Implement promotion for enumeration types.

WHAT!?!

It turns out that Type::isPromotableIntegerType() was not considering
enumeration types to be promotable, so we would never do the
promotion despite having properly computed the promotion type when the
enum was defined. Various operations on values of enum type just
"worked" because we could still compute the integer rank of an enum
type; the oddity, however, is that operations such as "add an enum and
an unsigned" would often have an enum result type (!). The bug
actually showed up as a spurious -Wformat diagnostic
(<rdar://problem/7595366>), but in theory it could cause miscompiles.

In this commit:
  - Enum types with a promotion type of "int" or "unsigned int" are
  promotable.
  - Tweaked the computation of promotable types for enums
  - For all of the ABIs, treat enum types the same way as their
  underlying types (*not* their promotion types) for argument passing
  and return values
  - Extend the ABI tester with support for enumeration types

llvm-svn: 95117
This commit is contained in:
Douglas Gregor 2010-02-02 20:10:50 +00:00
parent 5dc86337fb
commit a71cc15361
8 changed files with 165 additions and 20 deletions

View File

@ -720,6 +720,19 @@ bool Type::isPromotableIntegerType() const {
default:
return false;
}
// Enumerated types are promotable to their compatible integer types
// (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
if (const EnumType *ET = getAs<EnumType>()){
if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull())
return false;
const BuiltinType *BT
= ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
return BT->getKind() == BuiltinType::Int
|| BT->getKind() == BuiltinType::UInt;
}
return false;
}

View File

@ -271,6 +271,10 @@ ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
return ABIArgInfo::getIndirect(0);
} else {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
return (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
@ -465,6 +469,10 @@ ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
return ABIArgInfo::getIndirect(0);
} else {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
RetTy = EnumTy->getDecl()->getIntegerType();
return (RetTy->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
@ -511,6 +519,9 @@ ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
} else {
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
return (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
@ -935,6 +946,11 @@ ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
// Integer and pointer types will end up in a general purpose
// register.
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
return (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
@ -956,9 +972,14 @@ ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
ASTContext &Context) const {
// If this is a scalar LLVM value then assume LLVM will pass it in the right
// place naturally.
if (!CodeGenFunction::hasAggregateLLVMType(Ty))
if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
return (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
@ -1534,9 +1555,14 @@ void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
ASTContext &Context,
llvm::LLVMContext &VMContext) const {
if (!CodeGenFunction::hasAggregateLLVMType(Ty))
if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
return (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
// Ignore empty records.
if (isEmptyRecord(Context, Ty, true))
@ -1652,9 +1678,14 @@ ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
if (!CodeGenFunction::hasAggregateLLVMType(RetTy))
if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
RetTy = EnumTy->getDecl()->getIntegerType();
return (RetTy->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
// Are we following APCS?
if (getABIKind() == APCS) {
@ -1737,6 +1768,10 @@ ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
} else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
return ABIArgInfo::getIndirect(0);
} else {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
RetTy = EnumTy->getDecl()->getIntegerType();
return (RetTy->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}

View File

@ -5971,8 +5971,8 @@ void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
}
BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
} else {
// If there is no negative value, figure out which of uint, ulong, ulonglong
// fits.
// If there is no negative value, figure out the smallest type that fits
// all of the enumerator values.
// If it's packed, check also if it fits a char or a short.
if (Packed && NumPositiveBits <= CharWidth) {
BestType = Context.UnsignedCharTy;
@ -5985,30 +5985,26 @@ void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
} else if (NumPositiveBits <= IntWidth) {
BestType = Context.UnsignedIntTy;
BestWidth = IntWidth;
BestPromotionType = (NumPositiveBits == BestWidth
? Context.UnsignedIntTy : Context.IntTy);
BestPromotionType
= (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
? Context.UnsignedIntTy : Context.IntTy;
} else if (NumPositiveBits <=
(BestWidth = Context.Target.getLongWidth())) {
BestType = Context.UnsignedLongTy;
BestPromotionType = (NumPositiveBits == BestWidth
? Context.UnsignedLongTy : Context.LongTy);
BestPromotionType
= (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
? Context.UnsignedLongTy : Context.LongTy;
} else {
BestWidth = Context.Target.getLongLongWidth();
assert(NumPositiveBits <= BestWidth &&
"How could an initializer get larger than ULL?");
BestType = Context.UnsignedLongLongTy;
BestPromotionType = (NumPositiveBits == BestWidth
? Context.UnsignedLongLongTy : Context.LongLongTy);
BestPromotionType
= (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
? Context.UnsignedLongLongTy : Context.LongLongTy;
}
}
// If we're in C and the promotion type is larger than an int, just
// use the underlying type, which is generally the unsigned integer
// type of the same rank as the promotion type. This is how the gcc
// extension works.
if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
BestPromotionType = BestType;
// Loop over all of the enumerator constants, changing their types to match
// the type of the enum if needed.
for (unsigned i = 0; i != NumElements; ++i) {

View File

@ -768,7 +768,8 @@ bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
// int can represent all the values of the source type; otherwise,
// the source rvalue can be converted to an rvalue of type unsigned
// int (C++ 4.5p1).
if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
!FromType->isEnumeralType()) {
if (// We can promote any signed, promotable integer type to an int
(FromType->isSignedIntegerType() ||
// We can promote any unsigned integer type whose size is

View File

@ -1,4 +1,5 @@
// RUN: %clang_cc1 -triple i386-unknown-unknown %s -emit-llvm-bc -o - | opt -std-compile-opts | llvm-dis | grep 'ret i32 6'
// RUN: %clang_cc1 -triple i386-unknown-unknown -x c++ %s -emit-llvm-bc -o - | opt -std-compile-opts | llvm-dis | grep 'ret i32 7'
static enum { foo, bar = 1U } z;

View File

@ -179,3 +179,7 @@ void test_asl(aslclient asl) {
asl_log(asl, 0, 3, "Error: %m"); // no-warning
asl_log(asl, 0, 3, "Error: %W"); // expected-warning{{invalid conversion specifier 'W'}}
}
// <rdar://problem/7595366>
typedef enum { A } int_t;
void f0(int_t x) { printf("%d\n", x); }

View File

@ -207,6 +207,9 @@ class TypePrinter:
yield '(%s) 0'%(t.name,)
yield '(%s) -1'%(t.name,)
yield '(%s) 1'%(t.name,)
elif isinstance(t, EnumType):
for i in range(0, len(t.enumerators)):
yield 'enum%dval%d' % (t.index, i)
elif isinstance(t, RecordType):
nonPadding = [f for f in t.fields
if not f.isPaddingBitField()]
@ -273,6 +276,8 @@ class TypePrinter:
else:
code = 'p'
print >>output, '%*sprintf("%s: %s = %%%s\\n", %s);'%(indent, '', prefix, name, code, name)
elif isinstance(t, EnumType):
print >>output, '%*sprintf("%s: %s = %%d\\n", %s);'%(indent, '', prefix, name, name)
elif isinstance(t, RecordType):
if not t.fields:
print >>output, '%*sprintf("%s: %s (empty)\\n");'%(indent, '', prefix, name)
@ -301,6 +306,8 @@ class TypePrinter:
output = self.output
if isinstance(t, BuiltinType):
print >>output, '%*sassert(%s == %s);' % (indent, '', nameLHS, nameRHS)
elif isinstance(t, EnumType):
print >>output, '%*sassert(%s == %s);' % (indent, '', nameLHS, nameRHS)
elif isinstance(t, RecordType):
for i,f in enumerate(t.fields):
if f.isPaddingBitField():
@ -403,6 +410,11 @@ def main():
help="do not generate void* types",
action="store_false", default=True)
# Enumerations
group.add_option("", "--no-enums", dest="useEnum",
help="do not generate enum types",
action="store_false", default=True)
# Derived types
group.add_option("", "--no-array", dest="useArray",
help="do not generate record types",
@ -530,6 +542,8 @@ def main():
vTypes.append(ArrayType(i, True, type, count * type.size))
atg.addGenerator(FixedTypeGenerator(vTypes))
if opts.useEnum:
atg.addGenerator(EnumTypeGenerator([None, '-1', '1', '1u'], 1, 4))
if opts.recordMaxDepth is None:
# Fully recursive, just avoid top-level arrays.

View File

@ -46,6 +46,28 @@ class BuiltinType(Type):
def __str__(self):
return self.name
class EnumType(Type):
def __init__(self, index, enumerators):
self.index = index
self.enumerators = enumerators
def getEnumerators(self):
result = ''
for i, init in enumerate(self.enumerators):
if i > 0:
result = result + ', '
result = result + 'enum%dval%d' % (self.index, i)
if init:
result = result + ' = %s' % (init)
return result
def __str__(self):
return 'enum { %s }' % (self.getEnumerators())
def getTypedefDef(self, name, printer):
return 'typedef enum %s { %s } %s;'%(name, self.getEnumerators(), name)
class RecordType(Type):
def __init__(self, index, isUnion, fields):
self.index = index
@ -188,6 +210,63 @@ class FixedTypeGenerator(TypeGenerator):
def generateType(self, N):
return self.types[N]
# Factorial
def fact(n):
result = 1
while n > 0:
result = result * n
n = n - 1
return result
# Compute the number of combinations (n choose k)
def num_combinations(n, k):
return fact(n) / (fact(k) * fact(n - k))
# Enumerate the combinations choosing k elements from the list of values
def combinations(values, k):
# From ActiveState Recipe 190465: Generator for permutations,
# combinations, selections of a sequence
if k==0: yield []
else:
for i in xrange(len(values)-k+1):
for cc in combinations(values[i+1:],k-1):
yield [values[i]]+cc
class EnumTypeGenerator(TypeGenerator):
def __init__(self, values, minEnumerators, maxEnumerators):
TypeGenerator.__init__(self)
self.values = values
self.minEnumerators = minEnumerators
self.maxEnumerators = maxEnumerators
self.setCardinality()
def setCardinality(self):
self.cardinality = 0
for num in range(self.minEnumerators, self.maxEnumerators + 1):
self.cardinality += num_combinations(len(self.values), num)
def generateType(self, n):
# Figure out the number of enumerators in this type
numEnumerators = self.minEnumerators
valuesCovered = 0
while numEnumerators < self.maxEnumerators:
comb = num_combinations(len(self.values), numEnumerators)
if valuesCovered + comb > n:
break
numEnumerators = numEnumerators + 1
valuesCovered += comb
# Find the requested combination of enumerators and build a
# type from it.
i = 0
for enumerators in combinations(self.values, numEnumerators):
if i == n - valuesCovered:
return EnumType(n, enumerators)
i = i + 1
assert False
class ComplexTypeGenerator(TypeGenerator):
def __init__(self, typeGen):
TypeGenerator.__init__(self)
@ -363,10 +442,12 @@ def test():
btg = FixedTypeGenerator([BuiltinType('char', 4),
BuiltinType('int', 4)])
etg = EnumTypeGenerator([None, '-1', '1', '1u'], 0, 3)
atg = AnyTypeGenerator()
atg.addGenerator( btg )
atg.addGenerator( RecordTypeGenerator(fields0, False, 4) )
atg.addGenerator( etg )
print 'Cardinality:',atg.cardinality
for i in range(100):
if i == atg.cardinality: