1. Remove dead code (lshift function).

2. Consolidate memory allocation into just two inline functions.
3. Convert "unsigned" to uint32_t to gaurantee its size.
4. Eliminate magic constants and replace with symbolic equivalent.
5. Improve code documentation slightly.
6. Simplify the logical operator code because bitwidths must be the same.
7. Fix indentation per coding standards.
8. Use exit-early style to reduce indentation in several functions.

llvm-svn: 34389
This commit is contained in:
Reid Spencer 2007-02-18 18:38:44 +00:00
parent ee0a685ea1
commit a856b6e985
1 changed files with 218 additions and 227 deletions

View File

@ -19,43 +19,35 @@
#include <cstdlib>
using namespace llvm;
#if 0
/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
/// store the len least significant words of the result in
/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from
/// the most significant digit.
static uint64_t lshift(uint64_t dest[], unsigned d_offset,
uint64_t x[], unsigned len, unsigned shiftAmt) {
unsigned count = APINT_BITS_PER_WORD - shiftAmt;
int i = len - 1;
uint64_t high_word = x[i], retVal = high_word >> count;
++d_offset;
while (--i >= 0) {
uint64_t low_word = x[i];
dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
high_word = low_word;
}
dest[d_offset+i] = high_word << shiftAmt;
return retVal;
// A utility function for allocating memory, checking for allocation failures,
// and ensuring the contents is zeroed.
inline static uint64_t* getClearedMemory(uint32_t numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
memset(result, 0, numWords * sizeof(uint64_t));
return result;
}
#endif
APInt::APInt(unsigned numBits, uint64_t val)
// A utility function for allocating memory and checking for allocation failure.
inline static uint64_t* getMemory(uint32_t numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
return result;
}
APInt::APInt(uint32_t numBits, uint64_t val)
: BitWidth(numBits) {
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
if (isSingleWord())
VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
memset(pVal, 0, getNumWords() * 8);
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
}
}
APInt::APInt(unsigned numBits, unsigned numWords, uint64_t bigVal[])
APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
: BitWidth(numBits) {
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
@ -63,43 +55,40 @@ APInt::APInt(unsigned numBits, unsigned numWords, uint64_t bigVal[])
if (isSingleWord())
VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
pVal = getMemory(getNumWords());
// Calculate the actual length of bigVal[].
unsigned maxN = std::max<unsigned>(numWords, getNumWords());
unsigned minN = std::min<unsigned>(numWords, getNumWords());
memcpy(pVal, bigVal, (minN - 1) * 8);
uint32_t maxN = std::max<uint32_t>(numWords, getNumWords());
uint32_t minN = std::min<uint32_t>(numWords, getNumWords());
memcpy(pVal, bigVal, (minN - 1) * sizeof(uint64_t));
pVal[minN-1] = bigVal[minN-1] &
(~uint64_t(0ULL) >>
(APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD));
if (maxN == getNumWords())
memset(pVal+numWords, 0, (getNumWords() - numWords) * 8);
memset(pVal+numWords, 0, (getNumWords() - numWords) * sizeof(uint64_t));
}
}
/// @brief Create a new APInt by translating the char array represented
/// integer value.
APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
uint8_t radix) {
fromString(numbits, StrStart, slen, radix);
}
/// @brief Create a new APInt by translating the string represented
/// integer value.
APInt::APInt(unsigned numbits, const std::string& Val, uint8_t radix) {
APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) {
assert(!Val.empty() && "String empty?");
fromString(numbits, Val.c_str(), Val.size(), radix);
}
APInt::APInt(const APInt& APIVal)
: BitWidth(APIVal.BitWidth) {
if (isSingleWord()) VAL = APIVal.VAL;
if (isSingleWord())
VAL = APIVal.VAL;
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
memcpy(pVal, APIVal.pVal, getNumWords() * 8);
pVal = getMemory(getNumWords());
memcpy(pVal, APIVal.pVal, getNumWords() * sizeof(uint64_t));
}
}
@ -112,13 +101,9 @@ APInt::~APInt() {
APInt& APInt::operator=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
unsigned minN = std::min(getNumWords(), RHS.getNumWords());
memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
if (getNumWords() != minN)
memset(pVal + minN, 0, (getNumWords() - minN) * 8);
}
VAL = RHS.VAL;
else
memcpy(pVal, RHS.pVal, getNumWords() * sizeof(uint64_t));
return *this;
}
@ -129,17 +114,19 @@ APInt& APInt::operator=(uint64_t RHS) {
VAL = RHS;
else {
pVal[0] = RHS;
memset(pVal, 0, (getNumWords() - 1) * 8);
memset(pVal+1, 0, (getNumWords() - 1) * sizeof(uint64_t));
}
clearUnusedBits();
return *this;
}
/// add_1 - This function adds the integer array x[] by integer y and
/// returns the carry.
/// add_1 - This function adds a single "digit" integer, y, to the multiple
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
static uint64_t add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
for (unsigned i = 0; i < len; ++i) {
static uint64_t add_1(uint64_t dest[],
uint64_t x[], uint32_t len,
uint64_t y) {
for (uint32_t i = 0; i < len; ++i) {
dest[i] = y + x[i];
if (dest[i] < y)
y = 1;
@ -161,17 +148,21 @@ APInt& APInt::operator++() {
return *this;
}
/// sub_1 - This function subtracts the integer array x[] by
/// integer y and returns the borrow-out carry.
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
for (unsigned i = 0; i < len; ++i) {
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
static uint64_t sub_1(uint64_t x[], uint32_t len,
uint64_t y) {
for (uint32_t i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
if (y > X)
y = 1;
y = 1; // We have to "borrow 1" from next "digit"
else {
y = 0;
break;
y = 0; // No need to borrow
break; // Remaining digits are unchanged so exit early
}
}
return y;
@ -179,7 +170,8 @@ static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
if (isSingleWord()) --VAL;
if (isSingleWord())
--VAL;
else
sub_1(pVal, getNumWords(), 1);
clearUnusedBits();
@ -188,9 +180,10 @@ APInt& APInt::operator--() {
/// add - This function adds the integer array x[] by integer array
/// y[] and returns the carry.
static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], unsigned len) {
unsigned carry = 0;
for (unsigned i = 0; i< len; ++i) {
static uint64_t add(uint64_t dest[], uint64_t x[],
uint64_t y[], uint32_t len) {
uint32_t carry = 0;
for (uint32_t i = 0; i< len; ++i) {
carry += x[i];
dest[i] = carry + y[i];
carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
@ -221,11 +214,12 @@ APInt& APInt::operator+=(const APInt& RHS) {
/// sub - This function subtracts the integer array x[] by
/// integer array y[], and returns the borrow-out carry.
static uint64_t sub(uint64_t dest[], uint64_t x[], uint64_t y[], unsigned len) {
static uint64_t sub(uint64_t dest[], uint64_t x[],
uint64_t y[], uint32_t len) {
// Carry indicator.
uint64_t cy = 0;
for (unsigned i = 0; i < len; ++i) {
for (uint32_t i = 0; i < len; ++i) {
uint64_t Y = y[i], X = x[i];
Y += cy;
@ -263,12 +257,13 @@ APInt& APInt::operator-=(const APInt& RHS) {
/// mul_1 - This function performs the multiplication operation on a
/// large integer (represented as an integer array) and a uint64_t integer.
/// @returns the carry of the multiplication.
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
unsigned len, uint64_t y) {
static uint64_t mul_1(uint64_t dest[],
uint64_t x[], uint32_t len,
uint64_t y) {
// Split y into high 32-bit part and low 32-bit part.
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
uint64_t carry = 0, lx, hx;
for (unsigned i = 0; i < len; ++i) {
for (uint32_t i = 0; i < len; ++i) {
lx = x[i] & 0xffffffffULL;
hx = x[i] >> 32;
// hasCarry - A flag to indicate if has carry.
@ -296,14 +291,14 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[],
/// mul - This function multiplies integer array x[] by integer array y[] and
/// stores the result into integer array dest[].
/// Note the array dest[]'s size should no less than xlen + ylen.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
uint64_t y[], unsigned ylen) {
static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen,
uint64_t y[], uint32_t ylen) {
dest[xlen] = mul_1(dest, x, xlen, y[0]);
for (unsigned i = 1; i < ylen; ++i) {
for (uint32_t i = 1; i < ylen; ++i) {
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
uint64_t carry = 0, lx, hx;
for (unsigned j = 0; j < xlen; ++j) {
for (uint32_t j = 0; j < xlen; ++j) {
lx = x[j] & 0xffffffffULL;
hx = x[j] >> 32;
// hasCarry - A flag to indicate if has carry.
@ -334,24 +329,23 @@ APInt& APInt::operator*=(const APInt& RHS) {
if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
// one-based first non-zero bit position.
unsigned first = getActiveBits();
unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
uint32_t first = getActiveBits();
uint32_t xlen = !first ? 0 : whichWord(first - 1) + 1;
if (!xlen)
return *this;
else if (RHS.isSingleWord())
mul_1(pVal, pVal, xlen, RHS.VAL);
else {
first = RHS.getActiveBits();
unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
uint32_t ylen = !first ? 0 : whichWord(first - 1) + 1;
if (!ylen) {
memset(pVal, 0, getNumWords() * 8);
memset(pVal, 0, getNumWords() * sizeof(uint64_t));
return *this;
}
uint64_t *dest = new uint64_t[xlen+ylen];
assert(dest && "Memory Allocation Failed!");
uint64_t *dest = getMemory(xlen+ylen);
mul(dest, pVal, xlen, RHS.pVal, ylen);
memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
getNumWords() : xlen + ylen) * 8);
getNumWords() : xlen + ylen) * sizeof(uint64_t));
delete[] dest;
}
}
@ -364,21 +358,12 @@ APInt& APInt::operator*=(const APInt& RHS) {
APInt& APInt::operator&=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL &= RHS.VAL;
else VAL &= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
memset(pVal, 0, (getNumWords() - 1) * 8);
pVal[0] &= RHS.VAL;
} else {
unsigned minwords = getNumWords() < RHS.getNumWords() ?
getNumWords() : RHS.getNumWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] &= RHS.pVal[i];
if (getNumWords() > minwords)
memset(pVal+minwords, 0, (getNumWords() - minwords) * 8);
}
VAL &= RHS.VAL;
return *this;
}
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] &= RHS.pVal[i];
return *this;
}
@ -387,19 +372,12 @@ APInt& APInt::operator&=(const APInt& RHS) {
APInt& APInt::operator|=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL |= RHS.VAL;
else VAL |= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
pVal[0] |= RHS.VAL;
} else {
unsigned minwords = getNumWords() < RHS.getNumWords() ?
getNumWords() : RHS.getNumWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] |= RHS.pVal[i];
}
VAL |= RHS.VAL;
return *this;
}
clearUnusedBits();
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] |= RHS.pVal[i];
return *this;
}
@ -411,9 +389,9 @@ APInt& APInt::operator^=(const APInt& RHS) {
VAL ^= RHS.VAL;
return *this;
}
unsigned numWords = getNumWords();
for (unsigned i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
return *this;
}
@ -421,40 +399,51 @@ APInt& APInt::operator^=(const APInt& RHS) {
/// and the given APInt& RHS.
APInt APInt::operator&(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
APInt API(RHS);
return API &= *this;
if (isSingleWord())
return APInt(getBitWidth(), VAL & RHS.VAL);
APInt Result(*this);
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
Result.pVal[i] &= RHS.pVal[i];
return Result;
}
/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator|(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
APInt API(RHS);
API |= *this;
API.clearUnusedBits();
return API;
if (isSingleWord())
return APInt(getBitWidth(), VAL | RHS.VAL);
APInt Result(*this);
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
Result.pVal[i] |= RHS.pVal[i];
return Result;
}
/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator^(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
APInt API(RHS);
API ^= *this;
API.clearUnusedBits();
return API;
if (isSingleWord())
return APInt(getBitWidth(), VAL ^ RHS.VAL);
APInt Result(*this);
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
Result.pVal[i] ^= RHS.pVal[i];
return Result;
}
/// @brief Logical negation operator. Performs logical negation operation on
/// this APInt.
bool APInt::operator !() const {
if (isSingleWord())
return !VAL;
else
for (unsigned i = 0; i < getNumWords(); ++i)
if (pVal[i])
return false;
for (uint32_t i = 0; i < getNumWords(); ++i)
if (pVal[i])
return false;
return true;
}
@ -486,7 +475,7 @@ APInt APInt::operator-(const APInt& RHS) const {
}
/// @brief Array-indexing support.
bool APInt::operator[](unsigned bitPosition) const {
bool APInt::operator[](uint32_t bitPosition) const {
return (maskBit(bitPosition) & (isSingleWord() ?
VAL : pVal[whichWord(bitPosition)])) != 0;
}
@ -494,8 +483,8 @@ bool APInt::operator[](unsigned bitPosition) const {
/// @brief Equality operator. Compare this APInt with the given APInt& RHS
/// for the validity of the equality relationship.
bool APInt::operator==(const APInt& RHS) const {
unsigned n1 = getActiveBits();
unsigned n2 = RHS.getActiveBits();
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
if (n1 != n2) return false;
else if (isSingleWord())
return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
@ -514,7 +503,7 @@ bool APInt::operator==(uint64_t Val) const {
if (isSingleWord())
return VAL == Val;
else {
unsigned n = getActiveBits();
uint32_t n = getActiveBits();
if (n <= APINT_BITS_PER_WORD)
return pVal[0] == Val;
else
@ -528,8 +517,8 @@ bool APInt::ult(const APInt& RHS) const {
if (isSingleWord())
return VAL < RHS.VAL;
else {
unsigned n1 = getActiveBits();
unsigned n2 = RHS.getActiveBits();
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
if (n1 < n2)
return true;
else if (n2 < n1)
@ -550,8 +539,8 @@ bool APInt::slt(const APInt& RHS) const {
if (isSingleWord())
return VAL < RHS.VAL;
else {
unsigned n1 = getActiveBits();
unsigned n2 = RHS.getActiveBits();
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
if (n1 < n2)
return true;
else if (n2 < n1)
@ -568,7 +557,7 @@ bool APInt::slt(const APInt& RHS) const {
/// Set the given bit to 1 whose poition is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& APInt::set(unsigned bitPosition) {
APInt& APInt::set(uint32_t bitPosition) {
if (isSingleWord()) VAL |= maskBit(bitPosition);
else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
@ -579,7 +568,7 @@ APInt& APInt::set() {
if (isSingleWord())
VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
else {
for (unsigned i = 0; i < getNumWords() - 1; ++i)
for (uint32_t i = 0; i < getNumWords() - 1; ++i)
pVal[i] = -1ULL;
pVal[getNumWords() - 1] = ~0ULL >>
(APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
@ -589,17 +578,20 @@ APInt& APInt::set() {
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
if (isSingleWord()) VAL &= ~maskBit(bitPosition);
else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
APInt& APInt::clear(uint32_t bitPosition) {
if (isSingleWord())
VAL &= ~maskBit(bitPosition);
else
pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 0.
APInt& APInt::clear() {
if (isSingleWord()) VAL = 0;
if (isSingleWord())
VAL = 0;
else
memset(pVal, 0, getNumWords() * 8);
memset(pVal, 0, getNumWords() * sizeof(uint64_t));
return *this;
}
@ -616,10 +608,10 @@ APInt& APInt::flip() {
if (isSingleWord()) VAL = (~(VAL <<
(APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth);
else {
unsigned i = 0;
uint32_t i = 0;
for (; i < getNumWords() - 1; ++i)
pVal[i] = ~pVal[i];
unsigned offset =
uint32_t offset =
APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1));
pVal[i] = (~(pVal[i] << offset)) >> offset;
}
@ -629,7 +621,7 @@ APInt& APInt::flip() {
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
APInt& APInt::flip(uint32_t bitPosition) {
assert(bitPosition < BitWidth && "Out of the bit-width range!");
if ((*this)[bitPosition]) clear(bitPosition);
else set(bitPosition);
@ -644,7 +636,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
};
std::string result;
unsigned bits_used = getActiveBits();
uint32_t bits_used = getActiveBits();
if (isSingleWord()) {
char buf[65];
const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
@ -660,7 +652,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
memset(buf, 0, 65);
uint64_t v = VAL;
while (bits_used) {
unsigned bit = v & 1;
uint32_t bit = v & 1;
bits_used--;
buf[bits_used] = digits[bit][0];
v >>=1;
@ -687,7 +679,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
result = "0";
else while (tmp.ne(zero)) {
APInt APdigit = APIntOps::urem(tmp,divisor);
unsigned digit = APdigit.getValue();
uint32_t digit = APdigit.getValue();
assert(digit < radix && "urem failed");
result.insert(insert_at,digits[digit]);
tmp = APIntOps::udiv(tmp, divisor);
@ -699,7 +691,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
/// getMaxValue - This function returns the largest value
/// for an APInt of the specified bit-width and if isSign == true,
/// it should be largest signed value, otherwise unsigned value.
APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
APInt APIVal(numBits, 0);
APIVal.set();
if (isSign) APIVal.clear(numBits - 1);
@ -709,7 +701,7 @@ APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
/// getMinValue - This function returns the smallest value for
/// an APInt of the given bit-width and if isSign == true,
/// it should be smallest signed value, otherwise zero.
APInt APInt::getMinValue(unsigned numBits, bool isSign) {
APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
APInt APIVal(numBits, 0);
if (isSign) APIVal.set(numBits - 1);
return APIVal;
@ -717,23 +709,23 @@ APInt APInt::getMinValue(unsigned numBits, bool isSign) {
/// getAllOnesValue - This function returns an all-ones value for
/// an APInt of the specified bit-width.
APInt APInt::getAllOnesValue(unsigned numBits) {
APInt APInt::getAllOnesValue(uint32_t numBits) {
return getMaxValue(numBits, false);
}
/// getNullValue - This function creates an '0' value for an
/// APInt of the specified bit-width.
APInt APInt::getNullValue(unsigned numBits) {
APInt APInt::getNullValue(uint32_t numBits) {
return getMinValue(numBits, false);
}
/// HiBits - This function returns the high "numBits" bits of this APInt.
APInt APInt::getHiBits(unsigned numBits) const {
APInt APInt::getHiBits(uint32_t numBits) const {
return APIntOps::lshr(*this, BitWidth - numBits);
}
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
APInt APInt::getLoBits(uint32_t numBits) const {
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
@ -747,12 +739,12 @@ bool APInt::isPowerOf2() const {
/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the most significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::countLeadingZeros() const {
uint32_t APInt::countLeadingZeros() const {
if (isSingleWord())
return CountLeadingZeros_64(VAL) - (APINT_BITS_PER_WORD - BitWidth);
unsigned Count = 0;
for (unsigned i = getNumWords(); i > 0u; --i) {
unsigned tmp = CountLeadingZeros_64(pVal[i-1]);
uint32_t Count = 0;
for (uint32_t i = getNumWords(); i > 0u; --i) {
uint32_t tmp = CountLeadingZeros_64(pVal[i-1]);
Count += tmp;
if (tmp != APINT_BITS_PER_WORD)
if (i == getNumWords())
@ -767,7 +759,7 @@ unsigned APInt::countLeadingZeros() const {
/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the least significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::countTrailingZeros() const {
uint32_t APInt::countTrailingZeros() const {
if (isSingleWord())
return CountTrailingZeros_64(VAL);
APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
@ -778,11 +770,11 @@ unsigned APInt::countTrailingZeros() const {
/// llvm/include/llvm/Support/MathExtras.h's function
/// countPopulation_{32, 64}. It counts the number of set bits in a value.
/// @returns 0 if the value is zero.
unsigned APInt::countPopulation() const {
uint32_t APInt::countPopulation() const {
if (isSingleWord())
return CountPopulation_64(VAL);
unsigned Count = 0;
for (unsigned i = 0; i < getNumWords(); ++i)
uint32_t Count = 0;
for (uint32_t i = 0; i < getNumWords(); ++i)
Count += CountPopulation_64(pVal[i]);
return Count;
}
@ -809,10 +801,10 @@ APInt APInt::byteSwap() const {
else {
APInt Result(BitWidth, 0);
char *pByte = (char*)Result.pVal;
for (unsigned i = 0; i < BitWidth / 8 / 2; ++i) {
for (uint32_t i = 0; i < BitWidth / sizeof(uint64_t) / 2; ++i) {
char Tmp = pByte[i];
pByte[i] = pByte[BitWidth / 8 - 1 - i];
pByte[BitWidth / 8 - i - 1] = Tmp;
pByte[i] = pByte[BitWidth / sizeof(uint64_t) - 1 - i];
pByte[BitWidth / sizeof(uint64_t) - i - 1] = Tmp;
}
return Result;
}
@ -864,7 +856,7 @@ double APInt::roundToDouble(bool isSigned) const {
APInt Tmp(isNeg ? -(*this) : (*this));
if (Tmp.isSingleWord())
return isSigned ? double(int64_t(Tmp.VAL)) : double(Tmp.VAL);
unsigned n = Tmp.getActiveBits();
uint32_t n = Tmp.getActiveBits();
if (n <= APINT_BITS_PER_WORD)
return isSigned ? double(int64_t(Tmp.pVal[0])) : double(Tmp.pVal[0]);
// Exponent when normalized to have decimal point directly after
@ -896,23 +888,23 @@ double APInt::roundToDouble(bool isSigned) const {
}
// Truncate to new width.
void APInt::trunc(unsigned width) {
void APInt::trunc(uint32_t width) {
assert(width < BitWidth && "Invalid APInt Truncate request");
}
// Sign extend to a new width.
void APInt::sext(unsigned width) {
void APInt::sext(uint32_t width) {
assert(width > BitWidth && "Invalid APInt SignExtend request");
}
// Zero extend to a new width.
void APInt::zext(unsigned width) {
void APInt::zext(uint32_t width) {
assert(width > BitWidth && "Invalid APInt ZeroExtend request");
}
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(unsigned shiftAmt) const {
APInt APInt::ashr(uint32_t shiftAmt) const {
APInt API(*this);
if (API.isSingleWord())
API.VAL =
@ -921,12 +913,13 @@ APInt APInt::ashr(unsigned shiftAmt) const {
(~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth));
else {
if (shiftAmt >= API.BitWidth) {
memset(API.pVal, API[API.BitWidth-1] ? 1 : 0, (API.getNumWords()-1) * 8);
memset(API.pVal, API[API.BitWidth-1] ? 1 : 0,
(API.getNumWords()-1) * sizeof(uint64_t));
API.pVal[API.getNumWords() - 1] =
~uint64_t(0UL) >>
(APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD);
} else {
unsigned i = 0;
uint32_t i = 0;
for (; i < API.BitWidth - shiftAmt; ++i)
if (API[i+shiftAmt])
API.set(i);
@ -943,14 +936,14 @@ APInt APInt::ashr(unsigned shiftAmt) const {
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(unsigned shiftAmt) const {
APInt APInt::lshr(uint32_t shiftAmt) const {
APInt API(*this);
if (API.isSingleWord())
API.VAL >>= shiftAmt;
else {
if (shiftAmt >= API.BitWidth)
memset(API.pVal, 0, API.getNumWords() * 8);
unsigned i = 0;
memset(API.pVal, 0, API.getNumWords() * sizeof(uint64_t));
uint32_t i = 0;
for (i = 0; i < API.BitWidth - shiftAmt; ++i)
if (API[i+shiftAmt]) API.set(i);
else API.clear(i);
@ -962,20 +955,20 @@ APInt APInt::lshr(unsigned shiftAmt) const {
/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt APInt::shl(unsigned shiftAmt) const {
APInt APInt::shl(uint32_t shiftAmt) const {
APInt API(*this);
if (API.isSingleWord())
API.VAL <<= shiftAmt;
else if (shiftAmt >= API.BitWidth)
memset(API.pVal, 0, API.getNumWords() * 8);
memset(API.pVal, 0, API.getNumWords() * sizeof(uint64_t));
else {
if (unsigned offset = shiftAmt / APINT_BITS_PER_WORD) {
for (unsigned i = API.getNumWords() - 1; i > offset - 1; --i)
if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) {
for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i)
API.pVal[i] = API.pVal[i-offset];
memset(API.pVal, 0, offset * 8);
memset(API.pVal, 0, offset * sizeof(uint64_t));
}
shiftAmt %= APINT_BITS_PER_WORD;
unsigned i;
uint32_t i;
for (i = API.getNumWords() - 1; i > 0; --i)
API.pVal[i] = (API.pVal[i] << shiftAmt) |
(API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt));
@ -988,18 +981,18 @@ APInt APInt::shl(unsigned shiftAmt) const {
/// subMul - This function substracts x[len-1:0] * y from
/// dest[offset+len-1:offset], and returns the most significant
/// word of the product, minus the borrow-out from the subtraction.
static unsigned subMul(unsigned dest[], unsigned offset,
unsigned x[], unsigned len, unsigned y) {
static uint32_t subMul(uint32_t dest[], uint32_t offset,
uint32_t x[], uint32_t len, uint32_t y) {
uint64_t yl = (uint64_t) y & 0xffffffffL;
unsigned carry = 0;
unsigned j = 0;
uint32_t carry = 0;
uint32_t j = 0;
do {
uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl;
unsigned prod_low = (unsigned) prod;
unsigned prod_high = (unsigned) (prod >> 32);
uint32_t prod_low = (uint32_t) prod;
uint32_t prod_high = (uint32_t) (prod >> 32);
prod_low += carry;
carry = (prod_low < carry ? 1 : 0) + prod_high;
unsigned x_j = dest[offset+j];
uint32_t x_j = dest[offset+j];
prod_low = x_j - prod_low;
if (prod_low > x_j) ++carry;
dest[offset+j] = prod_low;
@ -1010,7 +1003,7 @@ static unsigned subMul(unsigned dest[], unsigned offset,
/// unitDiv - This function divides N by D,
/// and returns (remainder << 32) | quotient.
/// Assumes (N >> 32) < D.
static uint64_t unitDiv(uint64_t N, unsigned D) {
static uint64_t unitDiv(uint64_t N, uint32_t D) {
uint64_t q, r; // q: quotient, r: remainder.
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
@ -1040,31 +1033,31 @@ static uint64_t unitDiv(uint64_t N, unsigned D) {
/// Our nx == Knuth's m+n.
/// Could be re-implemented using gmp's mpn_divrem:
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
unsigned j = nx;
static void div(uint32_t zds[], uint32_t nx, uint32_t y[], uint32_t ny) {
uint32_t j = nx;
do { // loop over digits of quotient
// Knuth's j == our nx-j.
// Knuth's u[j:j+n] == our zds[j:j-ny].
unsigned qhat; // treated as unsigned
uint32_t qhat; // treated as unsigned
if (zds[j] == y[ny-1])
qhat = -1U; // 0xffffffff
else {
uint64_t w = (((uint64_t)(zds[j])) << 32) +
((uint64_t)zds[j-1] & 0xffffffffL);
qhat = (unsigned) unitDiv(w, y[ny-1]);
qhat = (uint32_t) unitDiv(w, y[ny-1]);
}
if (qhat) {
unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
unsigned save = zds[j];
uint32_t borrow = subMul(zds, j - ny, y, ny, qhat);
uint32_t save = zds[j];
uint64_t num = ((uint64_t)save&0xffffffffL) -
((uint64_t)borrow&0xffffffffL);
while (num) {
qhat--;
uint64_t carry = 0;
for (unsigned i = 0; i < ny; i++) {
for (uint32_t i = 0; i < ny; i++) {
carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
+ ((uint64_t) y[i] & 0xffffffffL);
zds[j-ny+i] = (unsigned) carry;
zds[j-ny+i] = (uint32_t) carry;
carry >>= 32;
}
zds[j] += carry;
@ -1090,21 +1083,21 @@ APInt APInt::udiv(const APInt& RHS) const {
APInt Result(*this);
// Get some facts about the LHS and RHS number of bits and words
unsigned rhsBits = RHS.getActiveBits();
unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
uint32_t rhsBits = RHS.getActiveBits();
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
assert(rhsWords && "Divided by zero???");
unsigned lhsBits = Result.getActiveBits();
unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
uint32_t lhsBits = Result.getActiveBits();
uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
// Deal with some degenerate cases
if (!lhsWords)
return Result; // 0 / X == 0
else if (lhsWords < rhsWords || Result.ult(RHS))
// X / Y with X < Y == 0
memset(Result.pVal, 0, Result.getNumWords() * 8);
memset(Result.pVal, 0, Result.getNumWords() * sizeof(uint64_t));
else if (Result == RHS) {
// X / X == 1
memset(Result.pVal, 0, Result.getNumWords() * 8);
memset(Result.pVal, 0, Result.getNumWords() * sizeof(uint64_t));
Result.pVal[0] = 1;
} else if (lhsWords == 1)
// All high words are zero, just use native divide
@ -1113,17 +1106,18 @@ APInt APInt::udiv(const APInt& RHS) const {
// Compute it the hard way ..
APInt X(BitWidth, 0);
APInt Y(BitWidth, 0);
unsigned nshift =
uint32_t nshift =
(APINT_BITS_PER_WORD - 1) - ((rhsBits - 1) % APINT_BITS_PER_WORD );
if (nshift) {
Y = APIntOps::shl(RHS, nshift);
X = APIntOps::shl(Result, nshift);
++lhsWords;
}
div((unsigned*)X.pVal, lhsWords * 2 - 1,
(unsigned*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2);
memset(Result.pVal, 0, Result.getNumWords() * 8);
memcpy(Result.pVal, X.pVal + rhsWords, (lhsWords - rhsWords) * 8);
div((uint32_t*)X.pVal, lhsWords * 2 - 1,
(uint32_t*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2);
memset(Result.pVal, 0, Result.getNumWords() * sizeof(uint64_t));
memcpy(Result.pVal, X.pVal + rhsWords,
(lhsWords - rhsWords) * sizeof(uint64_t));
}
return Result;
}
@ -1141,24 +1135,24 @@ APInt APInt::urem(const APInt& RHS) const {
APInt Result(*this);
// Get some facts about the RHS
unsigned rhsBits = RHS.getActiveBits();
unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
uint32_t rhsBits = RHS.getActiveBits();
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
assert(rhsWords && "Performing remainder operation by zero ???");
// Get some facts about the LHS
unsigned lhsBits = Result.getActiveBits();
unsigned lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1);
uint32_t lhsBits = Result.getActiveBits();
uint32_t lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1);
// Check the degenerate cases
if (lhsWords == 0)
// 0 % Y == 0
memset(Result.pVal, 0, Result.getNumWords() * 8);
memset(Result.pVal, 0, Result.getNumWords() * sizeof(uint64_t));
else if (lhsWords < rhsWords || Result.ult(RHS))
// X % Y == X iff X < Y
return Result;
else if (Result == RHS)
// X % X == 0;
memset(Result.pVal, 0, Result.getNumWords() * 8);
memset(Result.pVal, 0, Result.getNumWords() * sizeof(uint64_t));
else if (lhsWords == 1)
// All high words are zero, just use native remainder
Result.pVal[0] %= RHS.pVal[0];
@ -1166,16 +1160,16 @@ APInt APInt::urem(const APInt& RHS) const {
// Do it the hard way
APInt X((lhsWords+1)*APINT_BITS_PER_WORD, 0);
APInt Y(rhsWords*APINT_BITS_PER_WORD, 0);
unsigned nshift =
uint32_t nshift =
(APINT_BITS_PER_WORD - 1) - (rhsBits - 1) % APINT_BITS_PER_WORD;
if (nshift) {
APIntOps::shl(Y, nshift);
APIntOps::shl(X, nshift);
}
div((unsigned*)X.pVal, rhsWords*2-1,
(unsigned*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2);
memset(Result.pVal, 0, Result.getNumWords() * 8);
for (unsigned i = 0; i < rhsWords-1; ++i)
div((uint32_t*)X.pVal, rhsWords*2-1,
(uint32_t*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2);
memset(Result.pVal, 0, Result.getNumWords() * sizeof(uint64_t));
for (uint32_t i = 0; i < rhsWords-1; ++i)
Result.pVal[i] = (X.pVal[i] >> nshift) |
(X.pVal[i+1] << (APINT_BITS_PER_WORD - nshift));
Result.pVal[rhsWords-1] = X.pVal[rhsWords-1] >> nshift;
@ -1184,21 +1178,21 @@ APInt APInt::urem(const APInt& RHS) const {
}
/// @brief Converts a char array into an integer.
void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
void APInt::fromString(uint32_t numbits, const char *StrStart, uint32_t slen,
uint8_t radix) {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
assert(StrStart && "String is null?");
unsigned size = 0;
uint32_t size = 0;
// If the radix is a power of 2, read the input
// from most significant to least significant.
if ((radix & (radix - 1)) == 0) {
unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
uint32_t nextBitPos = 0;
uint32_t bits_per_digit = radix / 8 + 2;
uint64_t resDigit = 0;
BitWidth = slen * bits_per_digit;
if (getNumWords() > 1)
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
pVal = getMemory(getNumWords());
for (int i = slen - 1; i >= 0; --i) {
uint64_t digit = StrStart[i] - '0';
resDigit |= digit << nextBitPos;
@ -1218,7 +1212,7 @@ void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
} else { // General case. The radix is not a power of 2.
// For 10-radix, the max value of 64-bit integer is 18446744073709551615,
// and its digits number is 20.
const unsigned chars_per_word = 20;
const uint32_t chars_per_word = 20;
if (slen < chars_per_word ||
(slen == chars_per_word && // In case the value <= 2^64 - 1
strcmp(StrStart, "18446744073709551615") <= 0)) {
@ -1226,12 +1220,10 @@ void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
VAL = strtoull(StrStart, 0, 10);
} else { // In case the value > 2^64 - 1
BitWidth = (slen / chars_per_word + 1) * APINT_BITS_PER_WORD;
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
memset(pVal, 0, getNumWords() * 8);
unsigned str_pos = 0;
pVal = getClearedMemory(getNumWords());
uint32_t str_pos = 0;
while (str_pos < slen) {
unsigned chunk = slen - str_pos;
uint32_t chunk = slen - str_pos;
if (chunk > chars_per_word - 1)
chunk = chars_per_word - 1;
uint64_t resDigit = StrStart[str_pos++] - '0';
@ -1254,4 +1246,3 @@ void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
}
}
}