Check in a (disabled) failed attempt to improve the ordering of

patterns within the generated matcher.  This works great except
that the sort fails because the relation defined isn't 
transitive.  I have a much simpler solution coming next, but want
to archive the code.

llvm-svn: 99795
This commit is contained in:
Chris Lattner 2010-03-29 01:56:19 +00:00
parent 05925fe1fe
commit a79260151f
1 changed files with 123 additions and 2 deletions

View File

@ -102,6 +102,106 @@ void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) {
OS << "\n\n";
}
/// CouldMatchSameInput - Return true if it is possible for these two patterns
/// to match the same input. For example, (add reg, reg) and
/// (add reg, (mul ...)) could both match the same input. Where this is
/// conservative, it falls back to returning true.
static bool CouldMatchSameInput(const TreePatternNode *N1,
const TreePatternNode *N2) {
// If the types of the two nodes differ, they can't match the same thing.
if (N1->getNumTypes() != N2->getNumTypes()) return false;
for (unsigned i = 0, e = N1->getNumTypes(); i != e; ++i)
if (N1->getType(i) != N2->getType(i))
return false;
// Handle the case when at least one is a leaf.
if (N1->isLeaf()) {
if (N2->isLeaf()) {
// Handle leaf/leaf cases. Register operands can match just about
// anything, so we can only disambiguate a few things here.
// If both operands are leaf integer nodes with different values, they
// can't match the same thing.
if (IntInit *II1 = dynamic_cast<IntInit*>(N1->getLeafValue()))
if (IntInit *II2 = dynamic_cast<IntInit*>(N2->getLeafValue()))
return II1->getValue() == II2->getValue();
DefInit *DI1 = dynamic_cast<DefInit*>(N1->getLeafValue());
DefInit *DI2 = dynamic_cast<DefInit*>(N2->getLeafValue());
if (DI1 != 0 && DI2 != 0) {
if (DI1->getDef()->isSubClassOf("ValueType") &&
DI2->getDef()->isSubClassOf("ValueType"))
return DI1 == DI2;
if (DI1->getDef()->isSubClassOf("CondCode") &&
DI2->getDef()->isSubClassOf("CondCode"))
return DI1 == DI2;
}
// TODO: Regclass cannot match a condcode etc.
// Otherwise, complex pattern could match anything, so just return a
// conservative response.
return true;
}
// Conservatively return true. (imm) could match "7" for example, and GPR
// can match anything.
// TODO: could handle (add ...) != "1" if we cared.
return true;
}
// If N2 is a leaf and N1 isn't, check the other way.
if (N2->isLeaf())
return CouldMatchSameInput(N2, N1);
// Now we know neither node is a leaf. If the two patterns have different
// number of children or different operators, they can't both match.
Record *Op1 = N1->getOperator(), *Op2 = N1->getOperator();
if (Op1 != Op2 || N1->getNumChildren() != N2->getNumChildren())
return false;
// If a child prevents the two patterns from matching, use that.
for (unsigned i = 0, e = N1->getNumChildren(); i != e; ++i)
if (!CouldMatchSameInput(N1->getChild(i), N2->getChild(i)))
return false;
// Otherwise, it looks like they could both match the same thing.
return true;
}
/// GetSourceMatchPreferenceOrdering - The two input patterns are guaranteed to
/// not match the same input. Decide which pattern we'd prefer to match first
/// in order to reduce compile time. This sorting predicate is used to improve
/// compile time so that we try to match scalar operations before vector
/// operations since scalar operations are much more common in practice.
///
/// This returns -1 if we prefer to match N1 before N2, 1 if we prefer to match
/// N2 before N1 or 0 if no preference.
///
static int GetSourceMatchPreferenceOrdering(const TreePatternNode *N1,
const TreePatternNode *N2) {
// The primary thing we sort on here is to get ints before floats and scalars
// before vectors.
for (unsigned i = 0, e = std::min(N1->getNumTypes(), N2->getNumTypes());
i != e; ++i)
if (N1->getType(i) != N2->getType(i)) {
MVT::SimpleValueType V1 = N1->getType(i), V2 = N2->getType(i);
if (MVT(V1).isVector() != MVT(V2).isVector())
return MVT(V1).isVector() ? 1 : -1;
if (MVT(V1).isFloatingPoint() != MVT(V2).isFloatingPoint())
return MVT(V1).isFloatingPoint() ? 1 : -1;
}
for (unsigned i = 0, e = std::min(N1->getNumChildren(), N2->getNumChildren());
i != e; ++i)
if (int Res = GetSourceMatchPreferenceOrdering(N1->getChild(i),
N2->getChild(i)))
return Res;
return 0;
}
namespace {
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
@ -112,6 +212,28 @@ struct PatternSortingPredicate {
CodeGenDAGPatterns &CGP;
bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) {
const TreePatternNode *LHSSrc = LHS->getSrcPattern();
const TreePatternNode *RHSSrc = RHS->getSrcPattern();
// If the patterns are guaranteed to not match at the same time and we
// prefer to match one before the other (for compile time reasons) use this
// preference as our discriminator.
if (0 && !CouldMatchSameInput(LHSSrc, RHSSrc)) {
int Ordering = GetSourceMatchPreferenceOrdering(LHSSrc, RHSSrc);
if (Ordering != 0) {
if (Ordering == -1) {
errs() << "SORT: " << *LHSSrc << "\n";
errs() << "NEXT: " << *RHSSrc << "\n\n";
} else {
errs() << "SORT: " << *RHSSrc << "\n";
errs() << "NEXT: " << *LHSSrc << "\n\n";
}
}
if (Ordering == -1) return true;
if (Ordering == 1) return false;
}
// Otherwise, if the patterns might both match, sort based on complexity,
// which means that we prefer to match patterns that cover more nodes in the
// input over nodes that cover fewer.
@ -167,8 +289,7 @@ void DAGISelEmitter::run(raw_ostream &OS) {
// We want to process the matches in order of minimal cost. Sort the patterns
// so the least cost one is at the start.
std::stable_sort(Patterns.begin(), Patterns.end(),
PatternSortingPredicate(CGP));
std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP));
// Convert each variant of each pattern into a Matcher.