Initial multiple return values support.

llvm-svn: 48210
This commit is contained in:
Devang Patel 2008-03-11 05:46:42 +00:00
parent 1bd44363f2
commit a7a2075ab8
2 changed files with 107 additions and 19 deletions

View File

@ -129,6 +129,21 @@ public:
}
};
/// LatticeValIndex - LatticeVal and associated Index. This is used
/// to track individual operand Lattice values for multi value ret instructions.
class VISIBILITY_HIDDEN LatticeValIndexed {
public:
LatticeValIndexed(unsigned I = 0) { Index = I; }
LatticeVal &getLatticeVal() { return LV; }
unsigned getIndex() const { return Index; }
void setLatticeVal(LatticeVal &L) { LV = L; }
void setIndex(unsigned I) { Index = I; }
private:
LatticeVal LV;
unsigned Index;
};
//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
@ -144,10 +159,14 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
/// overdefined, it's entry is simply removed from this map.
DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
/// TrackedFunctionRetVals - If we are tracking arguments into and the return
/// TrackedRetVals - If we are tracking arguments into and the return
/// value out of a function, it will have an entry in this map, indicating
/// what the known return value for the function is.
DenseMap<Function*, LatticeVal> TrackedFunctionRetVals;
DenseMap<Function*, LatticeVal> TrackedRetVals;
/// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
/// that return multiple values.
std::multimap<Function*, LatticeValIndexed> TrackedMultipleRetVals;
// The reason for two worklists is that overdefined is the lowest state
// on the lattice, and moving things to overdefined as fast as possible
@ -198,7 +217,13 @@ public:
void AddTrackedFunction(Function *F) {
assert(F->hasInternalLinkage() && "Can only track internal functions!");
// Add an entry, F -> undef.
TrackedFunctionRetVals[F];
if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
TrackedMultipleRetVals.insert(std::pair<Function *, LatticeValIndexed>
(F, LatticeValIndexed(i)));
}
else
TrackedRetVals[F];
}
/// Solve - Solve for constants and executable blocks.
@ -224,10 +249,10 @@ public:
return ValueState;
}
/// getTrackedFunctionRetVals - Get the inferred return value map.
/// getTrackedRetVals - Get the inferred return value map.
///
const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() {
return TrackedFunctionRetVals;
const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
return TrackedRetVals;
}
/// getTrackedGlobals - Get and return the set of inferred initializers for
@ -374,6 +399,7 @@ private:
void visitTerminatorInst(TerminatorInst &TI);
void visitCastInst(CastInst &I);
void visitGetResultInst(GetResultInst &GRI);
void visitSelectInst(SelectInst &I);
void visitBinaryOperator(Instruction &I);
void visitCmpInst(CmpInst &I);
@ -608,20 +634,35 @@ void SCCPSolver::visitPHINode(PHINode &PN) {
void SCCPSolver::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) return; // Ret void
// If we are tracking the return value of this function, merge it in.
Function *F = I.getParent()->getParent();
if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
// If we are tracking the return value of this function, merge it in.
if (!F->hasInternalLinkage())
return;
if (!TrackedRetVals.empty()) {
DenseMap<Function*, LatticeVal>::iterator TFRVI =
TrackedFunctionRetVals.find(F);
if (TFRVI != TrackedFunctionRetVals.end() &&
TrackedRetVals.find(F);
if (TFRVI != TrackedRetVals.end() &&
!TFRVI->second.isOverdefined()) {
LatticeVal &IV = getValueState(I.getOperand(0));
mergeInValue(TFRVI->second, F, IV);
return;
}
}
// Handle function that returns multiple values.
std::multimap<Function*, LatticeValIndexed>::iterator It, E;
tie(It, E) = TrackedMultipleRetVals.equal_range(F);
if (It != E) {
for (; It != E; ++It) {
LatticeValIndexed &LV = It->second;
unsigned Idx = LV.getIndex();
Value *V = I.getOperand(Idx);
mergeInValue(LV.getLatticeVal(), V, getValueState(V));
}
}
}
void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
SmallVector<bool, 16> SuccFeasible;
getFeasibleSuccessors(TI, SuccFeasible);
@ -644,6 +685,30 @@ void SCCPSolver::visitCastInst(CastInst &I) {
VState.getConstant(), I.getType()));
}
void SCCPSolver::visitGetResultInst(GetResultInst &GRI) {
unsigned Idx = GRI.getIndex();
Value *Aggr = GRI.getOperand(0);
Function *F = NULL;
if (CallInst *CI = dyn_cast<CallInst>(Aggr))
F = CI->getCalledFunction();
else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
F = II->getCalledFunction();
assert (F && "Invalid GetResultInst operands!");
std::multimap<Function*, LatticeValIndexed>::iterator It, E;
tie(It, E) = TrackedMultipleRetVals.equal_range(F);
if (It == E)
return;
for (; It != E; ++It) {
LatticeValIndexed &LIV = It->second;
if (LIV.getIndex() == Idx) {
mergeInValue(&GRI, LIV.getLatticeVal());
}
}
}
void SCCPSolver::visitSelectInst(SelectInst &I) {
LatticeVal &CondValue = getValueState(I.getCondition());
if (CondValue.isUndefined())
@ -1061,18 +1126,28 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
void SCCPSolver::visitCallSite(CallSite CS) {
Function *F = CS.getCalledFunction();
DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedRetVals.end();
// If we are tracking this function, we must make sure to bind arguments as
// appropriate.
DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
if (F && F->hasInternalLinkage())
TFRVI = TrackedFunctionRetVals.find(F);
bool FirstCall = false;
if (F && F->hasInternalLinkage()) {
TFRVI = TrackedRetVals.find(F);
if (TFRVI != TrackedRetVals.end())
FirstCall = true;
else {
std::multimap<Function*, LatticeValIndexed>::iterator It, E;
tie(It, E) = TrackedMultipleRetVals.equal_range(F);
if (It != E)
FirstCall = true;
}
}
if (TFRVI != TrackedFunctionRetVals.end()) {
if (FirstCall) {
// If this is the first call to the function hit, mark its entry block
// executable.
if (!BBExecutable.count(F->begin()))
MarkBlockExecutable(F->begin());
CallSite::arg_iterator CAI = CS.arg_begin();
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++CAI) {
@ -1091,8 +1166,9 @@ void SCCPSolver::visitCallSite(CallSite CS) {
LatticeVal &IV = ValueState[I];
if (IV.isOverdefined()) return;
// Propagate the return value of the function to the value of the instruction.
if (TFRVI != TrackedFunctionRetVals.end()) {
// Propagate the single return value of the function to the value of the
// instruction.
if (TFRVI != TrackedRetVals.end()) {
mergeInValue(IV, I, TFRVI->second);
return;
}
@ -1684,7 +1760,7 @@ bool IPSCCP::runOnModule(Module &M) {
// all call uses with the inferred value. This means we don't need to bother
// actually returning anything from the function. Replace all return
// instructions with return undef.
const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
E = RV.end(); I != E; ++I)
if (!I->second.isOverdefined() &&

View File

@ -0,0 +1,12 @@
; RUN: llvm-as < %s | opt -ipsccp -disable-output
define internal {i32, i32} @bar(i32 %A) {
%X = add i32 1, 2
ret i32 %A, i32 %A
}
define i32 @foo() {
%X = call {i32, i32} @bar(i32 17)
%Y = getresult {i32, i32} %X, 0
ret i32 %Y
}