forked from OSchip/llvm-project
[X86][SSE] Convert computeZeroableShuffleElements to emit KnownUndef and KnownZero
This commit is contained in:
parent
1eb04d289a
commit
a780b94cd1
|
@ -6732,7 +6732,7 @@ static bool getTargetShuffleAndZeroables(SDValue N, SmallVectorImpl<int> &Mask,
|
|||
V1 = peekThroughBitcasts(V1);
|
||||
V2 = peekThroughBitcasts(V2);
|
||||
|
||||
assert((VT.getSizeInBits() % Mask.size()) == 0 &&
|
||||
assert((VT.getSizeInBits() % Size) == 0 &&
|
||||
"Illegal split of shuffle value type");
|
||||
unsigned EltSizeInBits = VT.getSizeInBits() / Size;
|
||||
|
||||
|
@ -10423,9 +10423,12 @@ static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL,
|
|||
/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
|
||||
/// as many lanes with this technique as possible to simplify the remaining
|
||||
/// shuffle.
|
||||
static APInt computeZeroableShuffleElements(ArrayRef<int> Mask,
|
||||
SDValue V1, SDValue V2) {
|
||||
APInt Zeroable(Mask.size(), 0);
|
||||
static void computeZeroableShuffleElements(ArrayRef<int> Mask,
|
||||
SDValue V1, SDValue V2,
|
||||
APInt &KnownUndef, APInt &KnownZero) {
|
||||
int Size = Mask.size();
|
||||
KnownUndef = KnownZero = APInt::getNullValue(Size);
|
||||
|
||||
V1 = peekThroughBitcasts(V1);
|
||||
V2 = peekThroughBitcasts(V2);
|
||||
|
||||
|
@ -10433,14 +10436,18 @@ static APInt computeZeroableShuffleElements(ArrayRef<int> Mask,
|
|||
bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
|
||||
|
||||
int VectorSizeInBits = V1.getValueSizeInBits();
|
||||
int ScalarSizeInBits = VectorSizeInBits / Mask.size();
|
||||
int ScalarSizeInBits = VectorSizeInBits / Size;
|
||||
assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
|
||||
|
||||
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
|
||||
for (int i = 0; i < Size; ++i) {
|
||||
int M = Mask[i];
|
||||
// Handle the easy cases.
|
||||
if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
|
||||
Zeroable.setBit(i);
|
||||
if (M < 0) {
|
||||
KnownUndef.setBit(i);
|
||||
continue;
|
||||
}
|
||||
if ((M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
|
||||
KnownZero.setBit(i);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -10457,20 +10464,20 @@ static APInt computeZeroableShuffleElements(ArrayRef<int> Mask,
|
|||
if ((Size % V.getNumOperands()) == 0) {
|
||||
int Scale = Size / V->getNumOperands();
|
||||
SDValue Op = V.getOperand(M / Scale);
|
||||
if (Op.isUndef() || X86::isZeroNode(Op))
|
||||
Zeroable.setBit(i);
|
||||
if (Op.isUndef())
|
||||
KnownUndef.setBit(i);
|
||||
if (X86::isZeroNode(Op))
|
||||
KnownZero.setBit(i);
|
||||
else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
|
||||
APInt Val = Cst->getAPIntValue();
|
||||
Val.lshrInPlace((M % Scale) * ScalarSizeInBits);
|
||||
Val = Val.getLoBits(ScalarSizeInBits);
|
||||
Val = Val.extractBits(ScalarSizeInBits, (M % Scale) * ScalarSizeInBits);
|
||||
if (Val == 0)
|
||||
Zeroable.setBit(i);
|
||||
KnownZero.setBit(i);
|
||||
} else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
|
||||
APInt Val = Cst->getValueAPF().bitcastToAPInt();
|
||||
Val.lshrInPlace((M % Scale) * ScalarSizeInBits);
|
||||
Val = Val.getLoBits(ScalarSizeInBits);
|
||||
Val = Val.extractBits(ScalarSizeInBits, (M % Scale) * ScalarSizeInBits);
|
||||
if (Val == 0)
|
||||
Zeroable.setBit(i);
|
||||
KnownZero.setBit(i);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
@ -10479,18 +10486,20 @@ static APInt computeZeroableShuffleElements(ArrayRef<int> Mask,
|
|||
// elements must be UNDEF or ZERO.
|
||||
if ((V.getNumOperands() % Size) == 0) {
|
||||
int Scale = V->getNumOperands() / Size;
|
||||
bool AllZeroable = true;
|
||||
bool AllUndef = true;
|
||||
bool AllZero = true;
|
||||
for (int j = 0; j < Scale; ++j) {
|
||||
SDValue Op = V.getOperand((M * Scale) + j);
|
||||
AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op));
|
||||
AllUndef &= Op.isUndef();
|
||||
AllZero &= X86::isZeroNode(Op);
|
||||
}
|
||||
if (AllZeroable)
|
||||
Zeroable.setBit(i);
|
||||
if (AllUndef)
|
||||
KnownUndef.setBit(i);
|
||||
if (AllZero)
|
||||
KnownZero.setBit(i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
return Zeroable;
|
||||
}
|
||||
|
||||
// The Shuffle result is as follow:
|
||||
|
@ -17077,7 +17086,10 @@ static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget,
|
|||
// We actually see shuffles that are entirely re-arrangements of a set of
|
||||
// zero inputs. This mostly happens while decomposing complex shuffles into
|
||||
// simple ones. Directly lower these as a buildvector of zeros.
|
||||
APInt Zeroable = computeZeroableShuffleElements(OrigMask, V1, V2);
|
||||
APInt KnownUndef, KnownZero;
|
||||
computeZeroableShuffleElements(OrigMask, V1, V2, KnownUndef, KnownZero);
|
||||
|
||||
APInt Zeroable = KnownUndef | KnownZero;
|
||||
if (Zeroable.isAllOnesValue())
|
||||
return getZeroVector(VT, Subtarget, DAG, DL);
|
||||
|
||||
|
|
Loading…
Reference in New Issue