From a81e45b8bcb8eb274ad73357e10e2cdf8a314a8c Mon Sep 17 00:00:00 2001 From: Frederik Gossen Date: Mon, 10 May 2021 10:22:23 +0200 Subject: [PATCH] [MLIR][Shape] Concretize broadcast result type if possible As a canonicalization, infer the resulting shape rank if possible. Differential Revision: https://reviews.llvm.org/D102068 --- mlir/include/mlir/Dialect/Shape/IR/Shape.h | 3 +- mlir/lib/Dialect/Shape/IR/Shape.cpp | 37 ++++++++++++++++++++-- mlir/test/Dialect/Shape/canonicalize.mlir | 17 +++++++++- 3 files changed, 52 insertions(+), 5 deletions(-) diff --git a/mlir/include/mlir/Dialect/Shape/IR/Shape.h b/mlir/include/mlir/Dialect/Shape/IR/Shape.h index 570719eff64d..08c5d5ddbc82 100644 --- a/mlir/include/mlir/Dialect/Shape/IR/Shape.h +++ b/mlir/include/mlir/Dialect/Shape/IR/Shape.h @@ -29,7 +29,8 @@ class PatternRewriter; namespace shape { /// Alias type for extent tensors. -RankedTensorType getExtentTensorType(MLIRContext *ctx); +RankedTensorType getExtentTensorType(MLIRContext *ctx, + int64_t rank = ShapedType::kDynamicSize); // Check if a type is an extent tensor, e.g., tensor. bool isExtentTensorType(Type); diff --git a/mlir/lib/Dialect/Shape/IR/Shape.cpp b/mlir/lib/Dialect/Shape/IR/Shape.cpp index fd012aa84d1c..ac67a62a0aef 100644 --- a/mlir/lib/Dialect/Shape/IR/Shape.cpp +++ b/mlir/lib/Dialect/Shape/IR/Shape.cpp @@ -27,8 +27,8 @@ namespace { #include "ShapeCanonicalization.inc" } -RankedTensorType shape::getExtentTensorType(MLIRContext *ctx) { - return RankedTensorType::get({ShapedType::kDynamicSize}, IndexType::get(ctx)); +RankedTensorType shape::getExtentTensorType(MLIRContext *ctx, int64_t rank) { + return RankedTensorType::get({rank}, IndexType::get(ctx)); } bool shape::isExtentTensorType(Type type) { @@ -660,11 +660,42 @@ struct CanonicalizeCastExtentTensorOperandsPattern return success(); } }; + +struct BroadcastConcretizeResultTypePattern + : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(BroadcastOp op, + PatternRewriter &rewriter) const override { + // Only concretize dynamic extent tensor result types. + auto resultTy = op.getType().dyn_cast(); + if (!resultTy || !resultTy.isDynamicDim(0)) + return failure(); + + // Infer resulting shape rank if possible. + int64_t maxRank = 0; + for (Value shape : op.shapes()) { + if (auto extentTensorTy = shape.getType().dyn_cast()) { + // Cannot infer resulting shape rank if any operand is dynamically + // ranked. + if (extentTensorTy.isDynamicDim(0)) + return failure(); + maxRank = std::max(maxRank, extentTensorTy.getDimSize(0)); + } + } + + auto newOp = rewriter.create( + op.getLoc(), getExtentTensorType(getContext(), maxRank), op.shapes()); + rewriter.replaceOpWithNewOp(op, op.getType(), newOp); + return success(); + } +}; } // namespace void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { - patterns.add, RemoveDuplicateOperandsPattern, diff --git a/mlir/test/Dialect/Shape/canonicalize.mlir b/mlir/test/Dialect/Shape/canonicalize.mlir index 367ce7f6ba1a..6e0243839132 100644 --- a/mlir/test/Dialect/Shape/canonicalize.mlir +++ b/mlir/test/Dialect/Shape/canonicalize.mlir @@ -1344,7 +1344,8 @@ func @cast_extent_tensor_operands(%arg0 : tensor, %arg1 : tensor<3xindex>) -> (!shape.witness, tensor) { // CHECK: %[[CAST_ARG0:.*]] = tensor.cast %[[ARG0]] : tensor to tensor<3xindex> // CHECK: %[[WIT:.*]] = shape.cstr_broadcastable %[[CAST_ARG0]], %[[ARG1]] : tensor<3xindex>, tensor<3xindex> - // CHECK: %[[RES:.*]] = shape.broadcast %[[CAST_ARG0]], %[[ARG1]] : tensor<3xindex>, tensor<3xindex> + // CHECK: %[[UNCAST_RES:.*]] = shape.broadcast %[[CAST_ARG0]], %[[ARG1]] : tensor<3xindex>, tensor<3xindex> -> tensor<3xindex> + // CHECK: %[[RES:.*]] = tensor.cast %[[UNCAST_RES]] : tensor<3xindex> to tensor // CHECK: return %[[WIT]], %[[RES]] %0 = tensor.cast %arg0 : tensor to tensor<3xindex> %1 = tensor.cast %arg1 : tensor<3xindex> to tensor @@ -1353,3 +1354,17 @@ func @cast_extent_tensor_operands(%arg0 : tensor, -> tensor return %2, %3 : !shape.witness, tensor } + +// ----- + +// CHECK-LABEL: @concretize_broadcast_result_type +// CHECK-SAME: (%[[ARG0:.*]]: tensor<2xindex>, %[[ARG1:.*]]: tensor<3xindex>) +func @concretize_broadcast_result_type(%arg0 : tensor<2xindex>, + %arg1 : tensor<3xindex>) -> tensor { + // CHECK: %[[CONCR:.*]] = shape.broadcast %[[ARG0]], %[[ARG1]] : tensor<2xindex>, tensor<3xindex> -> tensor<3xindex> + // CHECK: %[[RES:.*]] = tensor.cast %[[CONCR]] : tensor<3xindex> to tensor + // CHECK: return %[[RES]] + %0 = shape.broadcast %arg0, %arg1 : tensor<2xindex>, tensor<3xindex> + -> tensor + return %0 : tensor +}