diff --git a/utils/TableGen/GlobalISelEmitter.cpp b/utils/TableGen/GlobalISelEmitter.cpp

index cdc9df7bf6b..be08165a200 100644
--- a/utils/TableGen/GlobalISelEmitter.cpp
+++ b/utils/TableGen/GlobalISelEmitter.cpp
@@ -1,4531 +1,4539 @@
 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
 // This file is distributed under the University of Illinois Open Source
 // License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 /// \file
 /// This tablegen backend emits code for use by the GlobalISel instruction
 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
 ///
 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
 /// backend, filters out the ones that are unsupported, maps
 /// SelectionDAG-specific constructs to their GlobalISel counterpart
 /// (when applicable: MVT to LLT;  SDNode to generic Instruction).
 ///
 /// Not all patterns are supported: pass the tablegen invocation
 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
 /// as well as why.
 ///
 /// The generated file defines a single method:
 ///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
 /// intended to be used in InstructionSelector::select as the first-step
 /// selector for the patterns that don't require complex C++.
 ///
 /// FIXME: We'll probably want to eventually define a base
 /// "TargetGenInstructionSelector" class.
 ///
 //===----------------------------------------------------------------------===//
 
 #include "CodeGenDAGPatterns.h"
 #include "SubtargetFeatureInfo.h"
 #include "llvm/ADT/Optional.h"
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/Support/CodeGenCoverage.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Error.h"
 #include "llvm/Support/LowLevelTypeImpl.h"
 #include "llvm/Support/MachineValueType.h"
 #include "llvm/Support/ScopedPrinter.h"
 #include "llvm/TableGen/Error.h"
 #include "llvm/TableGen/Record.h"
 #include "llvm/TableGen/TableGenBackend.h"
 #include <numeric>
 #include <string>
 using namespace llvm;
 
 #define DEBUG_TYPE "gisel-emitter"
 
 STATISTIC(NumPatternTotal, "Total number of patterns");
 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
 
 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
 
 static cl::opt<bool> WarnOnSkippedPatterns(
     "warn-on-skipped-patterns",
     cl::desc("Explain why a pattern was skipped for inclusion "
              "in the GlobalISel selector"),
     cl::init(false), cl::cat(GlobalISelEmitterCat));
 
 static cl::opt<bool> GenerateCoverage(
     "instrument-gisel-coverage",
     cl::desc("Generate coverage instrumentation for GlobalISel"),
     cl::init(false), cl::cat(GlobalISelEmitterCat));
 
 static cl::opt<std::string> UseCoverageFile(
     "gisel-coverage-file", cl::init(""),
     cl::desc("Specify file to retrieve coverage information from"),
     cl::cat(GlobalISelEmitterCat));
 
 static cl::opt<bool> OptimizeMatchTable(
     "optimize-match-table",
     cl::desc("Generate an optimized version of the match table"),
     cl::init(true), cl::cat(GlobalISelEmitterCat));
 
 namespace {
 //===- Helper functions ---------------------------------------------------===//
 
 /// Get the name of the enum value used to number the predicate function.
 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
   return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
          Predicate.getFnName();
 }
 
 /// Get the opcode used to check this predicate.
 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
   return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
 }
 
 /// This class stands in for LLT wherever we want to tablegen-erate an
 /// equivalent at compiler run-time.
 class LLTCodeGen {
 private:
   LLT Ty;
 
 public:
   LLTCodeGen() = default;
   LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
 
   std::string getCxxEnumValue() const {
     std::string Str;
     raw_string_ostream OS(Str);
 
     emitCxxEnumValue(OS);
     return OS.str();
   }
 
   void emitCxxEnumValue(raw_ostream &OS) const {
     if (Ty.isScalar()) {
       OS << "GILLT_s" << Ty.getSizeInBits();
       return;
     }
     if (Ty.isVector()) {
       OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
       return;
     }
     if (Ty.isPointer()) {
       OS << "GILLT_p" << Ty.getAddressSpace();
       if (Ty.getSizeInBits() > 0)
         OS << "s" << Ty.getSizeInBits();
       return;
     }
     llvm_unreachable("Unhandled LLT");
   }
 
   void emitCxxConstructorCall(raw_ostream &OS) const {
     if (Ty.isScalar()) {
       OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
       return;
     }
     if (Ty.isVector()) {
       OS << "LLT::vector(" << Ty.getNumElements() << ", "
          << Ty.getScalarSizeInBits() << ")";
       return;
     }
     if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
       OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
          << Ty.getSizeInBits() << ")";
       return;
     }
     llvm_unreachable("Unhandled LLT");
   }
 
   const LLT &get() const { return Ty; }
 
   /// This ordering is used for std::unique() and llvm::sort(). There's no
   /// particular logic behind the order but either A < B or B < A must be
   /// true if A != B.
   bool operator<(const LLTCodeGen &Other) const {
     if (Ty.isValid() != Other.Ty.isValid())
       return Ty.isValid() < Other.Ty.isValid();
     if (!Ty.isValid())
       return false;
 
     if (Ty.isVector() != Other.Ty.isVector())
       return Ty.isVector() < Other.Ty.isVector();
     if (Ty.isScalar() != Other.Ty.isScalar())
       return Ty.isScalar() < Other.Ty.isScalar();
     if (Ty.isPointer() != Other.Ty.isPointer())
       return Ty.isPointer() < Other.Ty.isPointer();
 
     if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
       return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
 
     if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
       return Ty.getNumElements() < Other.Ty.getNumElements();
 
     return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
   }
 
   bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
 };
 
 // Track all types that are used so we can emit the corresponding enum.
 std::set<LLTCodeGen> KnownTypes;
 
 class InstructionMatcher;
 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
   MVT VT(SVT);
 
   if (VT.isVector() && VT.getVectorNumElements() != 1)
     return LLTCodeGen(
         LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
 
   if (VT.isInteger() || VT.isFloatingPoint())
     return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
   return None;
 }
 
 static std::string explainPredicates(const TreePatternNode *N) {
   std::string Explanation = "";
   StringRef Separator = "";
   for (const auto &P : N->getPredicateFns()) {
     Explanation +=
         (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
     Separator = ", ";
 
     if (P.isAlwaysTrue())
       Explanation += " always-true";
     if (P.isImmediatePattern())
       Explanation += " immediate";
 
     if (P.isUnindexed())
       Explanation += " unindexed";
 
     if (P.isNonExtLoad())
       Explanation += " non-extload";
     if (P.isAnyExtLoad())
       Explanation += " extload";
     if (P.isSignExtLoad())
       Explanation += " sextload";
     if (P.isZeroExtLoad())
       Explanation += " zextload";
 
     if (P.isNonTruncStore())
       Explanation += " non-truncstore";
     if (P.isTruncStore())
       Explanation += " truncstore";
 
     if (Record *VT = P.getMemoryVT())
       Explanation += (" MemVT=" + VT->getName()).str();
     if (Record *VT = P.getScalarMemoryVT())
       Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
 
     if (P.isAtomicOrderingMonotonic())
       Explanation += " monotonic";
     if (P.isAtomicOrderingAcquire())
       Explanation += " acquire";
     if (P.isAtomicOrderingRelease())
       Explanation += " release";
     if (P.isAtomicOrderingAcquireRelease())
       Explanation += " acq_rel";
     if (P.isAtomicOrderingSequentiallyConsistent())
       Explanation += " seq_cst";
     if (P.isAtomicOrderingAcquireOrStronger())
       Explanation += " >=acquire";
     if (P.isAtomicOrderingWeakerThanAcquire())
       Explanation += " <acquire";
     if (P.isAtomicOrderingReleaseOrStronger())
       Explanation += " >=release";
     if (P.isAtomicOrderingWeakerThanRelease())
       Explanation += " <release";
   }
   return Explanation;
 }
 
 std::string explainOperator(Record *Operator) {
   if (Operator->isSubClassOf("SDNode"))
     return (" (" + Operator->getValueAsString("Opcode") + ")").str();
 
   if (Operator->isSubClassOf("Intrinsic"))
     return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
 
   if (Operator->isSubClassOf("ComplexPattern"))
     return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
             ")")
         .str();
 
   if (Operator->isSubClassOf("SDNodeXForm"))
     return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
             ")")
         .str();
 
   return (" (Operator " + Operator->getName() + " not understood)").str();
 }
 
 /// Helper function to let the emitter report skip reason error messages.
 static Error failedImport(const Twine &Reason) {
   return make_error<StringError>(Reason, inconvertibleErrorCode());
 }
 
 static Error isTrivialOperatorNode(const TreePatternNode *N) {
   std::string Explanation = "";
   std::string Separator = "";
 
   bool HasUnsupportedPredicate = false;
   for (const auto &Predicate : N->getPredicateFns()) {
     if (Predicate.isAlwaysTrue())
       continue;
 
     if (Predicate.isImmediatePattern())
       continue;
 
     if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
         Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
       continue;
 
     if (Predicate.isNonTruncStore())
       continue;
 
     if (Predicate.isLoad() && Predicate.getMemoryVT())
       continue;
 
     if (Predicate.isLoad() || Predicate.isStore()) {
       if (Predicate.isUnindexed())
         continue;
     }
 
     if (Predicate.isAtomic() && Predicate.getMemoryVT())
       continue;
 
     if (Predicate.isAtomic() &&
         (Predicate.isAtomicOrderingMonotonic() ||
          Predicate.isAtomicOrderingAcquire() ||
          Predicate.isAtomicOrderingRelease() ||
          Predicate.isAtomicOrderingAcquireRelease() ||
          Predicate.isAtomicOrderingSequentiallyConsistent() ||
          Predicate.isAtomicOrderingAcquireOrStronger() ||
          Predicate.isAtomicOrderingWeakerThanAcquire() ||
          Predicate.isAtomicOrderingReleaseOrStronger() ||
          Predicate.isAtomicOrderingWeakerThanRelease()))
       continue;
 
     HasUnsupportedPredicate = true;
     Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
     Separator = ", ";
     Explanation += (Separator + "first-failing:" +
                     Predicate.getOrigPatFragRecord()->getRecord()->getName())
                        .str();
     break;
   }
 
   if (!HasUnsupportedPredicate)
     return Error::success();
 
   return failedImport(Explanation);
 }
 
 static Record *getInitValueAsRegClass(Init *V) {
   if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
     if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
       return VDefInit->getDef()->getValueAsDef("RegClass");
     if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
       return VDefInit->getDef();
   }
   return nullptr;
 }
 
 std::string
 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
   std::string Name = "GIFBS";
   for (const auto &Feature : FeatureBitset)
     Name += ("_" + Feature->getName()).str();
   return Name;
 }
 
 //===- MatchTable Helpers -------------------------------------------------===//
 
 class MatchTable;
 
 /// A record to be stored in a MatchTable.
 ///
 /// This class represents any and all output that may be required to emit the
 /// MatchTable. Instances  are most often configured to represent an opcode or
 /// value that will be emitted to the table with some formatting but it can also
 /// represent commas, comments, and other formatting instructions.
 struct MatchTableRecord {
   enum RecordFlagsBits {
     MTRF_None = 0x0,
     /// Causes EmitStr to be formatted as comment when emitted.
     MTRF_Comment = 0x1,
     /// Causes the record value to be followed by a comma when emitted.
     MTRF_CommaFollows = 0x2,
     /// Causes the record value to be followed by a line break when emitted.
     MTRF_LineBreakFollows = 0x4,
     /// Indicates that the record defines a label and causes an additional
     /// comment to be emitted containing the index of the label.
     MTRF_Label = 0x8,
     /// Causes the record to be emitted as the index of the label specified by
     /// LabelID along with a comment indicating where that label is.
     MTRF_JumpTarget = 0x10,
     /// Causes the formatter to add a level of indentation before emitting the
     /// record.
     MTRF_Indent = 0x20,
     /// Causes the formatter to remove a level of indentation after emitting the
     /// record.
     MTRF_Outdent = 0x40,
   };
 
   /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
   /// reference or define.
   unsigned LabelID;
   /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
   /// value, a label name.
   std::string EmitStr;
 
 private:
   /// The number of MatchTable elements described by this record. Comments are 0
   /// while values are typically 1. Values >1 may occur when we need to emit
   /// values that exceed the size of a MatchTable element.
   unsigned NumElements;
 
 public:
   /// A bitfield of RecordFlagsBits flags.
   unsigned Flags;
 
   /// The actual run-time value, if known
   int64_t RawValue;
 
   MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
                    unsigned NumElements, unsigned Flags,
                    int64_t RawValue = std::numeric_limits<int64_t>::min())
       : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
         EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
         RawValue(RawValue) {
 
     assert((!LabelID_.hasValue() || LabelID != ~0u) &&
            "This value is reserved for non-labels");
   }
   MatchTableRecord(const MatchTableRecord &Other) = default;
   MatchTableRecord(MatchTableRecord &&Other) = default;
 
   /// Useful if a Match Table Record gets optimized out
   void turnIntoComment() {
     Flags |= MTRF_Comment;
     Flags &= ~MTRF_CommaFollows;
     NumElements = 0;
   }
 
   /// For Jump Table generation purposes
   bool operator<(const MatchTableRecord &Other) const {
     return RawValue < Other.RawValue;
   }
   int64_t getRawValue() const { return RawValue; }
 
   void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
             const MatchTable &Table) const;
   unsigned size() const { return NumElements; }
 };
 
 class Matcher;
 
 /// Holds the contents of a generated MatchTable to enable formatting and the
 /// necessary index tracking needed to support GIM_Try.
 class MatchTable {
   /// An unique identifier for the table. The generated table will be named
   /// MatchTable${ID}.
   unsigned ID;
   /// The records that make up the table. Also includes comments describing the
   /// values being emitted and line breaks to format it.
   std::vector<MatchTableRecord> Contents;
   /// The currently defined labels.
   DenseMap<unsigned, unsigned> LabelMap;
   /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
   unsigned CurrentSize = 0;
   /// A unique identifier for a MatchTable label.
   unsigned CurrentLabelID = 0;
   /// Determines if the table should be instrumented for rule coverage tracking.
   bool IsWithCoverage;
 
 public:
   static MatchTableRecord LineBreak;
   static MatchTableRecord Comment(StringRef Comment) {
     return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
   }
   static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
     unsigned ExtraFlags = 0;
     if (IndentAdjust > 0)
       ExtraFlags |= MatchTableRecord::MTRF_Indent;
     if (IndentAdjust < 0)
       ExtraFlags |= MatchTableRecord::MTRF_Outdent;
 
     return MatchTableRecord(None, Opcode, 1,
                             MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
   }
   static MatchTableRecord NamedValue(StringRef NamedValue) {
     return MatchTableRecord(None, NamedValue, 1,
                             MatchTableRecord::MTRF_CommaFollows);
   }
   static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
     return MatchTableRecord(None, NamedValue, 1,
                             MatchTableRecord::MTRF_CommaFollows, RawValue);
   }
   static MatchTableRecord NamedValue(StringRef Namespace,
                                      StringRef NamedValue) {
     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
                             MatchTableRecord::MTRF_CommaFollows);
   }
   static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
                                      int64_t RawValue) {
     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
                             MatchTableRecord::MTRF_CommaFollows, RawValue);
   }
   static MatchTableRecord IntValue(int64_t IntValue) {
     return MatchTableRecord(None, llvm::to_string(IntValue), 1,
                             MatchTableRecord::MTRF_CommaFollows);
   }
   static MatchTableRecord Label(unsigned LabelID) {
     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
                             MatchTableRecord::MTRF_Label |
                                 MatchTableRecord::MTRF_Comment |
                                 MatchTableRecord::MTRF_LineBreakFollows);
   }
   static MatchTableRecord JumpTarget(unsigned LabelID) {
     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
                             MatchTableRecord::MTRF_JumpTarget |
                                 MatchTableRecord::MTRF_Comment |
                                 MatchTableRecord::MTRF_CommaFollows);
   }
 
   static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
 
   MatchTable(bool WithCoverage, unsigned ID = 0)
       : ID(ID), IsWithCoverage(WithCoverage) {}
 
   bool isWithCoverage() const { return IsWithCoverage; }
 
   void push_back(const MatchTableRecord &Value) {
     if (Value.Flags & MatchTableRecord::MTRF_Label)
       defineLabel(Value.LabelID);
     Contents.push_back(Value);
     CurrentSize += Value.size();
   }
 
   unsigned allocateLabelID() { return CurrentLabelID++; }
 
   void defineLabel(unsigned LabelID) {
     LabelMap.insert(std::make_pair(LabelID, CurrentSize));
   }
 
   unsigned getLabelIndex(unsigned LabelID) const {
     const auto I = LabelMap.find(LabelID);
     assert(I != LabelMap.end() && "Use of undeclared label");
     return I->second;
   }
 
   void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
 
   void emitDeclaration(raw_ostream &OS) const {
     unsigned Indentation = 4;
     OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
     LineBreak.emit(OS, true, *this);
     OS << std::string(Indentation, ' ');
 
     for (auto I = Contents.begin(), E = Contents.end(); I != E;
          ++I) {
       bool LineBreakIsNext = false;
       const auto &NextI = std::next(I);
 
       if (NextI != E) {
         if (NextI->EmitStr == "" &&
             NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
           LineBreakIsNext = true;
       }
 
       if (I->Flags & MatchTableRecord::MTRF_Indent)
         Indentation += 2;
 
       I->emit(OS, LineBreakIsNext, *this);
       if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
         OS << std::string(Indentation, ' ');
 
       if (I->Flags & MatchTableRecord::MTRF_Outdent)
         Indentation -= 2;
     }
     OS << "};\n";
   }
 };
 
 MatchTableRecord MatchTable::LineBreak = {
     None, "" /* Emit String */, 0 /* Elements */,
     MatchTableRecord::MTRF_LineBreakFollows};
 
 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
                             const MatchTable &Table) const {
   bool UseLineComment =
       LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
   if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
     UseLineComment = false;
 
   if (Flags & MTRF_Comment)
     OS << (UseLineComment ? "// " : "/*");
 
   OS << EmitStr;
   if (Flags & MTRF_Label)
     OS << ": @" << Table.getLabelIndex(LabelID);
 
   if (Flags & MTRF_Comment && !UseLineComment)
     OS << "*/";
 
   if (Flags & MTRF_JumpTarget) {
     if (Flags & MTRF_Comment)
       OS << " ";
     OS << Table.getLabelIndex(LabelID);
   }
 
   if (Flags & MTRF_CommaFollows) {
     OS << ",";
     if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
       OS << " ";
   }
 
   if (Flags & MTRF_LineBreakFollows)
     OS << "\n";
 }
 
 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
   Table.push_back(Value);
   return Table;
 }
 
 //===- Matchers -----------------------------------------------------------===//
 
 class OperandMatcher;
 class MatchAction;
 class PredicateMatcher;
 class RuleMatcher;
 
 class Matcher {
 public:
   virtual ~Matcher() = default;
   virtual void optimize() {}
   virtual void emit(MatchTable &Table) = 0;
 
   virtual bool hasFirstCondition() const = 0;
   virtual const PredicateMatcher &getFirstCondition() const = 0;
   virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
 };
 
 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
                                   bool WithCoverage) {
   MatchTable Table(WithCoverage);
   for (Matcher *Rule : Rules)
     Rule->emit(Table);
 
   return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
 }
 
 class GroupMatcher final : public Matcher {
   /// Conditions that form a common prefix of all the matchers contained.
   SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
 
   /// All the nested matchers, sharing a common prefix.
   std::vector<Matcher *> Matchers;
 
   /// An owning collection for any auxiliary matchers created while optimizing
   /// nested matchers contained.
   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
 
 public:
   /// Add a matcher to the collection of nested matchers if it meets the
   /// requirements, and return true. If it doesn't, do nothing and return false.
   ///
   /// Expected to preserve its argument, so it could be moved out later on.
   bool addMatcher(Matcher &Candidate);
 
   /// Mark the matcher as fully-built and ensure any invariants expected by both
   /// optimize() and emit(...) methods. Generally, both sequences of calls
   /// are expected to lead to a sensible result:
   ///
   /// addMatcher(...)*; finalize(); optimize(); emit(...); and
   /// addMatcher(...)*; finalize(); emit(...);
   ///
   /// or generally
   ///
   /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
   ///
   /// Multiple calls to optimize() are expected to be handled gracefully, though
   /// optimize() is not expected to be idempotent. Multiple calls to finalize()
   /// aren't generally supported. emit(...) is expected to be non-mutating and
   /// producing the exact same results upon repeated calls.
   ///
   /// addMatcher() calls after the finalize() call are not supported.
   ///
   /// finalize() and optimize() are both allowed to mutate the contained
   /// matchers, so moving them out after finalize() is not supported.
   void finalize();
   void optimize() override {}
   void emit(MatchTable &Table) override;
 
   /// Could be used to move out the matchers added previously, unless finalize()
   /// has been already called. If any of the matchers are moved out, the group
   /// becomes safe to destroy, but not safe to re-use for anything else.
   iterator_range<std::vector<Matcher *>::iterator> matchers() {
     return make_range(Matchers.begin(), Matchers.end());
   }
   size_t size() const { return Matchers.size(); }
   bool empty() const { return Matchers.empty(); }
 
   std::unique_ptr<PredicateMatcher> popFirstCondition() override {
     assert(!Conditions.empty() &&
            "Trying to pop a condition from a condition-less group");
     std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
     Conditions.erase(Conditions.begin());
     return P;
   }
   const PredicateMatcher &getFirstCondition() const override {
     assert(!Conditions.empty() &&
            "Trying to get a condition from a condition-less group");
     return *Conditions.front();
   }
   bool hasFirstCondition() const override { return !Conditions.empty(); }
 
 private:
   /// See if a candidate matcher could be added to this group solely by
   /// analyzing its first condition.
   bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
 };
 
 /// Generates code to check that a match rule matches.
 class RuleMatcher : public Matcher {
 public:
   using ActionList = std::list<std::unique_ptr<MatchAction>>;
   using action_iterator = ActionList::iterator;
 
 protected:
   /// A list of matchers that all need to succeed for the current rule to match.
   /// FIXME: This currently supports a single match position but could be
   /// extended to support multiple positions to support div/rem fusion or
   /// load-multiple instructions.
   using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
   MatchersTy Matchers;
 
   /// A list of actions that need to be taken when all predicates in this rule
   /// have succeeded.
   ActionList Actions;
 
   using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
 
   /// A map of instruction matchers to the local variables
   DefinedInsnVariablesMap InsnVariableIDs;
 
   using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
 
   // The set of instruction matchers that have not yet been claimed for mutation
   // by a BuildMI.
   MutatableInsnSet MutatableInsns;
 
   /// A map of named operands defined by the matchers that may be referenced by
   /// the renderers.
   StringMap<OperandMatcher *> DefinedOperands;
 
   /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
   unsigned NextInsnVarID;
 
   /// ID for the next output instruction allocated with allocateOutputInsnID()
   unsigned NextOutputInsnID;
 
   /// ID for the next temporary register ID allocated with allocateTempRegID()
   unsigned NextTempRegID;
 
   std::vector<Record *> RequiredFeatures;
   std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
 
   ArrayRef<SMLoc> SrcLoc;
 
   typedef std::tuple<Record *, unsigned, unsigned>
       DefinedComplexPatternSubOperand;
   typedef StringMap<DefinedComplexPatternSubOperand>
       DefinedComplexPatternSubOperandMap;
   /// A map of Symbolic Names to ComplexPattern sub-operands.
   DefinedComplexPatternSubOperandMap ComplexSubOperands;
 
   uint64_t RuleID;
   static uint64_t NextRuleID;
 
 public:
   RuleMatcher(ArrayRef<SMLoc> SrcLoc)
       : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
         DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
         NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
         RuleID(NextRuleID++) {}
   RuleMatcher(RuleMatcher &&Other) = default;
   RuleMatcher &operator=(RuleMatcher &&Other) = default;
 
   uint64_t getRuleID() const { return RuleID; }
 
   InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
   void addRequiredFeature(Record *Feature);
   const std::vector<Record *> &getRequiredFeatures() const;
 
   template <class Kind, class... Args> Kind &addAction(Args &&... args);
   template <class Kind, class... Args>
   action_iterator insertAction(action_iterator InsertPt, Args &&... args);
 
   /// Define an instruction without emitting any code to do so.
   unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
 
   unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
   DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
     return InsnVariableIDs.begin();
   }
   DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
     return InsnVariableIDs.end();
   }
   iterator_range<typename DefinedInsnVariablesMap::const_iterator>
   defined_insn_vars() const {
     return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
   }
 
   MutatableInsnSet::const_iterator mutatable_insns_begin() const {
     return MutatableInsns.begin();
   }
   MutatableInsnSet::const_iterator mutatable_insns_end() const {
     return MutatableInsns.end();
   }
   iterator_range<typename MutatableInsnSet::const_iterator>
   mutatable_insns() const {
     return make_range(mutatable_insns_begin(), mutatable_insns_end());
   }
   void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
     bool R = MutatableInsns.erase(InsnMatcher);
     assert(R && "Reserving a mutatable insn that isn't available");
     (void)R;
   }
 
   action_iterator actions_begin() { return Actions.begin(); }
   action_iterator actions_end() { return Actions.end(); }
   iterator_range<action_iterator> actions() {
     return make_range(actions_begin(), actions_end());
   }
 
   void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
 
   void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
                                unsigned RendererID, unsigned SubOperandID) {
     assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
     ComplexSubOperands[SymbolicName] =
         std::make_tuple(ComplexPattern, RendererID, SubOperandID);
   }
   Optional<DefinedComplexPatternSubOperand>
   getComplexSubOperand(StringRef SymbolicName) const {
     const auto &I = ComplexSubOperands.find(SymbolicName);
     if (I == ComplexSubOperands.end())
       return None;
     return I->second;
   }
 
   InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
   const OperandMatcher &getOperandMatcher(StringRef Name) const;
 
   void optimize() override;
   void emit(MatchTable &Table) override;
 
   /// Compare the priority of this object and B.
   ///
   /// Returns true if this object is more important than B.
   bool isHigherPriorityThan(const RuleMatcher &B) const;
 
   /// Report the maximum number of temporary operands needed by the rule
   /// matcher.
   unsigned countRendererFns() const;
 
   std::unique_ptr<PredicateMatcher> popFirstCondition() override;
   const PredicateMatcher &getFirstCondition() const override;
-  LLTCodeGen getFirstConditionAsRootType();
   bool hasFirstCondition() const override;
   unsigned getNumOperands() const;
   StringRef getOpcode() const;
 
   // FIXME: Remove this as soon as possible
   InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
 
   unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
   unsigned allocateTempRegID() { return NextTempRegID++; }
 
   iterator_range<MatchersTy::iterator> insnmatchers() {
     return make_range(Matchers.begin(), Matchers.end());
   }
   bool insnmatchers_empty() const { return Matchers.empty(); }
   void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
 };
 
 uint64_t RuleMatcher::NextRuleID = 0;
 
 using action_iterator = RuleMatcher::action_iterator;
 
 template <class PredicateTy> class PredicateListMatcher {
 private:
   /// Template instantiations should specialize this to return a string to use
   /// for the comment emitted when there are no predicates.
   std::string getNoPredicateComment() const;
 
 protected:
   using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
   PredicatesTy Predicates;
 
   /// Track if the list of predicates was manipulated by one of the optimization
   /// methods.
   bool Optimized = false;
 
 public:
   /// Construct a new predicate and add it to the matcher.
   template <class Kind, class... Args>
   Optional<Kind *> addPredicate(Args &&... args);
 
   typename PredicatesTy::iterator predicates_begin() {
     return Predicates.begin();
   }
   typename PredicatesTy::iterator predicates_end() {
     return Predicates.end();
   }
   iterator_range<typename PredicatesTy::iterator> predicates() {
     return make_range(predicates_begin(), predicates_end());
   }
   typename PredicatesTy::size_type predicates_size() const {
     return Predicates.size();
   }
   bool predicates_empty() const { return Predicates.empty(); }
 
   std::unique_ptr<PredicateTy> predicates_pop_front() {
     std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
     Predicates.pop_front();
     Optimized = true;
     return Front;
   }
 
   void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
     Predicates.push_front(std::move(Predicate));
   }
 
   void eraseNullPredicates() {
     const auto NewEnd =
         std::stable_partition(Predicates.begin(), Predicates.end(),
                               std::logical_not<std::unique_ptr<PredicateTy>>());
     if (NewEnd != Predicates.begin()) {
       Predicates.erase(Predicates.begin(), NewEnd);
       Optimized = true;
     }
   }
 
   /// Emit MatchTable opcodes that tests whether all the predicates are met.
   template <class... Args>
   void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
     if (Predicates.empty() && !Optimized) {
       Table << MatchTable::Comment(getNoPredicateComment())
             << MatchTable::LineBreak;
       return;
     }
 
     for (const auto &Predicate : predicates())
       Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
   }
 };
 
 class PredicateMatcher {
 public:
   /// This enum is used for RTTI and also defines the priority that is given to
   /// the predicate when generating the matcher code. Kinds with higher priority
   /// must be tested first.
   ///
   /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
   /// but OPM_Int must have priority over OPM_RegBank since constant integers
   /// are represented by a virtual register defined by a G_CONSTANT instruction.
   ///
   /// Note: The relative priority between IPM_ and OPM_ does not matter, they
   /// are currently not compared between each other.
   enum PredicateKind {
     IPM_Opcode,
     IPM_NumOperands,
     IPM_ImmPredicate,
     IPM_AtomicOrderingMMO,
     IPM_MemoryLLTSize,
     IPM_MemoryVsLLTSize,
     OPM_SameOperand,
     OPM_ComplexPattern,
     OPM_IntrinsicID,
     OPM_Instruction,
     OPM_Int,
     OPM_LiteralInt,
     OPM_LLT,
     OPM_PointerToAny,
     OPM_RegBank,
     OPM_MBB,
   };
 
 protected:
   PredicateKind Kind;
   unsigned InsnVarID;
   unsigned OpIdx;
 
 public:
   PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
       : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
 
   unsigned getInsnVarID() const { return InsnVarID; }
   unsigned getOpIdx() const { return OpIdx; }
 
   virtual ~PredicateMatcher() = default;
   /// Emit MatchTable opcodes that check the predicate for the given operand.
   virtual void emitPredicateOpcodes(MatchTable &Table,
                                     RuleMatcher &Rule) const = 0;
 
   PredicateKind getKind() const { return Kind; }
 
   virtual bool isIdentical(const PredicateMatcher &B) const {
     return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
            OpIdx == B.OpIdx;
   }
 
   virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
     return hasValue() && PredicateMatcher::isIdentical(B);
   }
 
   virtual MatchTableRecord getValue() const {
     assert(hasValue() && "Can not get a value of a value-less predicate!");
     llvm_unreachable("Not implemented yet");
   }
   virtual bool hasValue() const { return false; }
 
   /// Report the maximum number of temporary operands needed by the predicate
   /// matcher.
   virtual unsigned countRendererFns() const { return 0; }
 };
 
 /// Generates code to check a predicate of an operand.
 ///
 /// Typical predicates include:
 /// * Operand is a particular register.
 /// * Operand is assigned a particular register bank.
 /// * Operand is an MBB.
 class OperandPredicateMatcher : public PredicateMatcher {
 public:
   OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
                           unsigned OpIdx)
       : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
   virtual ~OperandPredicateMatcher() {}
 
   /// Compare the priority of this object and B.
   ///
   /// Returns true if this object is more important than B.
   virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
 };
 
 template <>
 std::string
 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
   return "No operand predicates";
 }
 
 /// Generates code to check that a register operand is defined by the same exact
 /// one as another.
 class SameOperandMatcher : public OperandPredicateMatcher {
   std::string MatchingName;
 
 public:
   SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
       : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
         MatchingName(MatchingName) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_SameOperand;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override;
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return OperandPredicateMatcher::isIdentical(B) &&
            MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
   }
 };
 
 /// Generates code to check that an operand is a particular LLT.
 class LLTOperandMatcher : public OperandPredicateMatcher {
 protected:
   LLTCodeGen Ty;
 
 public:
   static std::map<LLTCodeGen, unsigned> TypeIDValues;
 
   static void initTypeIDValuesMap() {
     TypeIDValues.clear();
 
     unsigned ID = 0;
     for (const LLTCodeGen LLTy : KnownTypes)
       TypeIDValues[LLTy] = ID++;
   }
 
   LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
       : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
     KnownTypes.insert(Ty);
   }
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_LLT;
   }
   bool isIdentical(const PredicateMatcher &B) const override {
     return OperandPredicateMatcher::isIdentical(B) &&
            Ty == cast<LLTOperandMatcher>(&B)->Ty;
   }
   MatchTableRecord getValue() const override {
     const auto VI = TypeIDValues.find(Ty);
     if (VI == TypeIDValues.end())
       return MatchTable::NamedValue(getTy().getCxxEnumValue());
     return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
   }
   bool hasValue() const override {
     if (TypeIDValues.size() != KnownTypes.size())
       initTypeIDValuesMap();
     return TypeIDValues.count(Ty);
   }
 
   LLTCodeGen getTy() const { return Ty; }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
           << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
           << getValue() << MatchTable::LineBreak;
   }
 };
 
 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
 
 /// Generates code to check that an operand is a pointer to any address space.
 ///
 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
 /// result, iN is used to describe a pointer of N bits to any address space and
 /// PatFrag predicates are typically used to constrain the address space. There's
 /// no reliable means to derive the missing type information from the pattern so
 /// imported rules must test the components of a pointer separately.
 ///
 /// If SizeInBits is zero, then the pointer size will be obtained from the
 /// subtarget.
 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
 protected:
   unsigned SizeInBits;
 
 public:
   PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                              unsigned SizeInBits)
       : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
         SizeInBits(SizeInBits) {}
 
   static bool classof(const OperandPredicateMatcher *P) {
     return P->getKind() == OPM_PointerToAny;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckPointerToAny")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::Comment("SizeInBits")
           << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that an operand is a particular target constant.
 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
 protected:
   const OperandMatcher &Operand;
   const Record &TheDef;
 
   unsigned getAllocatedTemporariesBaseID() const;
 
 public:
   bool isIdentical(const PredicateMatcher &B) const override { return false; }
 
   ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                                const OperandMatcher &Operand,
                                const Record &TheDef)
       : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
         Operand(Operand), TheDef(TheDef) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_ComplexPattern;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     unsigned ID = getAllocatedTemporariesBaseID();
     Table << MatchTable::Opcode("GIM_CheckComplexPattern")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
           << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
           << MatchTable::LineBreak;
   }
 
   unsigned countRendererFns() const override {
     return 1;
   }
 };
 
 /// Generates code to check that an operand is in a particular register bank.
 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
 protected:
   const CodeGenRegisterClass &RC;
 
 public:
   RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                              const CodeGenRegisterClass &RC)
       : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return OperandPredicateMatcher::isIdentical(B) &&
            RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
   }
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_RegBank;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::Comment("RC")
           << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that an operand is a basic block.
 class MBBOperandMatcher : public OperandPredicateMatcher {
 public:
   MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
       : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_MBB;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
           << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that an operand is a G_CONSTANT with a particular
 /// int.
 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
 protected:
   int64_t Value;
 
 public:
   ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
       : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return OperandPredicateMatcher::isIdentical(B) &&
            Value == cast<ConstantIntOperandMatcher>(&B)->Value;
   }
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_Int;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckConstantInt")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that an operand is a raw int (where MO.isImm() or
 /// MO.isCImm() is true).
 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
 protected:
   int64_t Value;
 
 public:
   LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
       : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
         Value(Value) {}
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return OperandPredicateMatcher::isIdentical(B) &&
            Value == cast<LiteralIntOperandMatcher>(&B)->Value;
   }
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_LiteralInt;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckLiteralInt")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that an operand is an intrinsic ID.
 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
 protected:
   const CodeGenIntrinsic *II;
 
 public:
   IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             const CodeGenIntrinsic *II)
       : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return OperandPredicateMatcher::isIdentical(B) &&
            II == cast<IntrinsicIDOperandMatcher>(&B)->II;
   }
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_IntrinsicID;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that a set of predicates match for a particular
 /// operand.
 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
 protected:
   InstructionMatcher &Insn;
   unsigned OpIdx;
   std::string SymbolicName;
 
   /// The index of the first temporary variable allocated to this operand. The
   /// number of allocated temporaries can be found with
   /// countRendererFns().
   unsigned AllocatedTemporariesBaseID;
 
 public:
   OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
                  const std::string &SymbolicName,
                  unsigned AllocatedTemporariesBaseID)
       : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
         AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
 
   bool hasSymbolicName() const { return !SymbolicName.empty(); }
   const StringRef getSymbolicName() const { return SymbolicName; }
   void setSymbolicName(StringRef Name) {
     assert(SymbolicName.empty() && "Operand already has a symbolic name");
     SymbolicName = Name;
   }
 
   /// Construct a new operand predicate and add it to the matcher.
   template <class Kind, class... Args>
   Optional<Kind *> addPredicate(Args &&... args) {
     if (isSameAsAnotherOperand())
       return None;
     Predicates.emplace_back(llvm::make_unique<Kind>(
         getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
     return static_cast<Kind *>(Predicates.back().get());
   }
 
   unsigned getOpIdx() const { return OpIdx; }
   unsigned getInsnVarID() const;
 
   std::string getOperandExpr(unsigned InsnVarID) const {
     return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
            llvm::to_string(OpIdx) + ")";
   }
 
   InstructionMatcher &getInstructionMatcher() const { return Insn; }
 
   Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
                               bool OperandIsAPointer);
 
   /// Emit MatchTable opcodes that test whether the instruction named in
   /// InsnVarID matches all the predicates and all the operands.
   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
     if (!Optimized) {
       std::string Comment;
       raw_string_ostream CommentOS(Comment);
       CommentOS << "MIs[" << getInsnVarID() << "] ";
       if (SymbolicName.empty())
         CommentOS << "Operand " << OpIdx;
       else
         CommentOS << SymbolicName;
       Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
     }
 
     emitPredicateListOpcodes(Table, Rule);
   }
 
   /// Compare the priority of this object and B.
   ///
   /// Returns true if this object is more important than B.
   bool isHigherPriorityThan(OperandMatcher &B) {
     // Operand matchers involving more predicates have higher priority.
     if (predicates_size() > B.predicates_size())
       return true;
     if (predicates_size() < B.predicates_size())
       return false;
 
     // This assumes that predicates are added in a consistent order.
     for (auto &&Predicate : zip(predicates(), B.predicates())) {
       if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
         return true;
       if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
         return false;
     }
 
     return false;
   };
 
   /// Report the maximum number of temporary operands needed by the operand
   /// matcher.
   unsigned countRendererFns() {
     return std::accumulate(
         predicates().begin(), predicates().end(), 0,
         [](unsigned A,
            const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
           return A + Predicate->countRendererFns();
         });
   }
 
   unsigned getAllocatedTemporariesBaseID() const {
     return AllocatedTemporariesBaseID;
   }
 
   bool isSameAsAnotherOperand() {
     for (const auto &Predicate : predicates())
       if (isa<SameOperandMatcher>(Predicate))
         return true;
     return false;
   }
 };
 
 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
                                             bool OperandIsAPointer) {
   if (!VTy.isMachineValueType())
     return failedImport("unsupported typeset");
 
   if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
     addPredicate<PointerToAnyOperandMatcher>(0);
     return Error::success();
   }
 
   auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
   if (!OpTyOrNone)
     return failedImport("unsupported type");
 
   if (OperandIsAPointer)
     addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
   else
     addPredicate<LLTOperandMatcher>(*OpTyOrNone);
   return Error::success();
 }
 
 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
   return Operand.getAllocatedTemporariesBaseID();
 }
 
 /// Generates code to check a predicate on an instruction.
 ///
 /// Typical predicates include:
 /// * The opcode of the instruction is a particular value.
 /// * The nsw/nuw flag is/isn't set.
 class InstructionPredicateMatcher : public PredicateMatcher {
 public:
   InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
       : PredicateMatcher(Kind, InsnVarID) {}
   virtual ~InstructionPredicateMatcher() {}
 
   /// Compare the priority of this object and B.
   ///
   /// Returns true if this object is more important than B.
   virtual bool
   isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
     return Kind < B.Kind;
   };
 };
 
 template <>
 std::string
 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
   return "No instruction predicates";
 }
 
 /// Generates code to check the opcode of an instruction.
 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
 protected:
   const CodeGenInstruction *I;
 
   static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
 
 public:
   static void initOpcodeValuesMap(const CodeGenTarget &Target) {
     OpcodeValues.clear();
 
     unsigned OpcodeValue = 0;
     for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
       OpcodeValues[I] = OpcodeValue++;
   }
 
   InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
       : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == IPM_Opcode;
   }
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return InstructionPredicateMatcher::isIdentical(B) &&
            I == cast<InstructionOpcodeMatcher>(&B)->I;
   }
   MatchTableRecord getValue() const override {
     const auto VI = OpcodeValues.find(I);
     if (VI != OpcodeValues.end())
       return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
                                     VI->second);
     return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
   }
   bool hasValue() const override { return OpcodeValues.count(I); }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
           << MatchTable::IntValue(InsnVarID) << getValue()
           << MatchTable::LineBreak;
   }
 
   /// Compare the priority of this object and B.
   ///
   /// Returns true if this object is more important than B.
   bool
   isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
     if (InstructionPredicateMatcher::isHigherPriorityThan(B))
       return true;
     if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
       return false;
 
     // Prioritize opcodes for cosmetic reasons in the generated source. Although
     // this is cosmetic at the moment, we may want to drive a similar ordering
     // using instruction frequency information to improve compile time.
     if (const InstructionOpcodeMatcher *BO =
             dyn_cast<InstructionOpcodeMatcher>(&B))
       return I->TheDef->getName() < BO->I->TheDef->getName();
 
     return false;
   };
 
   bool isConstantInstruction() const {
     return I->TheDef->getName() == "G_CONSTANT";
   }
 
   StringRef getOpcode() const { return I->TheDef->getName(); }
   unsigned getNumOperands() const { return I->Operands.size(); }
 
   StringRef getOperandType(unsigned OpIdx) const {
     return I->Operands[OpIdx].OperandType;
   }
 };
 
 DenseMap<const CodeGenInstruction *, unsigned>
     InstructionOpcodeMatcher::OpcodeValues;
 
 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
   unsigned NumOperands = 0;
 
 public:
   InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
       : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
         NumOperands(NumOperands) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == IPM_NumOperands;
   }
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return InstructionPredicateMatcher::isIdentical(B) &&
            NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckNumOperands")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Expected")
           << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that this instruction is a constant whose value
 /// meets an immediate predicate.
 ///
 /// Immediates are slightly odd since they are typically used like an operand
 /// but are represented as an operator internally. We typically write simm8:$src
 /// in a tablegen pattern, but this is just syntactic sugar for
 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
 /// that will be matched and the predicate (which is attached to the imm
 /// operator) that will be tested. In SelectionDAG this describes a
 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
 ///
 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
 /// this representation, the immediate could be tested with an
 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
 /// there are two implementation issues with producing that matcher
 /// configuration from the SelectionDAG pattern:
 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
 ///   were we to sink the immediate predicate to the operand we would have to
 ///   have two partial implementations of PatFrag support, one for immediates
 ///   and one for non-immediates.
 /// * At the point we handle the predicate, the OperandMatcher hasn't been
 ///   created yet. If we were to sink the predicate to the OperandMatcher we
 ///   would also have to complicate (or duplicate) the code that descends and
 ///   creates matchers for the subtree.
 /// Overall, it's simpler to handle it in the place it was found.
 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
 protected:
   TreePredicateFn Predicate;
 
 public:
   InstructionImmPredicateMatcher(unsigned InsnVarID,
                                  const TreePredicateFn &Predicate)
       : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
         Predicate(Predicate) {}
 
   bool isIdentical(const PredicateMatcher &B) const override {
     return InstructionPredicateMatcher::isIdentical(B) &&
            Predicate.getOrigPatFragRecord() ==
                cast<InstructionImmPredicateMatcher>(&B)
                    ->Predicate.getOrigPatFragRecord();
   }
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == IPM_ImmPredicate;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("Predicate")
           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that a memory instruction has a atomic ordering
 /// MachineMemoryOperand.
 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
 public:
   enum AOComparator {
     AO_Exactly,
     AO_OrStronger,
     AO_WeakerThan,
   };
 
 protected:
   StringRef Order;
   AOComparator Comparator;
 
 public:
   AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
                                     AOComparator Comparator = AO_Exactly)
       : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
         Order(Order), Comparator(Comparator) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == IPM_AtomicOrderingMMO;
   }
 
   bool isIdentical(const PredicateMatcher &B) const override {
     if (!InstructionPredicateMatcher::isIdentical(B))
       return false;
     const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
     return Order == R.Order && Comparator == R.Comparator;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     StringRef Opcode = "GIM_CheckAtomicOrdering";
 
     if (Comparator == AO_OrStronger)
       Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
     if (Comparator == AO_WeakerThan)
       Opcode = "GIM_CheckAtomicOrderingWeakerThan";
 
     Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
           << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that the size of an MMO is exactly N bytes.
 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
 protected:
   unsigned MMOIdx;
   uint64_t Size;
 
 public:
   MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
       : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
         MMOIdx(MMOIdx), Size(Size) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == IPM_MemoryLLTSize;
   }
   bool isIdentical(const PredicateMatcher &B) const override {
     return InstructionPredicateMatcher::isIdentical(B) &&
            MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
            Size == cast<MemorySizePredicateMatcher>(&B)->Size;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
           << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that the size of an MMO is less-than, equal-to, or
 /// greater than a given LLT.
 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
 public:
   enum RelationKind {
     GreaterThan,
     EqualTo,
     LessThan,
   };
 
 protected:
   unsigned MMOIdx;
   RelationKind Relation;
   unsigned OpIdx;
 
 public:
   MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
                                   enum RelationKind Relation,
                                   unsigned OpIdx)
       : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
         MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == IPM_MemoryVsLLTSize;
   }
   bool isIdentical(const PredicateMatcher &B) const override {
     return InstructionPredicateMatcher::isIdentical(B) &&
            MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
            Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
            OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode(Relation == EqualTo
                                     ? "GIM_CheckMemorySizeEqualToLLT"
                                     : Relation == GreaterThan
                                           ? "GIM_CheckMemorySizeGreaterThanLLT"
                                           : "GIM_CheckMemorySizeLessThanLLT")
           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to check that a set of predicates and operands match for a
 /// particular instruction.
 ///
 /// Typical predicates include:
 /// * Has a specific opcode.
 /// * Has an nsw/nuw flag or doesn't.
 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
 protected:
   typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
 
   RuleMatcher &Rule;
 
   /// The operands to match. All rendered operands must be present even if the
   /// condition is always true.
   OperandVec Operands;
   bool NumOperandsCheck = true;
 
   std::string SymbolicName;
   unsigned InsnVarID;
 
 public:
   InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
       : Rule(Rule), SymbolicName(SymbolicName) {
     // We create a new instruction matcher.
     // Get a new ID for that instruction.
     InsnVarID = Rule.implicitlyDefineInsnVar(*this);
   }
 
   /// Construct a new instruction predicate and add it to the matcher.
   template <class Kind, class... Args>
   Optional<Kind *> addPredicate(Args &&... args) {
     Predicates.emplace_back(
         llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
     return static_cast<Kind *>(Predicates.back().get());
   }
 
   RuleMatcher &getRuleMatcher() const { return Rule; }
 
   unsigned getInsnVarID() const { return InsnVarID; }
 
   /// Add an operand to the matcher.
   OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
                              unsigned AllocatedTemporariesBaseID) {
     Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
                                              AllocatedTemporariesBaseID));
     if (!SymbolicName.empty())
       Rule.defineOperand(SymbolicName, *Operands.back());
 
     return *Operands.back();
   }
 
   OperandMatcher &getOperand(unsigned OpIdx) {
     auto I = std::find_if(Operands.begin(), Operands.end(),
                           [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
                             return X->getOpIdx() == OpIdx;
                           });
     if (I != Operands.end())
       return **I;
     llvm_unreachable("Failed to lookup operand");
   }
 
   StringRef getSymbolicName() const { return SymbolicName; }
   unsigned getNumOperands() const { return Operands.size(); }
   OperandVec::iterator operands_begin() { return Operands.begin(); }
   OperandVec::iterator operands_end() { return Operands.end(); }
   iterator_range<OperandVec::iterator> operands() {
     return make_range(operands_begin(), operands_end());
   }
   OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
   OperandVec::const_iterator operands_end() const { return Operands.end(); }
   iterator_range<OperandVec::const_iterator> operands() const {
     return make_range(operands_begin(), operands_end());
   }
   bool operands_empty() const { return Operands.empty(); }
 
   void pop_front() { Operands.erase(Operands.begin()); }
 
   void optimize();
 
   /// Emit MatchTable opcodes that test whether the instruction named in
   /// InsnVarName matches all the predicates and all the operands.
   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
     if (NumOperandsCheck)
       InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
           .emitPredicateOpcodes(Table, Rule);
 
     emitPredicateListOpcodes(Table, Rule);
 
     for (const auto &Operand : Operands)
       Operand->emitPredicateOpcodes(Table, Rule);
   }
 
   /// Compare the priority of this object and B.
   ///
   /// Returns true if this object is more important than B.
   bool isHigherPriorityThan(InstructionMatcher &B) {
     // Instruction matchers involving more operands have higher priority.
     if (Operands.size() > B.Operands.size())
       return true;
     if (Operands.size() < B.Operands.size())
       return false;
 
     for (auto &&P : zip(predicates(), B.predicates())) {
       auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
       auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
       if (L->isHigherPriorityThan(*R))
         return true;
       if (R->isHigherPriorityThan(*L))
         return false;
     }
 
     for (const auto &Operand : zip(Operands, B.Operands)) {
       if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
         return true;
       if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
         return false;
     }
 
     return false;
   };
 
   /// Report the maximum number of temporary operands needed by the instruction
   /// matcher.
   unsigned countRendererFns() {
     return std::accumulate(
                predicates().begin(), predicates().end(), 0,
                [](unsigned A,
                   const std::unique_ptr<PredicateMatcher> &Predicate) {
                  return A + Predicate->countRendererFns();
                }) +
            std::accumulate(
                Operands.begin(), Operands.end(), 0,
                [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
                  return A + Operand->countRendererFns();
                });
   }
 
   InstructionOpcodeMatcher &getOpcodeMatcher() {
     for (auto &P : predicates())
       if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
         return *OpMatcher;
     llvm_unreachable("Didn't find an opcode matcher");
   }
 
   bool isConstantInstruction() {
     return getOpcodeMatcher().isConstantInstruction();
   }
 
   StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
 };
 
 StringRef RuleMatcher::getOpcode() const {
   return Matchers.front()->getOpcode();
 }
 
 unsigned RuleMatcher::getNumOperands() const {
   return Matchers.front()->getNumOperands();
 }
 
-LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
-  InstructionMatcher &InsnMatcher = *Matchers.front();
-  if (!InsnMatcher.predicates_empty())
-    if (const auto *TM =
-            dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
-      if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
-        return TM->getTy();
-  return {};
-}
-
 /// Generates code to check that the operand is a register defined by an
 /// instruction that matches the given instruction matcher.
 ///
 /// For example, the pattern:
 ///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
 /// the:
 ///   (G_ADD $src1, $src2)
 /// subpattern.
 class InstructionOperandMatcher : public OperandPredicateMatcher {
 protected:
   std::unique_ptr<InstructionMatcher> InsnMatcher;
 
 public:
   InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             RuleMatcher &Rule, StringRef SymbolicName)
       : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
         InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
 
   static bool classof(const PredicateMatcher *P) {
     return P->getKind() == OPM_Instruction;
   }
 
   InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
 
   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
     const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
     Table << MatchTable::Opcode("GIM_RecordInsn")
           << MatchTable::Comment("DefineMI")
           << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
           << MatchTable::IntValue(getInsnVarID())
           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
           << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
           << MatchTable::LineBreak;
   }
 
   void emitPredicateOpcodes(MatchTable &Table,
                             RuleMatcher &Rule) const override {
     emitCaptureOpcodes(Table, Rule);
     InsnMatcher->emitPredicateOpcodes(Table, Rule);
   }
 
   bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
     if (OperandPredicateMatcher::isHigherPriorityThan(B))
       return true;
     if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
       return false;
 
     if (const InstructionOperandMatcher *BP =
             dyn_cast<InstructionOperandMatcher>(&B))
       if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
         return true;
     return false;
   }
 };
 
 void InstructionMatcher::optimize() {
   SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
   const auto &OpcMatcher = getOpcodeMatcher();
 
   Stash.push_back(predicates_pop_front());
   if (Stash.back().get() == &OpcMatcher) {
     if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
       Stash.emplace_back(
           new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
     NumOperandsCheck = false;
   }
 
   if (InsnVarID > 0) {
     assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
     for (auto &OP : Operands[0]->predicates())
       OP.reset();
     Operands[0]->eraseNullPredicates();
   }
   while (!Stash.empty())
     prependPredicate(Stash.pop_back_val());
 }
 
 //===- Actions ------------------------------------------------------------===//
 class OperandRenderer {
 public:
   enum RendererKind {
     OR_Copy,
     OR_CopyOrAddZeroReg,
     OR_CopySubReg,
     OR_CopyConstantAsImm,
     OR_CopyFConstantAsFPImm,
     OR_Imm,
     OR_Register,
     OR_TempRegister,
     OR_ComplexPattern,
     OR_Custom
   };
 
 protected:
   RendererKind Kind;
 
 public:
   OperandRenderer(RendererKind Kind) : Kind(Kind) {}
   virtual ~OperandRenderer() {}
 
   RendererKind getKind() const { return Kind; }
 
   virtual void emitRenderOpcodes(MatchTable &Table,
                                  RuleMatcher &Rule) const = 0;
 };
 
 /// A CopyRenderer emits code to copy a single operand from an existing
 /// instruction to the one being built.
 class CopyRenderer : public OperandRenderer {
 protected:
   unsigned NewInsnID;
   /// The name of the operand.
   const StringRef SymbolicName;
 
 public:
   CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
       : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
         SymbolicName(SymbolicName) {
     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
   }
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_Copy;
   }
 
   const StringRef getSymbolicName() const { return SymbolicName; }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
     Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
           << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
           << MatchTable::IntValue(Operand.getOpIdx())
           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
 /// existing instruction to the one being built. If the operand turns out to be
 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
 class CopyOrAddZeroRegRenderer : public OperandRenderer {
 protected:
   unsigned NewInsnID;
   /// The name of the operand.
   const StringRef SymbolicName;
   const Record *ZeroRegisterDef;
 
 public:
   CopyOrAddZeroRegRenderer(unsigned NewInsnID,
                            StringRef SymbolicName, Record *ZeroRegisterDef)
       : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
         SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
   }
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_CopyOrAddZeroReg;
   }
 
   const StringRef getSymbolicName() const { return SymbolicName; }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
     Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
           << MatchTable::Comment("OldInsnID")
           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
           << MatchTable::IntValue(Operand.getOpIdx())
           << MatchTable::NamedValue(
                  (ZeroRegisterDef->getValue("Namespace")
                       ? ZeroRegisterDef->getValueAsString("Namespace")
                       : ""),
                  ZeroRegisterDef->getName())
           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
 /// an extended immediate operand.
 class CopyConstantAsImmRenderer : public OperandRenderer {
 protected:
   unsigned NewInsnID;
   /// The name of the operand.
   const std::string SymbolicName;
   bool Signed;
 
 public:
   CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
       : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
         SymbolicName(SymbolicName), Signed(true) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_CopyConstantAsImm;
   }
 
   const StringRef getSymbolicName() const { return SymbolicName; }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
     Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
                                        : "GIR_CopyConstantAsUImm")
           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
           << MatchTable::Comment("OldInsnID")
           << MatchTable::IntValue(OldInsnVarID)
           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
 /// instruction to an extended immediate operand.
 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
 protected:
   unsigned NewInsnID;
   /// The name of the operand.
   const std::string SymbolicName;
 
 public:
   CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
       : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
         SymbolicName(SymbolicName) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_CopyFConstantAsFPImm;
   }
 
   const StringRef getSymbolicName() const { return SymbolicName; }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
     Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
           << MatchTable::Comment("OldInsnID")
           << MatchTable::IntValue(OldInsnVarID)
           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 /// A CopySubRegRenderer emits code to copy a single register operand from an
 /// existing instruction to the one being built and indicate that only a
 /// subregister should be copied.
 class CopySubRegRenderer : public OperandRenderer {
 protected:
   unsigned NewInsnID;
   /// The name of the operand.
   const StringRef SymbolicName;
   /// The subregister to extract.
   const CodeGenSubRegIndex *SubReg;
 
 public:
   CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
                      const CodeGenSubRegIndex *SubReg)
       : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
         SymbolicName(SymbolicName), SubReg(SubReg) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_CopySubReg;
   }
 
   const StringRef getSymbolicName() const { return SymbolicName; }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
     Table << MatchTable::Opcode("GIR_CopySubReg")
           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
           << MatchTable::Comment("OldInsnID")
           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
           << MatchTable::IntValue(Operand.getOpIdx())
           << MatchTable::Comment("SubRegIdx")
           << MatchTable::IntValue(SubReg->EnumValue)
           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 /// Adds a specific physical register to the instruction being built.
 /// This is typically useful for WZR/XZR on AArch64.
 class AddRegisterRenderer : public OperandRenderer {
 protected:
   unsigned InsnID;
   const Record *RegisterDef;
 
 public:
   AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
       : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
   }
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_Register;
   }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIR_AddRegister")
           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
           << MatchTable::NamedValue(
                  (RegisterDef->getValue("Namespace")
                       ? RegisterDef->getValueAsString("Namespace")
                       : ""),
                  RegisterDef->getName())
           << MatchTable::LineBreak;
   }
 };
 
 /// Adds a specific temporary virtual register to the instruction being built.
 /// This is used to chain instructions together when emitting multiple
 /// instructions.
 class TempRegRenderer : public OperandRenderer {
 protected:
   unsigned InsnID;
   unsigned TempRegID;
   bool IsDef;
 
 public:
   TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
       : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
         IsDef(IsDef) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_TempRegister;
   }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIR_AddTempRegister")
           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
           << MatchTable::Comment("TempRegFlags");
     if (IsDef)
       Table << MatchTable::NamedValue("RegState::Define");
     else
       Table << MatchTable::IntValue(0);
     Table << MatchTable::LineBreak;
   }
 };
 
 /// Adds a specific immediate to the instruction being built.
 class ImmRenderer : public OperandRenderer {
 protected:
   unsigned InsnID;
   int64_t Imm;
 
 public:
   ImmRenderer(unsigned InsnID, int64_t Imm)
       : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_Imm;
   }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
           << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
   }
 };
 
 /// Adds operands by calling a renderer function supplied by the ComplexPattern
 /// matcher function.
 class RenderComplexPatternOperand : public OperandRenderer {
 private:
   unsigned InsnID;
   const Record &TheDef;
   /// The name of the operand.
   const StringRef SymbolicName;
   /// The renderer number. This must be unique within a rule since it's used to
   /// identify a temporary variable to hold the renderer function.
   unsigned RendererID;
   /// When provided, this is the suboperand of the ComplexPattern operand to
   /// render. Otherwise all the suboperands will be rendered.
   Optional<unsigned> SubOperand;
 
   unsigned getNumOperands() const {
     return TheDef.getValueAsDag("Operands")->getNumArgs();
   }
 
 public:
   RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
                               StringRef SymbolicName, unsigned RendererID,
                               Optional<unsigned> SubOperand = None)
       : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
         SymbolicName(SymbolicName), RendererID(RendererID),
         SubOperand(SubOperand) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_ComplexPattern;
   }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
                                                       : "GIR_ComplexRenderer")
           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
           << MatchTable::Comment("RendererID")
           << MatchTable::IntValue(RendererID);
     if (SubOperand.hasValue())
       Table << MatchTable::Comment("SubOperand")
             << MatchTable::IntValue(SubOperand.getValue());
     Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 class CustomRenderer : public OperandRenderer {
 protected:
   unsigned InsnID;
   const Record &Renderer;
   /// The name of the operand.
   const std::string SymbolicName;
 
 public:
   CustomRenderer(unsigned InsnID, const Record &Renderer,
                  StringRef SymbolicName)
       : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
         SymbolicName(SymbolicName) {}
 
   static bool classof(const OperandRenderer *R) {
     return R->getKind() == OR_Custom;
   }
 
   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
     Table << MatchTable::Opcode("GIR_CustomRenderer")
           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
           << MatchTable::Comment("OldInsnID")
           << MatchTable::IntValue(OldInsnVarID)
           << MatchTable::Comment("Renderer")
           << MatchTable::NamedValue(
                  "GICR_" + Renderer.getValueAsString("RendererFn").str())
           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
   }
 };
 
 /// An action taken when all Matcher predicates succeeded for a parent rule.
 ///
 /// Typical actions include:
 /// * Changing the opcode of an instruction.
 /// * Adding an operand to an instruction.
 class MatchAction {
 public:
   virtual ~MatchAction() {}
 
   /// Emit the MatchTable opcodes to implement the action.
   virtual void emitActionOpcodes(MatchTable &Table,
                                  RuleMatcher &Rule) const = 0;
 };
 
 /// Generates a comment describing the matched rule being acted upon.
 class DebugCommentAction : public MatchAction {
 private:
   std::string S;
 
 public:
   DebugCommentAction(StringRef S) : S(S) {}
 
   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Comment(S) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to build an instruction or mutate an existing instruction
 /// into the desired instruction when this is possible.
 class BuildMIAction : public MatchAction {
 private:
   unsigned InsnID;
   const CodeGenInstruction *I;
   InstructionMatcher *Matched;
   std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
 
   /// True if the instruction can be built solely by mutating the opcode.
   bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
     if (!Insn)
       return false;
 
     if (OperandRenderers.size() != Insn->getNumOperands())
       return false;
 
     for (const auto &Renderer : enumerate(OperandRenderers)) {
       if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
         const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
         if (Insn != &OM.getInstructionMatcher() ||
             OM.getOpIdx() != Renderer.index())
           return false;
       } else
         return false;
     }
 
     return true;
   }
 
 public:
   BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
       : InsnID(InsnID), I(I), Matched(nullptr) {}
 
   unsigned getInsnID() const { return InsnID; }
   const CodeGenInstruction *getCGI() const { return I; }
 
   void chooseInsnToMutate(RuleMatcher &Rule) {
     for (auto *MutateCandidate : Rule.mutatable_insns()) {
       if (canMutate(Rule, MutateCandidate)) {
         // Take the first one we're offered that we're able to mutate.
         Rule.reserveInsnMatcherForMutation(MutateCandidate);
         Matched = MutateCandidate;
         return;
       }
     }
   }
 
   template <class Kind, class... Args>
   Kind &addRenderer(Args&&... args) {
     OperandRenderers.emplace_back(
         llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
     return *static_cast<Kind *>(OperandRenderers.back().get());
   }
 
   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     if (Matched) {
       assert(canMutate(Rule, Matched) &&
              "Arranged to mutate an insn that isn't mutatable");
 
       unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
       Table << MatchTable::Opcode("GIR_MutateOpcode")
             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
             << MatchTable::Comment("RecycleInsnID")
             << MatchTable::IntValue(RecycleInsnID)
             << MatchTable::Comment("Opcode")
             << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
             << MatchTable::LineBreak;
 
       if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
         for (auto Def : I->ImplicitDefs) {
           auto Namespace = Def->getValue("Namespace")
                                ? Def->getValueAsString("Namespace")
                                : "";
           Table << MatchTable::Opcode("GIR_AddImplicitDef")
                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
                 << MatchTable::NamedValue(Namespace, Def->getName())
                 << MatchTable::LineBreak;
         }
         for (auto Use : I->ImplicitUses) {
           auto Namespace = Use->getValue("Namespace")
                                ? Use->getValueAsString("Namespace")
                                : "";
           Table << MatchTable::Opcode("GIR_AddImplicitUse")
                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
                 << MatchTable::NamedValue(Namespace, Use->getName())
                 << MatchTable::LineBreak;
         }
       }
       return;
     }
 
     // TODO: Simple permutation looks like it could be almost as common as
     //       mutation due to commutative operations.
 
     Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
           << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
           << MatchTable::LineBreak;
     for (const auto &Renderer : OperandRenderers)
       Renderer->emitRenderOpcodes(Table, Rule);
 
     if (I->mayLoad || I->mayStore) {
       Table << MatchTable::Opcode("GIR_MergeMemOperands")
             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
             << MatchTable::Comment("MergeInsnID's");
       // Emit the ID's for all the instructions that are matched by this rule.
       // TODO: Limit this to matched instructions that mayLoad/mayStore or have
       //       some other means of having a memoperand. Also limit this to
       //       emitted instructions that expect to have a memoperand too. For
       //       example, (G_SEXT (G_LOAD x)) that results in separate load and
       //       sign-extend instructions shouldn't put the memoperand on the
       //       sign-extend since it has no effect there.
       std::vector<unsigned> MergeInsnIDs;
       for (const auto &IDMatcherPair : Rule.defined_insn_vars())
         MergeInsnIDs.push_back(IDMatcherPair.second);
       llvm::sort(MergeInsnIDs.begin(), MergeInsnIDs.end());
       for (const auto &MergeInsnID : MergeInsnIDs)
         Table << MatchTable::IntValue(MergeInsnID);
       Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
             << MatchTable::LineBreak;
     }
 
     // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
     //        better for combines. Particularly when there are multiple match
     //        roots.
     if (InsnID == 0)
       Table << MatchTable::Opcode("GIR_EraseFromParent")
             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
             << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to constrain the operands of an output instruction to the
 /// register classes specified by the definition of that instruction.
 class ConstrainOperandsToDefinitionAction : public MatchAction {
   unsigned InsnID;
 
 public:
   ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
 
   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
           << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to constrain the specified operand of an output instruction
 /// to the specified register class.
 class ConstrainOperandToRegClassAction : public MatchAction {
   unsigned InsnID;
   unsigned OpIdx;
   const CodeGenRegisterClass &RC;
 
 public:
   ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
                                    const CodeGenRegisterClass &RC)
       : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
 
   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
           << MatchTable::Comment("RC " + RC.getName())
           << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
   }
 };
 
 /// Generates code to create a temporary register which can be used to chain
 /// instructions together.
 class MakeTempRegisterAction : public MatchAction {
 private:
   LLTCodeGen Ty;
   unsigned TempRegID;
 
 public:
   MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
       : Ty(Ty), TempRegID(TempRegID) {}
 
   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
     Table << MatchTable::Opcode("GIR_MakeTempReg")
           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
           << MatchTable::Comment("TypeID")
           << MatchTable::NamedValue(Ty.getCxxEnumValue())
           << MatchTable::LineBreak;
   }
 };
 
 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
   Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
   MutatableInsns.insert(Matchers.back().get());
   return *Matchers.back();
 }
 
 void RuleMatcher::addRequiredFeature(Record *Feature) {
   RequiredFeatures.push_back(Feature);
 }
 
 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
   return RequiredFeatures;
 }
 
 // Emplaces an action of the specified Kind at the end of the action list.
 //
 // Returns a reference to the newly created action.
 //
 // Like std::vector::emplace_back(), may invalidate all iterators if the new
 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
 // iterator.
 template <class Kind, class... Args>
 Kind &RuleMatcher::addAction(Args &&... args) {
   Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
   return *static_cast<Kind *>(Actions.back().get());
 }
 
 // Emplaces an action of the specified Kind before the given insertion point.
 //
 // Returns an iterator pointing at the newly created instruction.
 //
 // Like std::vector::insert(), may invalidate all iterators if the new size
 // exceeds the capacity. Otherwise, only invalidates the iterators from the
 // insertion point onwards.
 template <class Kind, class... Args>
 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
                                           Args &&... args) {
   return Actions.emplace(InsertPt,
                          llvm::make_unique<Kind>(std::forward<Args>(args)...));
 }
 
 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
   unsigned NewInsnVarID = NextInsnVarID++;
   InsnVariableIDs[&Matcher] = NewInsnVarID;
   return NewInsnVarID;
 }
 
 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
   const auto &I = InsnVariableIDs.find(&InsnMatcher);
   if (I != InsnVariableIDs.end())
     return I->second;
   llvm_unreachable("Matched Insn was not captured in a local variable");
 }
 
 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
   if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
     DefinedOperands[SymbolicName] = &OM;
     return;
   }
 
   // If the operand is already defined, then we must ensure both references in
   // the matcher have the exact same node.
   OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
 }
 
 InstructionMatcher &
 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
   for (const auto &I : InsnVariableIDs)
     if (I.first->getSymbolicName() == SymbolicName)
       return *I.first;
   llvm_unreachable(
       ("Failed to lookup instruction " + SymbolicName).str().c_str());
 }
 
 const OperandMatcher &
 RuleMatcher::getOperandMatcher(StringRef Name) const {
   const auto &I = DefinedOperands.find(Name);
 
   if (I == DefinedOperands.end())
     PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
 
   return *I->second;
 }
 
 void RuleMatcher::emit(MatchTable &Table) {
   if (Matchers.empty())
     llvm_unreachable("Unexpected empty matcher!");
 
   // The representation supports rules that require multiple roots such as:
   //    %ptr(p0) = ...
   //    %elt0(s32) = G_LOAD %ptr
   //    %1(p0) = G_ADD %ptr, 4
   //    %elt1(s32) = G_LOAD p0 %1
   // which could be usefully folded into:
   //    %ptr(p0) = ...
   //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
   // on some targets but we don't need to make use of that yet.
   assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
 
   unsigned LabelID = Table.allocateLabelID();
   Table << MatchTable::Opcode("GIM_Try", +1)
         << MatchTable::Comment("On fail goto")
         << MatchTable::JumpTarget(LabelID)
         << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
         << MatchTable::LineBreak;
 
   if (!RequiredFeatures.empty()) {
     Table << MatchTable::Opcode("GIM_CheckFeatures")
           << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
           << MatchTable::LineBreak;
   }
 
   Matchers.front()->emitPredicateOpcodes(Table, *this);
 
   // We must also check if it's safe to fold the matched instructions.
   if (InsnVariableIDs.size() >= 2) {
     // Invert the map to create stable ordering (by var names)
     SmallVector<unsigned, 2> InsnIDs;
     for (const auto &Pair : InsnVariableIDs) {
       // Skip the root node since it isn't moving anywhere. Everything else is
       // sinking to meet it.
       if (Pair.first == Matchers.front().get())
         continue;
 
       InsnIDs.push_back(Pair.second);
     }
     llvm::sort(InsnIDs.begin(), InsnIDs.end());
 
     for (const auto &InsnID : InsnIDs) {
       // Reject the difficult cases until we have a more accurate check.
       Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
             << MatchTable::LineBreak;
 
       // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
       //        account for unsafe cases.
       //
       //        Example:
       //          MI1--> %0 = ...
       //                 %1 = ... %0
       //          MI0--> %2 = ... %0
       //          It's not safe to erase MI1. We currently handle this by not
       //          erasing %0 (even when it's dead).
       //
       //        Example:
       //          MI1--> %0 = load volatile @a
       //                 %1 = load volatile @a
       //          MI0--> %2 = ... %0
       //          It's not safe to sink %0's def past %1. We currently handle
       //          this by rejecting all loads.
       //
       //        Example:
       //          MI1--> %0 = load @a
       //                 %1 = store @a
       //          MI0--> %2 = ... %0
       //          It's not safe to sink %0's def past %1. We currently handle
       //          this by rejecting all loads.
       //
       //        Example:
       //                   G_CONDBR %cond, @BB1
       //                 BB0:
       //          MI1-->   %0 = load @a
       //                   G_BR @BB1
       //                 BB1:
       //          MI0-->   %2 = ... %0
       //          It's not always safe to sink %0 across control flow. In this
       //          case it may introduce a memory fault. We currentl handle this
       //          by rejecting all loads.
     }
   }
 
   for (const auto &PM : EpilogueMatchers)
     PM->emitPredicateOpcodes(Table, *this);
 
   for (const auto &MA : Actions)
     MA->emitActionOpcodes(Table, *this);
 
   if (Table.isWithCoverage())
     Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
           << MatchTable::LineBreak;
   else
     Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
           << MatchTable::LineBreak;
 
   Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
         << MatchTable::Label(LabelID);
   ++NumPatternEmitted;
 }
 
 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
   // Rules involving more match roots have higher priority.
   if (Matchers.size() > B.Matchers.size())
     return true;
   if (Matchers.size() < B.Matchers.size())
     return false;
 
   for (const auto &Matcher : zip(Matchers, B.Matchers)) {
     if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
       return true;
     if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
       return false;
   }
 
   return false;
 }
 
 unsigned RuleMatcher::countRendererFns() const {
   return std::accumulate(
       Matchers.begin(), Matchers.end(), 0,
       [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
         return A + Matcher->countRendererFns();
       });
 }
 
 bool OperandPredicateMatcher::isHigherPriorityThan(
     const OperandPredicateMatcher &B) const {
   // Generally speaking, an instruction is more important than an Int or a
   // LiteralInt because it can cover more nodes but theres an exception to
   // this. G_CONSTANT's are less important than either of those two because they
   // are more permissive.
 
   const InstructionOperandMatcher *AOM =
       dyn_cast<InstructionOperandMatcher>(this);
   const InstructionOperandMatcher *BOM =
       dyn_cast<InstructionOperandMatcher>(&B);
   bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
   bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
 
   if (AOM && BOM) {
     // The relative priorities between a G_CONSTANT and any other instruction
     // don't actually matter but this code is needed to ensure a strict weak
     // ordering. This is particularly important on Windows where the rules will
     // be incorrectly sorted without it.
     if (AIsConstantInsn != BIsConstantInsn)
       return AIsConstantInsn < BIsConstantInsn;
     return false;
   }
 
   if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
     return false;
   if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
     return true;
 
   return Kind < B.Kind;
 }
 
 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
                                               RuleMatcher &Rule) const {
   const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
   unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
   assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
 
   Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
         << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
         << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
         << MatchTable::Comment("OtherMI")
         << MatchTable::IntValue(OtherInsnVarID)
         << MatchTable::Comment("OtherOpIdx")
         << MatchTable::IntValue(OtherOM.getOpIdx())
         << MatchTable::LineBreak;
 }
 
 //===- GlobalISelEmitter class --------------------------------------------===//
 
 class GlobalISelEmitter {
 public:
   explicit GlobalISelEmitter(RecordKeeper &RK);
   void run(raw_ostream &OS);
 
 private:
   const RecordKeeper &RK;
   const CodeGenDAGPatterns CGP;
   const CodeGenTarget &Target;
   CodeGenRegBank CGRegs;
 
   /// Keep track of the equivalence between SDNodes and Instruction by mapping
   /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
   /// check for attributes on the relation such as CheckMMOIsNonAtomic.
   /// This is defined using 'GINodeEquiv' in the target description.
   DenseMap<Record *, Record *> NodeEquivs;
 
   /// Keep track of the equivalence between ComplexPattern's and
   /// GIComplexOperandMatcher. Map entries are specified by subclassing
   /// GIComplexPatternEquiv.
   DenseMap<const Record *, const Record *> ComplexPatternEquivs;
 
   /// Keep track of the equivalence between SDNodeXForm's and
   /// GICustomOperandRenderer. Map entries are specified by subclassing
   /// GISDNodeXFormEquiv.
   DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
 
   /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
   /// This adds compatibility for RuleMatchers to use this for ordering rules.
   DenseMap<uint64_t, int> RuleMatcherScores;
 
   // Map of predicates to their subtarget features.
   SubtargetFeatureInfoMap SubtargetFeatures;
 
   // Rule coverage information.
   Optional<CodeGenCoverage> RuleCoverage;
 
   void gatherOpcodeValues();
   void gatherTypeIDValues();
   void gatherNodeEquivs();
   Record *findNodeEquiv(Record *N) const;
   const CodeGenInstruction *getEquivNode(Record &Equiv,
                                          const TreePatternNode *N) const;
 
   Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
   Expected<InstructionMatcher &> createAndImportSelDAGMatcher(
       RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
       const TreePatternNode *Src, unsigned &TempOpIdx) const;
   Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
                                            unsigned &TempOpIdx) const;
   Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
                            const TreePatternNode *SrcChild,
                            bool OperandIsAPointer, unsigned OpIdx,
                            unsigned &TempOpIdx) const;
 
   Expected<BuildMIAction &>
   createAndImportInstructionRenderer(RuleMatcher &M,
                                      const TreePatternNode *Dst);
   Expected<action_iterator> createAndImportSubInstructionRenderer(
       action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
       unsigned TempReg);
   Expected<action_iterator>
   createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
                             const TreePatternNode *Dst);
   void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
   Expected<action_iterator>
   importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
                              BuildMIAction &DstMIBuilder,
                              const llvm::TreePatternNode *Dst);
   Expected<action_iterator>
   importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
                             BuildMIAction &DstMIBuilder,
                             TreePatternNode *DstChild);
   Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
                                       DagInit *DefaultOps) const;
   Error
   importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
                              const std::vector<Record *> &ImplicitDefs) const;
 
   void emitImmPredicates(raw_ostream &OS, StringRef TypeIdentifier,
                          StringRef Type,
                          std::function<bool(const Record *R)> Filter);
 
   /// Analyze pattern \p P, returning a matcher for it if possible.
   /// Otherwise, return an Error explaining why we don't support it.
   Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
 
   void declareSubtargetFeature(Record *Predicate);
 
   MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
                              bool WithCoverage);
 
 public:
   /// Takes a sequence of \p Rules and group them based on the predicates
   /// they share. \p MatcherStorage is used as a memory container
   /// for the group that are created as part of this process.
   ///
   /// What this optimization does looks like if GroupT = GroupMatcher:
   /// Output without optimization:
   /// \verbatim
   /// # R1
   ///  # predicate A
   ///  # predicate B
   ///  ...
   /// # R2
   ///  # predicate A // <-- effectively this is going to be checked twice.
   ///                //     Once in R1 and once in R2.
   ///  # predicate C
   /// \endverbatim
   /// Output with optimization:
   /// \verbatim
   /// # Group1_2
   ///  # predicate A // <-- Check is now shared.
   ///  # R1
   ///   # predicate B
   ///  # R2
   ///   # predicate C
   /// \endverbatim
   template <class GroupT>
   static std::vector<Matcher *> optimizeRules(
       ArrayRef<Matcher *> Rules,
       std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
 };
 
 void GlobalISelEmitter::gatherOpcodeValues() {
   InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
 }
 
 void GlobalISelEmitter::gatherTypeIDValues() {
   LLTOperandMatcher::initTypeIDValuesMap();
 }
 
 void GlobalISelEmitter::gatherNodeEquivs() {
   assert(NodeEquivs.empty());
   for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
     NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
 
   assert(ComplexPatternEquivs.empty());
   for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
     Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
     if (!SelDAGEquiv)
       continue;
     ComplexPatternEquivs[SelDAGEquiv] = Equiv;
  }
 
  assert(SDNodeXFormEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
    if (!SelDAGEquiv)
      continue;
    SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
  }
 }
 
 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
   return NodeEquivs.lookup(N);
 }
 
 const CodeGenInstruction *
 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
   for (const auto &Predicate : N->getPredicateFns()) {
     if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
         Predicate.isSignExtLoad())
       return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
     if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
         Predicate.isZeroExtLoad())
       return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
   }
   return &Target.getInstruction(Equiv.getValueAsDef("I"));
 }
 
 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
     : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
       CGRegs(RK, Target.getHwModes()) {}
 
 //===- Emitter ------------------------------------------------------------===//
 
 Error
 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
                                         ArrayRef<Predicate> Predicates) {
   for (const Predicate &P : Predicates) {
     if (!P.Def)
       continue;
     declareSubtargetFeature(P.Def);
     M.addRequiredFeature(P.Def);
   }
 
   return Error::success();
 }
 
 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
     RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
     const TreePatternNode *Src, unsigned &TempOpIdx) const {
   Record *SrcGIEquivOrNull = nullptr;
   const CodeGenInstruction *SrcGIOrNull = nullptr;
 
   // Start with the defined operands (i.e., the results of the root operator).
   if (Src->getExtTypes().size() > 1)
     return failedImport("Src pattern has multiple results");
 
   if (Src->isLeaf()) {
     Init *SrcInit = Src->getLeafValue();
     if (isa<IntInit>(SrcInit)) {
       InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
           &Target.getInstruction(RK.getDef("G_CONSTANT")));
     } else
       return failedImport(
           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
   } else {
     SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
     if (!SrcGIEquivOrNull)
       return failedImport("Pattern operator lacks an equivalent Instruction" +
                           explainOperator(Src->getOperator()));
     SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
 
     // The operators look good: match the opcode
     InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
   }
 
   unsigned OpIdx = 0;
   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
     // Results don't have a name unless they are the root node. The caller will
     // set the name if appropriate.
     OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
     if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
       return failedImport(toString(std::move(Error)) +
                           " for result of Src pattern operator");
   }
 
   for (const auto &Predicate : Src->getPredicateFns()) {
     if (Predicate.isAlwaysTrue())
       continue;
 
     if (Predicate.isImmediatePattern()) {
       InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
       continue;
     }
 
     // G_LOAD is used for both non-extending and any-extending loads. 
     if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
           0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
       continue;
     }
     if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
           0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
       continue;
     }
 
     // No check required. We already did it by swapping the opcode.
     if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
         Predicate.isSignExtLoad())
       continue;
 
     // No check required. We already did it by swapping the opcode.
     if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
         Predicate.isZeroExtLoad())
       continue;
 
     // No check required. G_STORE by itself is a non-extending store.
     if (Predicate.isNonTruncStore())
       continue;
 
     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
       if (Predicate.getMemoryVT() != nullptr) {
         Optional<LLTCodeGen> MemTyOrNone =
             MVTToLLT(getValueType(Predicate.getMemoryVT()));
 
         if (!MemTyOrNone)
           return failedImport("MemVT could not be converted to LLT");
 
         // MMO's work in bytes so we must take care of unusual types like i1
         // don't round down.
         unsigned MemSizeInBits =
             llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
 
         InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
             0, MemSizeInBits / 8);
         continue;
       }
     }
 
     if (Predicate.isLoad() || Predicate.isStore()) {
       // No check required. A G_LOAD/G_STORE is an unindexed load.
       if (Predicate.isUnindexed())
         continue;
     }
 
     if (Predicate.isAtomic()) {
       if (Predicate.isAtomicOrderingMonotonic()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "Monotonic");
         continue;
       }
       if (Predicate.isAtomicOrderingAcquire()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
         continue;
       }
       if (Predicate.isAtomicOrderingRelease()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
         continue;
       }
       if (Predicate.isAtomicOrderingAcquireRelease()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "AcquireRelease");
         continue;
       }
       if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "SequentiallyConsistent");
         continue;
       }
 
       if (Predicate.isAtomicOrderingAcquireOrStronger()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
         continue;
       }
       if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
         continue;
       }
 
       if (Predicate.isAtomicOrderingReleaseOrStronger()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
         continue;
       }
       if (Predicate.isAtomicOrderingWeakerThanRelease()) {
         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
             "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
         continue;
       }
     }
 
     return failedImport("Src pattern child has predicate (" +
                         explainPredicates(Src) + ")");
   }
   if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
     InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
 
   if (Src->isLeaf()) {
     Init *SrcInit = Src->getLeafValue();
     if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
       OperandMatcher &OM =
           InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
       OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
     } else
       return failedImport(
           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
   } else {
     assert(SrcGIOrNull &&
            "Expected to have already found an equivalent Instruction");
     if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
         SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
       // imm/fpimm still have operands but we don't need to do anything with it
       // here since we don't support ImmLeaf predicates yet. However, we still
       // need to note the hidden operand to get GIM_CheckNumOperands correct.
       InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
       return InsnMatcher;
     }
 
     // Match the used operands (i.e. the children of the operator).
     for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
       TreePatternNode *SrcChild = Src->getChild(i);
 
       // SelectionDAG allows pointers to be represented with iN since it doesn't
       // distinguish between pointers and integers but they are different types in GlobalISel.
       // Coerce integers to pointers to address space 0 if the context indicates a pointer.
       bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
 
       // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
       // following the defs is an intrinsic ID.
       if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
            SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
           i == 0) {
         if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
           OperandMatcher &OM =
               InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
           OM.addPredicate<IntrinsicIDOperandMatcher>(II);
           continue;
         }
 
         return failedImport("Expected IntInit containing instrinsic ID)");
       }
 
       if (auto Error =
               importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
                                  OpIdx++, TempOpIdx))
         return std::move(Error);
     }
   }
 
   return InsnMatcher;
 }
 
 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
     OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
   const auto &ComplexPattern = ComplexPatternEquivs.find(R);
   if (ComplexPattern == ComplexPatternEquivs.end())
     return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
                         ") not mapped to GlobalISel");
 
   OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
   TempOpIdx++;
   return Error::success();
 }
 
 Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
                                             InstructionMatcher &InsnMatcher,
                                             const TreePatternNode *SrcChild,
                                             bool OperandIsAPointer,
                                             unsigned OpIdx,
                                             unsigned &TempOpIdx) const {
   OperandMatcher &OM =
       InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
   if (OM.isSameAsAnotherOperand())
     return Error::success();
 
   ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
   if (ChildTypes.size() != 1)
     return failedImport("Src pattern child has multiple results");
 
   // Check MBB's before the type check since they are not a known type.
   if (!SrcChild->isLeaf()) {
     if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
       auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
         OM.addPredicate<MBBOperandMatcher>();
         return Error::success();
       }
     }
   }
 
   if (auto Error =
           OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
     return failedImport(toString(std::move(Error)) + " for Src operand (" +
                         to_string(*SrcChild) + ")");
 
   // Check for nested instructions.
   if (!SrcChild->isLeaf()) {
     if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
       // When a ComplexPattern is used as an operator, it should do the same
       // thing as when used as a leaf. However, the children of the operator
       // name the sub-operands that make up the complex operand and we must
       // prepare to reference them in the renderer too.
       unsigned RendererID = TempOpIdx;
       if (auto Error = importComplexPatternOperandMatcher(
               OM, SrcChild->getOperator(), TempOpIdx))
         return Error;
 
       for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
         auto *SubOperand = SrcChild->getChild(i);
         if (!SubOperand->getName().empty())
           Rule.defineComplexSubOperand(SubOperand->getName(),
                                        SrcChild->getOperator(), RendererID, i);
       }
 
       return Error::success();
     }
 
     auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
         InsnMatcher.getRuleMatcher(), SrcChild->getName());
     if (!MaybeInsnOperand.hasValue()) {
       // This isn't strictly true. If the user were to provide exactly the same
       // matchers as the original operand then we could allow it. However, it's
       // simpler to not permit the redundant specification.
       return failedImport("Nested instruction cannot be the same as another operand");
     }
 
     // Map the node to a gMIR instruction.
     InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
     auto InsnMatcherOrError = createAndImportSelDAGMatcher(
         Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
     if (auto Error = InsnMatcherOrError.takeError())
       return Error;
 
     return Error::success();
   }
 
   if (SrcChild->hasAnyPredicate())
     return failedImport("Src pattern child has unsupported predicate");
 
   // Check for constant immediates.
   if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
     OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
     return Error::success();
   }
 
   // Check for def's like register classes or ComplexPattern's.
   if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
     auto *ChildRec = ChildDefInit->getDef();
 
     // Check for register classes.
     if (ChildRec->isSubClassOf("RegisterClass") ||
         ChildRec->isSubClassOf("RegisterOperand")) {
       OM.addPredicate<RegisterBankOperandMatcher>(
           Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
       return Error::success();
     }
 
     // Check for ValueType.
     if (ChildRec->isSubClassOf("ValueType")) {
       // We already added a type check as standard practice so this doesn't need
       // to do anything.
       return Error::success();
     }
 
     // Check for ComplexPattern's.
     if (ChildRec->isSubClassOf("ComplexPattern"))
       return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
 
     if (ChildRec->isSubClassOf("ImmLeaf")) {
       return failedImport(
           "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
     }
 
     return failedImport(
         "Src pattern child def is an unsupported tablegen class");
   }
 
   return failedImport("Src pattern child is an unsupported kind");
 }
 
 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
     action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
     TreePatternNode *DstChild) {
 
   const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
   if (SubOperand.hasValue()) {
     DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
         *std::get<0>(*SubOperand), DstChild->getName(),
         std::get<1>(*SubOperand), std::get<2>(*SubOperand));
     return InsertPt;
   }
 
   if (!DstChild->isLeaf()) {
 
     if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
       auto Child = DstChild->getChild(0);
       auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
       if (I != SDNodeXFormEquivs.end()) {
         DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
         return InsertPt;
       }
       return failedImport("SDNodeXForm " + Child->getName() +
                           " has no custom renderer");
     }
 
     // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
     // inline, but in MI it's just another operand.
     if (DstChild->getOperator()->isSubClassOf("SDNode")) {
       auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
         DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
         return InsertPt;
       }
     }
 
     // Similarly, imm is an operator in TreePatternNode's view but must be
     // rendered as operands.
     // FIXME: The target should be able to choose sign-extended when appropriate
     //        (e.g. on Mips).
     if (DstChild->getOperator()->getName() == "imm") {
       DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
       return InsertPt;
     } else if (DstChild->getOperator()->getName() == "fpimm") {
       DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
           DstChild->getName());
       return InsertPt;
     }
 
     if (DstChild->getOperator()->isSubClassOf("Instruction")) {
       ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
       if (ChildTypes.size() != 1)
         return failedImport("Dst pattern child has multiple results");
 
       Optional<LLTCodeGen> OpTyOrNone = None;
       if (ChildTypes.front().isMachineValueType())
         OpTyOrNone =
             MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
       if (!OpTyOrNone)
         return failedImport("Dst operand has an unsupported type");
 
       unsigned TempRegID = Rule.allocateTempRegID();
       InsertPt = Rule.insertAction<MakeTempRegisterAction>(
           InsertPt, OpTyOrNone.getValue(), TempRegID);
       DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
 
       auto InsertPtOrError = createAndImportSubInstructionRenderer(
           ++InsertPt, Rule, DstChild, TempRegID);
       if (auto Error = InsertPtOrError.takeError())
         return std::move(Error);
       return InsertPtOrError.get();
     }
 
     return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
   }
 
   // It could be a specific immediate in which case we should just check for
   // that immediate.
   if (const IntInit *ChildIntInit =
           dyn_cast<IntInit>(DstChild->getLeafValue())) {
     DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
     return InsertPt;
   }
 
   // Otherwise, we're looking for a bog-standard RegisterClass operand.
   if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
     auto *ChildRec = ChildDefInit->getDef();
 
     ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
     if (ChildTypes.size() != 1)
       return failedImport("Dst pattern child has multiple results");
 
     Optional<LLTCodeGen> OpTyOrNone = None;
     if (ChildTypes.front().isMachineValueType())
       OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
     if (!OpTyOrNone)
       return failedImport("Dst operand has an unsupported type");
 
     if (ChildRec->isSubClassOf("Register")) {
       DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
       return InsertPt;
     }
 
     if (ChildRec->isSubClassOf("RegisterClass") ||
         ChildRec->isSubClassOf("RegisterOperand") ||
         ChildRec->isSubClassOf("ValueType")) {
       if (ChildRec->isSubClassOf("RegisterOperand") &&
           !ChildRec->isValueUnset("GIZeroRegister")) {
         DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
             DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
         return InsertPt;
       }
 
       DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
       return InsertPt;
     }
 
     if (ChildRec->isSubClassOf("ComplexPattern")) {
       const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
       if (ComplexPattern == ComplexPatternEquivs.end())
         return failedImport(
             "SelectionDAG ComplexPattern not mapped to GlobalISel");
 
       const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
       DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
           *ComplexPattern->second, DstChild->getName(),
           OM.getAllocatedTemporariesBaseID());
       return InsertPt;
     }
 
     return failedImport(
         "Dst pattern child def is an unsupported tablegen class");
   }
 
   return failedImport("Dst pattern child is an unsupported kind");
 }
 
 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
     RuleMatcher &M, const TreePatternNode *Dst) {
   auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
   if (auto Error = InsertPtOrError.takeError())
     return std::move(Error);
 
   action_iterator InsertPt = InsertPtOrError.get();
   BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
 
   importExplicitDefRenderers(DstMIBuilder);
 
   if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
                        .takeError())
     return std::move(Error);
 
   return DstMIBuilder;
 }
 
 Expected<action_iterator>
 GlobalISelEmitter::createAndImportSubInstructionRenderer(
     const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
     unsigned TempRegID) {
   auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
 
   // TODO: Assert there's exactly one result.
 
   if (auto Error = InsertPtOrError.takeError())
     return std::move(Error);
 
   BuildMIAction &DstMIBuilder =
       *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
 
   // Assign the result to TempReg.
   DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
 
   InsertPtOrError =
       importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
   if (auto Error = InsertPtOrError.takeError())
     return std::move(Error);
 
   M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
                                                       DstMIBuilder.getInsnID());
   return InsertPtOrError.get();
 }
 
 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
     action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
   Record *DstOp = Dst->getOperator();
   if (!DstOp->isSubClassOf("Instruction")) {
     if (DstOp->isSubClassOf("ValueType"))
       return failedImport(
           "Pattern operator isn't an instruction (it's a ValueType)");
     return failedImport("Pattern operator isn't an instruction");
   }
   CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
 
   // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
   // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
   if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
     DstI = &Target.getInstruction(RK.getDef("COPY"));
   else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
     DstI = &Target.getInstruction(RK.getDef("COPY"));
   else if (DstI->TheDef->getName() == "REG_SEQUENCE")
     return failedImport("Unable to emit REG_SEQUENCE");
 
   return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
                                        DstI);
 }
 
 void GlobalISelEmitter::importExplicitDefRenderers(
     BuildMIAction &DstMIBuilder) {
   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
   for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
     const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
     DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
   }
 }
 
 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
     action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
     const llvm::TreePatternNode *Dst) {
   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
   CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
 
   // EXTRACT_SUBREG needs to use a subregister COPY.
   if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
     if (!Dst->getChild(0)->isLeaf())
       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
 
     if (DefInit *SubRegInit =
             dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
       Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
       if (!RCDef)
         return failedImport("EXTRACT_SUBREG child #0 could not "
                             "be coerced to a register class");
 
       CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
       CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
 
       const auto &SrcRCDstRCPair =
           RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
       if (SrcRCDstRCPair.hasValue()) {
         assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
         if (SrcRCDstRCPair->first != RC)
           return failedImport("EXTRACT_SUBREG requires an additional COPY");
       }
 
       DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
                                                    SubIdx);
       return InsertPt;
     }
 
     return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
   }
 
   // Render the explicit uses.
   unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
   unsigned ExpectedDstINumUses = Dst->getNumChildren();
   if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
     DstINumUses--; // Ignore the class constraint.
     ExpectedDstINumUses--;
   }
 
   unsigned Child = 0;
   unsigned NumDefaultOps = 0;
   for (unsigned I = 0; I != DstINumUses; ++I) {
     const CGIOperandList::OperandInfo &DstIOperand =
         DstI->Operands[DstI->Operands.NumDefs + I];
 
     // If the operand has default values, introduce them now.
     // FIXME: Until we have a decent test case that dictates we should do
     // otherwise, we're going to assume that operands with default values cannot
     // be specified in the patterns. Therefore, adding them will not cause us to
     // end up with too many rendered operands.
     if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
       DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
       if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
         return std::move(Error);
       ++NumDefaultOps;
       continue;
     }
 
     auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
                                                      Dst->getChild(Child));
     if (auto Error = InsertPtOrError.takeError())
       return std::move(Error);
     InsertPt = InsertPtOrError.get();
     ++Child;
   }
 
   if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
     return failedImport("Expected " + llvm::to_string(DstINumUses) +
                         " used operands but found " +
                         llvm::to_string(ExpectedDstINumUses) +
                         " explicit ones and " + llvm::to_string(NumDefaultOps) +
                         " default ones");
 
   return InsertPt;
 }
 
 Error GlobalISelEmitter::importDefaultOperandRenderers(
     BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
   for (const auto *DefaultOp : DefaultOps->getArgs()) {
     // Look through ValueType operators.
     if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
       if (const DefInit *DefaultDagOperator =
               dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
         if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
           DefaultOp = DefaultDagOp->getArg(0);
       }
     }
 
     if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
       DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
       continue;
     }
 
     if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
       DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
       continue;
     }
 
     return failedImport("Could not add default op");
   }
 
   return Error::success();
 }
 
 Error GlobalISelEmitter::importImplicitDefRenderers(
     BuildMIAction &DstMIBuilder,
     const std::vector<Record *> &ImplicitDefs) const {
   if (!ImplicitDefs.empty())
     return failedImport("Pattern defines a physical register");
   return Error::success();
 }
 
 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
   // Keep track of the matchers and actions to emit.
   int Score = P.getPatternComplexity(CGP);
   RuleMatcher M(P.getSrcRecord()->getLoc());
   RuleMatcherScores[M.getRuleID()] = Score;
   M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
                                   "  =>  " +
                                   llvm::to_string(*P.getDstPattern()));
 
   if (auto Error = importRulePredicates(M, P.getPredicates()))
     return std::move(Error);
 
   // Next, analyze the pattern operators.
   TreePatternNode *Src = P.getSrcPattern();
   TreePatternNode *Dst = P.getDstPattern();
 
   // If the root of either pattern isn't a simple operator, ignore it.
   if (auto Err = isTrivialOperatorNode(Dst))
     return failedImport("Dst pattern root isn't a trivial operator (" +
                         toString(std::move(Err)) + ")");
   if (auto Err = isTrivialOperatorNode(Src))
     return failedImport("Src pattern root isn't a trivial operator (" +
                         toString(std::move(Err)) + ")");
 
   // The different predicates and matchers created during
   // addInstructionMatcher use the RuleMatcher M to set up their
   // instruction ID (InsnVarID) that are going to be used when
   // M is going to be emitted.
   // However, the code doing the emission still relies on the IDs
   // returned during that process by the RuleMatcher when issuing
   // the recordInsn opcodes.
   // Because of that:
   // 1. The order in which we created the predicates
   //    and such must be the same as the order in which we emit them,
   //    and
   // 2. We need to reset the generation of the IDs in M somewhere between
   //    addInstructionMatcher and emit
   //
   // FIXME: Long term, we don't want to have to rely on this implicit
   // naming being the same. One possible solution would be to have
   // explicit operator for operation capture and reference those.
   // The plus side is that it would expose opportunities to share
   // the capture accross rules. The downside is that it would
   // introduce a dependency between predicates (captures must happen
   // before their first use.)
   InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
   unsigned TempOpIdx = 0;
   auto InsnMatcherOrError =
       createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
   if (auto Error = InsnMatcherOrError.takeError())
     return std::move(Error);
   InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
 
   if (Dst->isLeaf()) {
     Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
 
     const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
     if (RCDef) {
       // We need to replace the def and all its uses with the specified
       // operand. However, we must also insert COPY's wherever needed.
       // For now, emit a copy and let the register allocator clean up.
       auto &DstI = Target.getInstruction(RK.getDef("COPY"));
       const auto &DstIOperand = DstI.Operands[0];
 
       OperandMatcher &OM0 = InsnMatcher.getOperand(0);
       OM0.setSymbolicName(DstIOperand.Name);
       M.defineOperand(OM0.getSymbolicName(), OM0);
       OM0.addPredicate<RegisterBankOperandMatcher>(RC);
 
       auto &DstMIBuilder =
           M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
       DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
       DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
       M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
 
       // We're done with this pattern!  It's eligible for GISel emission; return
       // it.
       ++NumPatternImported;
       return std::move(M);
     }
 
     return failedImport("Dst pattern root isn't a known leaf");
   }
 
   // Start with the defined operands (i.e., the results of the root operator).
   Record *DstOp = Dst->getOperator();
   if (!DstOp->isSubClassOf("Instruction"))
     return failedImport("Pattern operator isn't an instruction");
 
   auto &DstI = Target.getInstruction(DstOp);
   if (DstI.Operands.NumDefs != Src->getExtTypes().size())
     return failedImport("Src pattern results and dst MI defs are different (" +
                         to_string(Src->getExtTypes().size()) + " def(s) vs " +
                         to_string(DstI.Operands.NumDefs) + " def(s))");
 
   // The root of the match also has constraints on the register bank so that it
   // matches the result instruction.
   unsigned OpIdx = 0;
   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
     (void)VTy;
 
     const auto &DstIOperand = DstI.Operands[OpIdx];
     Record *DstIOpRec = DstIOperand.Rec;
     if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
       DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
 
       if (DstIOpRec == nullptr)
         return failedImport(
             "COPY_TO_REGCLASS operand #1 isn't a register class");
     } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
       if (!Dst->getChild(0)->isLeaf())
         return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
 
       // We can assume that a subregister is in the same bank as it's super
       // register.
       DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
 
       if (DstIOpRec == nullptr)
         return failedImport(
             "EXTRACT_SUBREG operand #0 isn't a register class");
     } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
       DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
     else if (!DstIOpRec->isSubClassOf("RegisterClass"))
       return failedImport("Dst MI def isn't a register class" +
                           to_string(*Dst));
 
     OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
     OM.setSymbolicName(DstIOperand.Name);
     M.defineOperand(OM.getSymbolicName(), OM);
     OM.addPredicate<RegisterBankOperandMatcher>(
         Target.getRegisterClass(DstIOpRec));
     ++OpIdx;
   }
 
   auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
   if (auto Error = DstMIBuilderOrError.takeError())
     return std::move(Error);
   BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
 
   // Render the implicit defs.
   // These are only added to the root of the result.
   if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
     return std::move(Error);
 
   DstMIBuilder.chooseInsnToMutate(M);
 
   // Constrain the registers to classes. This is normally derived from the
   // emitted instruction but a few instructions require special handling.
   if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
     // COPY_TO_REGCLASS does not provide operand constraints itself but the
     // result is constrained to the class given by the second child.
     Record *DstIOpRec =
         getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
 
     if (DstIOpRec == nullptr)
       return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
 
     M.addAction<ConstrainOperandToRegClassAction>(
         0, 0, Target.getRegisterClass(DstIOpRec));
 
     // We're done with this pattern!  It's eligible for GISel emission; return
     // it.
     ++NumPatternImported;
     return std::move(M);
   }
 
   if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
     // EXTRACT_SUBREG selects into a subregister COPY but unlike most
     // instructions, the result register class is controlled by the
     // subregisters of the operand. As a result, we must constrain the result
     // class rather than check that it's already the right one.
     if (!Dst->getChild(0)->isLeaf())
       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
 
     DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
     if (!SubRegInit)
       return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
 
     // Constrain the result to the same register bank as the operand.
     Record *DstIOpRec =
         getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
 
     if (DstIOpRec == nullptr)
       return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
 
     CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
     CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
 
     // It would be nice to leave this constraint implicit but we're required
     // to pick a register class so constrain the result to a register class
     // that can hold the correct MVT.
     //
     // FIXME: This may introduce an extra copy if the chosen class doesn't
     //        actually contain the subregisters.
     assert(Src->getExtTypes().size() == 1 &&
              "Expected Src of EXTRACT_SUBREG to have one result type");
 
     const auto &SrcRCDstRCPair =
         SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
     assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
     M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
     M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
 
     // We're done with this pattern!  It's eligible for GISel emission; return
     // it.
     ++NumPatternImported;
     return std::move(M);
   }
 
   M.addAction<ConstrainOperandsToDefinitionAction>(0);
 
   // We're done with this pattern!  It's eligible for GISel emission; return it.
   ++NumPatternImported;
   return std::move(M);
 }
 
 // Emit imm predicate table and an enum to reference them with.
 // The 'Predicate_' part of the name is redundant but eliminating it is more
 // trouble than it's worth.
 void GlobalISelEmitter::emitImmPredicates(
     raw_ostream &OS, StringRef TypeIdentifier, StringRef Type,
     std::function<bool(const Record *R)> Filter) {
   std::vector<const Record *> MatchedRecords;
   const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
   std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
                [&](Record *Record) {
                  return !Record->getValueAsString("ImmediateCode").empty() &&
                         Filter(Record);
                });
 
   if (!MatchedRecords.empty()) {
     OS << "// PatFrag predicates.\n"
        << "enum {\n";
     std::string EnumeratorSeparator =
         (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
     for (const auto *Record : MatchedRecords) {
       OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
          << EnumeratorSeparator;
       EnumeratorSeparator = ",\n";
     }
     OS << "};\n";
   }
 
   OS << "bool " << Target.getName() << "InstructionSelector::testImmPredicate_"
      << TypeIdentifier << "(unsigned PredicateID, " << Type
      << " Imm) const {\n";
   if (!MatchedRecords.empty())
     OS << "  switch (PredicateID) {\n";
   for (const auto *Record : MatchedRecords) {
     OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
        << Record->getName() << ": {\n"
        << "    " << Record->getValueAsString("ImmediateCode") << "\n"
        << "    llvm_unreachable(\"ImmediateCode should have returned\");\n"
        << "    return false;\n"
        << "  }\n";
   }
   if (!MatchedRecords.empty())
     OS << "  }\n";
   OS << "  llvm_unreachable(\"Unknown predicate\");\n"
      << "  return false;\n"
      << "}\n";
 }
 
 template <class GroupT>
 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
     ArrayRef<Matcher *> Rules,
     std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
 
   std::vector<Matcher *> OptRules;
   std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
   assert(CurrentGroup->empty() && "Newly created group isn't empty!");
   unsigned NumGroups = 0;
 
   auto ProcessCurrentGroup = [&]() {
     if (CurrentGroup->empty())
       // An empty group is good to be reused:
       return;
 
     // If the group isn't large enough to provide any benefit, move all the
     // added rules out of it and make sure to re-create the group to properly
     // re-initialize it:
     if (CurrentGroup->size() < 2)
       for (Matcher *M : CurrentGroup->matchers())
         OptRules.push_back(M);
     else {
       CurrentGroup->finalize();
       OptRules.push_back(CurrentGroup.get());
       MatcherStorage.emplace_back(std::move(CurrentGroup));
       ++NumGroups;
     }
     CurrentGroup = make_unique<GroupT>();
   };
   for (Matcher *Rule : Rules) {
     // Greedily add as many matchers as possible to the current group:
     if (CurrentGroup->addMatcher(*Rule))
       continue;
 
     ProcessCurrentGroup();
     assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
 
     // Try to add the pending matcher to a newly created empty group:
     if (!CurrentGroup->addMatcher(*Rule))
       // If we couldn't add the matcher to an empty group, that group type
       // doesn't support that kind of matchers at all, so just skip it:
       OptRules.push_back(Rule);
   }
   ProcessCurrentGroup();
 
   DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
   assert(CurrentGroup->empty() && "The last group wasn't properly processed");
   return OptRules;
 }
 
 MatchTable
 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
                                    bool Optimize, bool WithCoverage) {
   std::vector<Matcher *> InputRules;
   for (Matcher &Rule : Rules)
     InputRules.push_back(&Rule);
 
   if (!Optimize)
     return MatchTable::buildTable(InputRules, WithCoverage);
 
+  unsigned CurrentOrdering = 0;
+  StringMap<unsigned> OpcodeOrder;
+  for (RuleMatcher &Rule : Rules) {
+    const StringRef Opcode = Rule.getOpcode();
+    assert(!Opcode.empty() && "Didn't expect an undefined opcode");
+    if (OpcodeOrder.count(Opcode) == 0)
+      OpcodeOrder[Opcode] = CurrentOrdering++;
+  }
+
+  std::stable_sort(InputRules.begin(), InputRules.end(),
+                   [&OpcodeOrder](const Matcher *A, const Matcher *B) {
+                     auto *L = static_cast<const RuleMatcher *>(A);
+                     auto *R = static_cast<const RuleMatcher *>(B);
+                     return std::make_tuple(OpcodeOrder[L->getOpcode()],
+                                            L->getNumOperands()) <
+                            std::make_tuple(OpcodeOrder[R->getOpcode()],
+                                            R->getNumOperands());
+                   });
+
   for (Matcher *Rule : InputRules)
     Rule->optimize();
 
   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
   std::vector<Matcher *> OptRules =
       optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
 
   for (Matcher *Rule : OptRules)
     Rule->optimize();
 
   return MatchTable::buildTable(OptRules, WithCoverage);
 }
 
 void GlobalISelEmitter::run(raw_ostream &OS) {
   if (!UseCoverageFile.empty()) {
     RuleCoverage = CodeGenCoverage();
     auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
     if (!RuleCoverageBufOrErr) {
       PrintWarning(SMLoc(), "Missing rule coverage data");
       RuleCoverage = None;
     } else {
       if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
         PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
         RuleCoverage = None;
       }
     }
   }
 
   // Track the run-time opcode values
   gatherOpcodeValues();
   // Track the run-time LLT ID values
   gatherTypeIDValues();
 
   // Track the GINodeEquiv definitions.
   gatherNodeEquivs();
 
   emitSourceFileHeader(("Global Instruction Selector for the " +
                        Target.getName() + " target").str(), OS);
   std::vector<RuleMatcher> Rules;
   // Look through the SelectionDAG patterns we found, possibly emitting some.
   for (const PatternToMatch &Pat : CGP.ptms()) {
     ++NumPatternTotal;
 
     auto MatcherOrErr = runOnPattern(Pat);
 
     // The pattern analysis can fail, indicating an unsupported pattern.
     // Report that if we've been asked to do so.
     if (auto Err = MatcherOrErr.takeError()) {
       if (WarnOnSkippedPatterns) {
         PrintWarning(Pat.getSrcRecord()->getLoc(),
                      "Skipped pattern: " + toString(std::move(Err)));
       } else {
         consumeError(std::move(Err));
       }
       ++NumPatternImportsSkipped;
       continue;
     }
 
     if (RuleCoverage) {
       if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
         ++NumPatternsTested;
       else
         PrintWarning(Pat.getSrcRecord()->getLoc(),
                      "Pattern is not covered by a test");
     }
     Rules.push_back(std::move(MatcherOrErr.get()));
   }
 
   // Comparison function to order records by name.
   auto orderByName = [](const Record *A, const Record *B) {
     return A->getName() < B->getName();
   };
 
   std::vector<Record *> ComplexPredicates =
       RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
   llvm::sort(ComplexPredicates.begin(), ComplexPredicates.end(), orderByName);
 
   std::vector<Record *> CustomRendererFns =
       RK.getAllDerivedDefinitions("GICustomOperandRenderer");
   llvm::sort(CustomRendererFns.begin(), CustomRendererFns.end(), orderByName);
 
   unsigned MaxTemporaries = 0;
   for (const auto &Rule : Rules)
     MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
 
   OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
      << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
      << ";\n"
      << "using PredicateBitset = "
         "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
      << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
 
   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
      << "  mutable MatcherState State;\n"
      << "  typedef "
         "ComplexRendererFns("
      << Target.getName()
      << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
 
      << "  typedef void(" << Target.getName()
      << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
         "MachineInstr&) "
         "const;\n"
      << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
         "CustomRendererFn> "
         "ISelInfo;\n";
   OS << "  static " << Target.getName()
      << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
      << "  static " << Target.getName()
      << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
      << "  bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
         "override;\n"
      << "  bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
         "const override;\n"
      << "  bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
         "&Imm) const override;\n"
      << "  const int64_t *getMatchTable() const override;\n"
      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
 
   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
      << ", State(" << MaxTemporaries << "),\n"
      << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
      << ", ComplexPredicateFns, CustomRenderers)\n"
      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
 
   OS << "#ifdef GET_GLOBALISEL_IMPL\n";
   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
                                                            OS);
 
   // Separate subtarget features by how often they must be recomputed.
   SubtargetFeatureInfoMap ModuleFeatures;
   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
                std::inserter(ModuleFeatures, ModuleFeatures.end()),
                [](const SubtargetFeatureInfoMap::value_type &X) {
                  return !X.second.mustRecomputePerFunction();
                });
   SubtargetFeatureInfoMap FunctionFeatures;
   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
                std::inserter(FunctionFeatures, FunctionFeatures.end()),
                [](const SubtargetFeatureInfoMap::value_type &X) {
                  return X.second.mustRecomputePerFunction();
                });
 
   SubtargetFeatureInfo::emitComputeAvailableFeatures(
       Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
       ModuleFeatures, OS);
   SubtargetFeatureInfo::emitComputeAvailableFeatures(
       Target.getName(), "InstructionSelector",
       "computeAvailableFunctionFeatures", FunctionFeatures, OS,
       "const MachineFunction *MF");
 
   // Emit a table containing the LLT objects needed by the matcher and an enum
   // for the matcher to reference them with.
   std::vector<LLTCodeGen> TypeObjects;
   for (const auto &Ty : KnownTypes)
     TypeObjects.push_back(Ty);
   llvm::sort(TypeObjects.begin(), TypeObjects.end());
   OS << "// LLT Objects.\n"
      << "enum {\n";
   for (const auto &TypeObject : TypeObjects) {
     OS << "  ";
     TypeObject.emitCxxEnumValue(OS);
     OS << ",\n";
   }
   OS << "};\n";
   OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
      << "const static LLT TypeObjects[] = {\n";
   for (const auto &TypeObject : TypeObjects) {
     OS << "  ";
     TypeObject.emitCxxConstructorCall(OS);
     OS << ",\n";
   }
   OS << "};\n\n";
 
   // Emit a table containing the PredicateBitsets objects needed by the matcher
   // and an enum for the matcher to reference them with.
   std::vector<std::vector<Record *>> FeatureBitsets;
   for (auto &Rule : Rules)
     FeatureBitsets.push_back(Rule.getRequiredFeatures());
   llvm::sort(
       FeatureBitsets.begin(), FeatureBitsets.end(),
       [&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
         if (A.size() < B.size())
           return true;
         if (A.size() > B.size())
           return false;
         for (const auto &Pair : zip(A, B)) {
           if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
             return true;
           if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
             return false;
         }
         return false;
       });
   FeatureBitsets.erase(
       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
       FeatureBitsets.end());
   OS << "// Feature bitsets.\n"
      << "enum {\n"
      << "  GIFBS_Invalid,\n";
   for (const auto &FeatureBitset : FeatureBitsets) {
     if (FeatureBitset.empty())
       continue;
     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
   }
   OS << "};\n"
      << "const static PredicateBitset FeatureBitsets[] {\n"
      << "  {}, // GIFBS_Invalid\n";
   for (const auto &FeatureBitset : FeatureBitsets) {
     if (FeatureBitset.empty())
       continue;
     OS << "  {";
     for (const auto &Feature : FeatureBitset) {
       const auto &I = SubtargetFeatures.find(Feature);
       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
       OS << I->second.getEnumBitName() << ", ";
     }
     OS << "},\n";
   }
   OS << "};\n\n";
 
   // Emit complex predicate table and an enum to reference them with.
   OS << "// ComplexPattern predicates.\n"
      << "enum {\n"
      << "  GICP_Invalid,\n";
   for (const auto &Record : ComplexPredicates)
     OS << "  GICP_" << Record->getName() << ",\n";
   OS << "};\n"
      << "// See constructor for table contents\n\n";
 
   emitImmPredicates(OS, "I64", "int64_t", [](const Record *R) {
     bool Unset;
     return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
            !R->getValueAsBit("IsAPInt");
   });
   emitImmPredicates(OS, "APFloat", "const APFloat &", [](const Record *R) {
     bool Unset;
     return R->getValueAsBitOrUnset("IsAPFloat", Unset);
   });
   emitImmPredicates(OS, "APInt", "const APInt &", [](const Record *R) {
     return R->getValueAsBit("IsAPInt");
   });
   OS << "\n";
 
   OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
      << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
      << "  nullptr, // GICP_Invalid\n";
   for (const auto &Record : ComplexPredicates)
     OS << "  &" << Target.getName()
        << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
        << ", // " << Record->getName() << "\n";
   OS << "};\n\n";
 
   OS << "// Custom renderers.\n"
      << "enum {\n"
      << "  GICR_Invalid,\n";
   for (const auto &Record : CustomRendererFns)
     OS << "  GICR_" << Record->getValueAsString("RendererFn") << ", \n";
   OS << "};\n";
 
   OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
      << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
      << "  nullptr, // GICP_Invalid\n";
   for (const auto &Record : CustomRendererFns)
     OS << "  &" << Target.getName()
        << "InstructionSelector::" << Record->getValueAsString("RendererFn")
        << ", // " << Record->getName() << "\n";
   OS << "};\n\n";
 
   std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
                                                    const RuleMatcher &B) {
     int ScoreA = RuleMatcherScores[A.getRuleID()];
     int ScoreB = RuleMatcherScores[B.getRuleID()];
     if (ScoreA > ScoreB)
       return true;
     if (ScoreB > ScoreA)
       return false;
     if (A.isHigherPriorityThan(B)) {
       assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
                                            "and less important at "
                                            "the same time");
       return true;
     }
     return false;
   });
 
   OS << "bool " << Target.getName()
      << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
         "&CoverageInfo) const {\n"
      << "  MachineFunction &MF = *I.getParent()->getParent();\n"
      << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
      << "  // FIXME: This should be computed on a per-function basis rather "
         "than per-insn.\n"
      << "  AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
         "&MF);\n"
      << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
      << "  NewMIVector OutMIs;\n"
      << "  State.MIs.clear();\n"
      << "  State.MIs.push_back(&I);\n\n"
      << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo"
      << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
      << ", CoverageInfo)) {\n"
      << "    return true;\n"
      << "  }\n\n"
      << "  return false;\n"
      << "}\n\n";
 
   const MatchTable Table =
       buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
   OS << "const int64_t *" << Target.getName()
      << "InstructionSelector::getMatchTable() const {\n";
   Table.emitDeclaration(OS);
   OS << "  return ";
   Table.emitUse(OS);
   OS << ";\n}\n";
   OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
 
   OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
      << "PredicateBitset AvailableModuleFeatures;\n"
      << "mutable PredicateBitset AvailableFunctionFeatures;\n"
      << "PredicateBitset getAvailableFeatures() const {\n"
      << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
      << "}\n"
      << "PredicateBitset\n"
      << "computeAvailableModuleFeatures(const " << Target.getName()
      << "Subtarget *Subtarget) const;\n"
      << "PredicateBitset\n"
      << "computeAvailableFunctionFeatures(const " << Target.getName()
      << "Subtarget *Subtarget,\n"
      << "                                 const MachineFunction *MF) const;\n"
      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
 
   OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
      << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
      << "AvailableFunctionFeatures()\n"
      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
 }
 
 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
   if (SubtargetFeatures.count(Predicate) == 0)
     SubtargetFeatures.emplace(
         Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
 }
 
 void RuleMatcher::optimize() {
   for (auto &Item : InsnVariableIDs) {
     InstructionMatcher &InsnMatcher = *Item.first;
     for (auto &OM : InsnMatcher.operands()) {
       // Register Banks checks rarely fail, but often crash as targets usually
       // provide only partially defined RegisterBankInfo::getRegBankFromRegClass
       // method. Often the problem is hidden as non-optimized MatchTable checks
       // banks rather late, most notably after checking target / function /
       // module features and a few opcodes. That makes these checks a)
       // beneficial to delay until the very end (we don't want to perform a lot
       // of checks that all pass and then fail at the very end) b) not safe to
       // have as early checks.
       for (auto &OP : OM->predicates())
         if (isa<RegisterBankOperandMatcher>(OP) ||
             isa<ComplexPatternOperandMatcher>(OP))
           EpilogueMatchers.emplace_back(std::move(OP));
       OM->eraseNullPredicates();
     }
     InsnMatcher.optimize();
   }
   llvm::sort(
       EpilogueMatchers.begin(), EpilogueMatchers.end(),
       [](const std::unique_ptr<PredicateMatcher> &L,
          const std::unique_ptr<PredicateMatcher> &R) {
         return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
                std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
       });
 }
 
 bool RuleMatcher::hasFirstCondition() const {
   if (insnmatchers_empty())
     return false;
   InstructionMatcher &Matcher = insnmatchers_front();
   if (!Matcher.predicates_empty())
     return true;
   for (auto &OM : Matcher.operands())
     for (auto &OP : OM->predicates())
       if (!isa<InstructionOperandMatcher>(OP))
         return true;
   return false;
 }
 
 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
   assert(!insnmatchers_empty() &&
          "Trying to get a condition from an empty RuleMatcher");
 
   InstructionMatcher &Matcher = insnmatchers_front();
   if (!Matcher.predicates_empty())
     return **Matcher.predicates_begin();
   // If there is no more predicate on the instruction itself, look at its
   // operands.
   for (auto &OM : Matcher.operands())
     for (auto &OP : OM->predicates())
       if (!isa<InstructionOperandMatcher>(OP))
         return *OP;
 
   llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
                    "no conditions");
 }
 
 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
   assert(!insnmatchers_empty() &&
          "Trying to pop a condition from an empty RuleMatcher");
 
   InstructionMatcher &Matcher = insnmatchers_front();
   if (!Matcher.predicates_empty())
     return Matcher.predicates_pop_front();
   // If there is no more predicate on the instruction itself, look at its
   // operands.
   for (auto &OM : Matcher.operands())
     for (auto &OP : OM->predicates())
       if (!isa<InstructionOperandMatcher>(OP)) {
         std::unique_ptr<PredicateMatcher> Result = std::move(OP);
         OM->eraseNullPredicates();
         return Result;
       }
 
   llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
                    "no conditions");
 }
 
 bool GroupMatcher::candidateConditionMatches(
     const PredicateMatcher &Predicate) const {
 
   if (empty()) {
     // Sharing predicates for nested instructions is not supported yet as we
     // currently don't hoist the GIM_RecordInsn's properly, therefore we can
     // only work on the original root instruction (InsnVarID == 0):
     if (Predicate.getInsnVarID() != 0)
       return false;
     // ... otherwise an empty group can handle any predicate with no specific
     // requirements:
     return true;
   }
 
   const Matcher &Representative = **Matchers.begin();
   const auto &RepresentativeCondition = Representative.getFirstCondition();
   // ... if not empty, the group can only accomodate matchers with the exact
   // same first condition:
   return Predicate.isIdentical(RepresentativeCondition);
 }
 
 bool GroupMatcher::addMatcher(Matcher &Candidate) {
   if (!Candidate.hasFirstCondition())
     return false;
 
   const PredicateMatcher &Predicate = Candidate.getFirstCondition();
   if (!candidateConditionMatches(Predicate))
     return false;
 
   Matchers.push_back(&Candidate);
   return true;
 }
 
 void GroupMatcher::finalize() {
   assert(Conditions.empty() && "Already finalized?");
   if (empty())
     return;
 
   Matcher &FirstRule = **Matchers.begin();
 
   Conditions.push_back(FirstRule.popFirstCondition());
   for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
     Matchers[I]->popFirstCondition();
 }
 
 void GroupMatcher::emit(MatchTable &Table) {
   unsigned LabelID = ~0U;
   if (!Conditions.empty()) {
     LabelID = Table.allocateLabelID();
     Table << MatchTable::Opcode("GIM_Try", +1)
           << MatchTable::Comment("On fail goto")
           << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
   }
   for (auto &Condition : Conditions)
     Condition->emitPredicateOpcodes(
         Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
 
   for (const auto &M : Matchers)
     M->emit(Table);
 
   // Exit the group
   if (!Conditions.empty())
     Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
           << MatchTable::Label(LabelID);
 }
 
 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
 
 } // end anonymous namespace
 
 //===----------------------------------------------------------------------===//
 
 namespace llvm {
 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
   GlobalISelEmitter(RK).run(OS);
 }
 } // End llvm namespace

llvm-svn: 332999
This commit is contained in:
Roman Tereshin 2018-05-22 16:51:54 +00:00
parent f51ce777e3
commit a7b5d45f9b
1 changed files with 19 additions and 11 deletions

View File

@ -851,7 +851,6 @@ public:
std::unique_ptr<PredicateMatcher> popFirstCondition() override;
const PredicateMatcher &getFirstCondition() const override;
LLTCodeGen getFirstConditionAsRootType();
bool hasFirstCondition() const override;
unsigned getNumOperands() const;
StringRef getOpcode() const;
@ -1922,16 +1921,6 @@ unsigned RuleMatcher::getNumOperands() const {
return Matchers.front()->getNumOperands();
}
LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
InstructionMatcher &InsnMatcher = *Matchers.front();
if (!InsnMatcher.predicates_empty())
if (const auto *TM =
dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
return TM->getTy();
return {};
}
/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
@ -4027,6 +4016,25 @@ GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
if (!Optimize)
return MatchTable::buildTable(InputRules, WithCoverage);
unsigned CurrentOrdering = 0;
StringMap<unsigned> OpcodeOrder;
for (RuleMatcher &Rule : Rules) {
const StringRef Opcode = Rule.getOpcode();
assert(!Opcode.empty() && "Didn't expect an undefined opcode");
if (OpcodeOrder.count(Opcode) == 0)
OpcodeOrder[Opcode] = CurrentOrdering++;
}
std::stable_sort(InputRules.begin(), InputRules.end(),
[&OpcodeOrder](const Matcher *A, const Matcher *B) {
auto *L = static_cast<const RuleMatcher *>(A);
auto *R = static_cast<const RuleMatcher *>(B);
return std::make_tuple(OpcodeOrder[L->getOpcode()],
L->getNumOperands()) <
std::make_tuple(OpcodeOrder[R->getOpcode()],
R->getNumOperands());
});
for (Matcher *Rule : InputRules)
Rule->optimize();