[libcxxabi] Fix alignment of pointers returned by fallback_malloc

This aligns the ``heap[]`` array in ``fallback_malloc.cpp`` to ensure
that it can be safely cast to ``heap_node*``, and also adjusts the
allocation algorithm to ensure that every allocated block has the
alignment requested by ``__attribute__((aligned))``, by putting the
block's ``heap_node`` header 4 bytes before an aligned address.

Patch originally by Eric Fiselier: this is an updated version of
D12669, which was never landed.

Reviewed By: ldionne, #libc_abi

Differential Revision: https://reviews.llvm.org/D129842
This commit is contained in:
Simon Tatham 2022-08-19 15:07:55 +01:00
parent 80bbc05436
commit a771a91dcb
2 changed files with 75 additions and 15 deletions

View File

@ -15,6 +15,7 @@
#endif #endif
#endif #endif
#include <assert.h>
#include <stdlib.h> // for malloc, calloc, free #include <stdlib.h> // for malloc, calloc, free
#include <string.h> // for memset #include <string.h> // for memset
#include <new> // for std::__libcpp_aligned_{alloc,free} #include <new> // for std::__libcpp_aligned_{alloc,free}
@ -63,11 +64,28 @@ char heap[HEAP_SIZE] __attribute__((aligned));
typedef unsigned short heap_offset; typedef unsigned short heap_offset;
typedef unsigned short heap_size; typedef unsigned short heap_size;
// On both 64 and 32 bit targets heap_node should have the following properties
// Size: 4
// Alignment: 2
struct heap_node { struct heap_node {
heap_offset next_node; // offset into heap heap_offset next_node; // offset into heap
heap_size len; // size in units of "sizeof(heap_node)" heap_size len; // size in units of "sizeof(heap_node)"
}; };
// All pointers returned by fallback_malloc must be at least aligned
// as RequiredAligned. Note that RequiredAlignment can be greater than
// alignof(std::max_align_t) on 64 bit systems compiling 32 bit code.
struct FallbackMaxAlignType {
} __attribute__((aligned));
const size_t RequiredAlignment = alignof(FallbackMaxAlignType);
static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0,
"The required alignment must be evenly divisible by the sizeof(heap_node)");
// The number of heap_node's that can fit in a chunk of memory with the size
// of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4.
const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node);
static const heap_node* list_end = static const heap_node* list_end =
(heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap
static heap_node* freelist = NULL; static heap_node* freelist = NULL;
@ -82,10 +100,23 @@ heap_offset offset_from_node(const heap_node* ptr) {
sizeof(heap_node)); sizeof(heap_node));
} }
// Return a pointer to the first address, 'A', in `heap` that can actually be
// used to represent a heap_node. 'A' must be aligned so that
// '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this
// address should be 12 bytes after the first 16 byte boundary.
heap_node* getFirstAlignedNodeInHeap() {
heap_node* node = (heap_node*)heap;
const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node);
size_t boundaryOffset = reinterpret_cast<size_t>(node) % RequiredAlignment;
size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset;
size_t NElemOffset = requiredOffset / sizeof(heap_node);
return node + NElemOffset;
}
void init_heap() { void init_heap() {
freelist = (heap_node*)heap; freelist = getFirstAlignedNodeInHeap();
freelist->next_node = offset_from_node(list_end); freelist->next_node = offset_from_node(list_end);
freelist->len = HEAP_SIZE / sizeof(heap_node); freelist->len = static_cast<heap_size>(list_end - freelist);
} }
// How big a chunk we allocate // How big a chunk we allocate
@ -109,23 +140,44 @@ void* fallback_malloc(size_t len) {
for (p = freelist, prev = 0; p && p != list_end; for (p = freelist, prev = 0; p && p != list_end;
prev = p, p = node_from_offset(p->next_node)) { prev = p, p = node_from_offset(p->next_node)) {
if (p->len > nelems) { // chunk is larger, shorten, and return the tail // Check the invariant that all heap_nodes pointers 'p' are aligned
heap_node* q; // so that 'p + 1' has an alignment of at least RequiredAlignment
assert(reinterpret_cast<size_t>(p + 1) % RequiredAlignment == 0);
p->len = static_cast<heap_size>(p->len - nelems); // Calculate the number of extra padding elements needed in order
q = p + p->len; // to split 'p' and create a properly aligned heap_node from the tail
q->next_node = 0; // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems'
q->len = static_cast<heap_size>(nelems); // will be a multiple of NodesPerAlignment.
return (void*)(q + 1); size_t aligned_nelems = nelems;
if (p->len > nelems) {
heap_size remaining_len = static_cast<heap_size>(p->len - nelems);
aligned_nelems += remaining_len % NodesPerAlignment;
} }
if (p->len == nelems) { // exact size match // chunk is larger and we can create a properly aligned heap_node
// from the tail. In this case we shorten 'p' and return the tail.
if (p->len > aligned_nelems) {
heap_node* q;
p->len = static_cast<heap_size>(p->len - aligned_nelems);
q = p + p->len;
q->next_node = 0;
q->len = static_cast<heap_size>(aligned_nelems);
void* ptr = q + 1;
assert(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0);
return ptr;
}
// The chunk is the exact size or the chunk is larger but not large
// enough to split due to alignment constraints.
if (p->len >= nelems) {
if (prev == 0) if (prev == 0)
freelist = node_from_offset(p->next_node); freelist = node_from_offset(p->next_node);
else else
prev->next_node = p->next_node; prev->next_node = p->next_node;
p->next_node = 0; p->next_node = 0;
return (void*)(p + 1); void* ptr = p + 1;
assert(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0);
return ptr;
} }
} }
return NULL; // couldn't find a spot big enough return NULL; // couldn't find a spot big enough

View File

@ -8,9 +8,11 @@
#include <cstdio> #include <cstdio>
#include <deque> #include <deque>
#include <cassert>
#include <__threading_support> #include <__threading_support>
// UNSUPPORTED: c++03
// UNSUPPORTED: modules-build && no-threads // UNSUPPORTED: modules-build && no-threads
// Necessary because we include a private source file of libc++abi, which // Necessary because we include a private source file of libc++abi, which
@ -26,12 +28,16 @@ typedef std::deque<void *> container;
#define INSTRUMENT_FALLBACK_MALLOC #define INSTRUMENT_FALLBACK_MALLOC
#include "../src/fallback_malloc.cpp" #include "../src/fallback_malloc.cpp"
void assertAlignment(void* ptr) { assert(reinterpret_cast<size_t>(ptr) % alignof(FallbackMaxAlignType) == 0); }
container alloc_series ( size_t sz ) { container alloc_series ( size_t sz ) {
container ptrs; container ptrs;
void *p; void *p;
while ( NULL != ( p = fallback_malloc ( sz ))) while (NULL != (p = fallback_malloc(sz))) {
ptrs.push_back ( p ); assertAlignment(p);
ptrs.push_back(p);
}
return ptrs; return ptrs;
} }
@ -40,8 +46,9 @@ container alloc_series ( size_t sz, float growth ) {
void *p; void *p;
while ( NULL != ( p = fallback_malloc ( sz ))) { while ( NULL != ( p = fallback_malloc ( sz ))) {
ptrs.push_back ( p ); assertAlignment(p);
sz *= growth; ptrs.push_back(p);
sz *= growth;
} }
return ptrs; return ptrs;
@ -55,6 +62,7 @@ container alloc_series ( const size_t *first, size_t len ) {
for ( const size_t *iter = first; iter != last; ++iter ) { for ( const size_t *iter = first; iter != last; ++iter ) {
if ( NULL == (p = fallback_malloc ( *iter ))) if ( NULL == (p = fallback_malloc ( *iter )))
break; break;
assertAlignment(p);
ptrs.push_back ( p ); ptrs.push_back ( p );
} }