
// Pack the async dispath function operands to launch the work splitting.
|
||||
SmallVector<Value> asyncDispatchOperands = {group, c0, blockCount, blockSize};
|
||||
asyncDispatchOperands.append(tripCounts);
|
||||
asyncDispatchOperands.append(op.lowerBound().begin(), op.lowerBound().end());
|
||||
asyncDispatchOperands.append(op.upperBound().begin(), op.upperBound().end());
|
||||
asyncDispatchOperands.append(op.step().begin(), op.step().end());
|
||||
asyncDispatchOperands.append(parallelComputeFunction.captures);
|
||||
// Appends operands shared by async dispatch and parallel compute functions to
|
||||
// the given operands vector.
|
||||
auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
|
||||
operands.append(tripCounts);
|
||||
operands.append(op.lowerBound().begin(), op.lowerBound().end());
|
||||
operands.append(op.upperBound().begin(), op.upperBound().end());
|
||||
operands.append(op.step().begin(), op.step().end());
|
||||
operands.append(parallelComputeFunction.captures);
|
||||
};
|
||||
|
||||
// Launch async dispatch function for [0, blockCount) range.
|
||||
b.create<CallOp>(asyncDispatchFunction.sym_name(),
|
||||
asyncDispatchFunction.getCallableResults(),
|
||||
asyncDispatchOperands);
|
||||
// Check if the block size is one, in this case we can skip the async dispatch
|
||||
// completely. If this will be known statically, then canonicalization will
|
||||
// erase async group operations.
|
||||
Value isSingleBlock = b.create<CmpIOp>(CmpIPredicate::eq, blockCount, c1);
|
||||
|
||||
auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
|
||||
ImplicitLocOpBuilder nb(loc, nestedBuilder);
|
||||
|
||||
// Call parallel compute function for the single block.
|
||||
SmallVector<Value> operands = {c0, blockSize};
|
||||
appendBlockComputeOperands(operands);
|
||||
|
||||
nb.create<CallOp>(parallelComputeFunction.func.sym_name(),
|
||||
parallelComputeFunction.func.getCallableResults(),
|
||||
operands);
|
||||
nb.create<scf::YieldOp>();
|
||||
};
|
||||
|
||||
auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
|
||||
ImplicitLocOpBuilder nb(loc, nestedBuilder);
|
||||
|
||||
// Launch async dispatch function for [0, blockCount) range.
|
||||
SmallVector<Value> operands = {group, c0, blockCount, blockSize};
|
||||
appendBlockComputeOperands(operands);
|
||||
|
||||
nb.create<CallOp>(asyncDispatchFunction.sym_name(),
|
||||
asyncDispatchFunction.getCallableResults(), operands);
|
||||
nb.create<scf::YieldOp>();
|
||||
};
|
||||
|
||||
// Dispatch either single block compute function, or launch async dispatch.
|
||||
b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
|
||||
|
||||
// Wait for the completion of all parallel compute operations.
|
||||
b.create<AwaitAllOp>(group);
|
||||
|
|
|
@ -3,8 +3,13 @@
|
|||
|
||||
// CHECK-LABEL: @loop_1d
|
||||
func @loop_1d(%arg0: index, %arg1: index, %arg2: index, %arg3: memref<?xf32>) {
|
||||
// CHECK: %[[C0:.*]] = constant 0 : index
|
||||
// CHECK: %[[GROUP:.*]] = async.create_group
|
||||
// CHECK: call @async_dispatch_fn
|
||||
// CHECK: scf.if {{.*}} {
|
||||
// CHECK: call @parallel_compute_fn(%[[C0]]
|
||||
// CHECK: } else {
|
||||
// CHECK: call @async_dispatch_fn
|
||||
// CHECK: }
|
||||
// CHECK: async.await_all %[[GROUP]]
|
||||
scf.parallel (%i) = (%arg0) to (%arg1) step (%arg2) {
|
||||
%one = constant 1.0 : f32
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
// RUN: mlir-opt %s \
|
||||
// RUN: -async-parallel-for=async-dispatch=true \
|
||||
// RUN: -canonicalize -inline -symbol-dce \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// RUN: mlir-opt %s \
|
||||
// RUN: -async-parallel-for=async-dispatch=false \
|
||||
// RUN: -canonicalize -inline -symbol-dce \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// Check that if we statically know that the parallel operation has a single
|
||||
// block then all async operations will be canonicalized away and we will
|
||||
// end up with a single synchonous compute function call.
|
||||
|
||||
// CHECK-LABEL: @loop_1d(
|
||||
// CHECK: %[[MEMREF:.*]]: memref<?xf32>
|
||||
func @loop_1d(%arg0: memref<?xf32>) {
|
||||
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
|
||||
// CHECK-DAG: %[[C1:.*]] = constant 1 : index
|
||||
// CHECK-DAG: %[[C100:.*]] = constant 100 : index
|
||||
// CHECK-DAG: %[[ONE:.*]] = constant 1.000000e+00 : f32
|
||||
// CHECK: scf.for %[[I:.*]] = %[[C0]] to %[[C100]] step %[[C1]]
|
||||
// CHECK: memref.store %[[ONE]], %[[MEMREF]][%[[I]]]
|
||||
%lb = constant 0 : index
|
||||
%ub = constant 100 : index
|
||||
%st = constant 1 : index
|
||||
scf.parallel (%i) = (%lb) to (%ub) step (%st) {
|
||||
%one = constant 1.0 : f32
|
||||
memref.store %one, %arg0[%i] : memref<?xf32>
|
||||
}
|
||||
|
||||
return
|
||||
}
|
Loading…
Reference in New Issue