[RISCV] Add initial support for converting fixed vectors to scalable vectors during lowering to use RVV instructions.

This is an alternative to D95563.

This is modeled after a similar feature for AArch64's SVE that uses
predicated scalable vector instructions.a

Rather than use predication, this patch uses an explicit VL operand.
I've limited it to always use LMUL=1 for now, but we can improve this
in the future.

This requires a bunch of new ISD opcodes to carry the VL operand.
I think we can probably lower intrinsics to these ISD opcodes to
cut down on the size of the isel table. Which is why I've added
patterns for all integer/float types and not just LMUL=1.

I'm only testing one vector width right now, but the width is
programmable via the command line.

Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D95705
This commit is contained in:
Craig Topper 2021-02-08 10:32:32 -08:00
parent eea34aae2e
commit a719b667a9
8 changed files with 4953 additions and 0 deletions

View File

@ -140,6 +140,32 @@ RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
if (Subtarget.hasStdExtD())
for (MVT VT : F64VecVTs)
addRegClassForRVV(VT);
if (Subtarget.useRVVForFixedLengthVectors()) {
auto addRegClassForFixedVectors = [this](MVT VT) {
unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
const TargetRegisterClass *RC;
if (LMul == 1)
RC = &RISCV::VRRegClass;
else if (LMul == 2)
RC = &RISCV::VRM2RegClass;
else if (LMul == 4)
RC = &RISCV::VRM4RegClass;
else if (LMul == 8)
RC = &RISCV::VRM8RegClass;
else
llvm_unreachable("Unexpected LMul!");
addRegisterClass(VT, RC);
};
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
if (useRVVForFixedLengthVectorVT(VT))
addRegClassForFixedVectors(VT);
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
if (useRVVForFixedLengthVectorVT(VT))
addRegClassForFixedVectors(VT);
}
}
// Compute derived properties from the register classes.
@ -484,6 +510,56 @@ RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
if (Subtarget.hasStdExtD())
for (MVT VT : F64VecVTs)
SetCommonVFPActions(VT);
if (Subtarget.useRVVForFixedLengthVectors()) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
if (!useRVVForFixedLengthVectorVT(VT))
continue;
// By default everything must be expanded.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::AND, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::XOR, VT, Custom);
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::SREM, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
setOperationAction(ISD::UREM, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
}
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
if (!useRVVForFixedLengthVectorVT(VT))
continue;
// By default everything must be expanded.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom);
setOperationAction(ISD::FMUL, VT, Custom);
setOperationAction(ISD::FDIV, VT, Custom);
setOperationAction(ISD::FNEG, VT, Custom);
}
}
}
// Function alignments.
@ -928,6 +1004,46 @@ SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_SEQ_FADD:
return lowerFPVECREDUCE(Op, DAG);
case ISD::LOAD:
return lowerFixedLengthVectorLoadToRVV(Op, DAG);
case ISD::STORE:
return lowerFixedLengthVectorStoreToRVV(Op, DAG);
case ISD::ADD:
return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
case ISD::SUB:
return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
case ISD::MUL:
return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
case ISD::AND:
return lowerToScalableOp(Op, DAG, RISCVISD::AND_VL);
case ISD::OR:
return lowerToScalableOp(Op, DAG, RISCVISD::OR_VL);
case ISD::XOR:
return lowerToScalableOp(Op, DAG, RISCVISD::XOR_VL);
case ISD::SDIV:
return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
case ISD::SREM:
return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
case ISD::UDIV:
return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
case ISD::UREM:
return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
case ISD::SHL:
return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
case ISD::SRA:
return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
case ISD::SRL:
return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
case ISD::FADD:
return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
case ISD::FSUB:
return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
case ISD::FMUL:
return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
case ISD::FDIV:
return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
case ISD::FNEG:
return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
}
}
@ -1742,6 +1858,137 @@ SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
DAG.getConstant(0, DL, Subtarget.getXLenVT()));
}
// Return the largest legal scalable vector type that matches VT's element type.
static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
const RISCVSubtarget &Subtarget) {
assert(VT.isFixedLengthVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal fixed length vector!");
unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
switch (VT.getVectorElementType().SimpleTy) {
default:
llvm_unreachable("unexpected element type for RVV container");
case MVT::i8:
return MVT::getScalableVectorVT(MVT::i8, LMul * 8);
case MVT::i16:
return MVT::getScalableVectorVT(MVT::i16, LMul * 4);
case MVT::i32:
return MVT::getScalableVectorVT(MVT::i32, LMul * 2);
case MVT::i64:
return MVT::getScalableVectorVT(MVT::i64, LMul);
case MVT::f16:
return MVT::getScalableVectorVT(MVT::f16, LMul * 4);
case MVT::f32:
return MVT::getScalableVectorVT(MVT::f32, LMul * 2);
case MVT::f64:
return MVT::getScalableVectorVT(MVT::f64, LMul);
}
}
// Grow V to consume an entire RVV register.
static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
assert(VT.isScalableVector() &&
"Expected to convert into a scalable vector!");
assert(V.getValueType().isFixedLengthVector() &&
"Expected a fixed length vector operand!");
SDLoc DL(V);
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
}
// Shrink V so it's just big enough to maintain a VT's worth of data.
static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
assert(VT.isFixedLengthVector() &&
"Expected to convert into a fixed length vector!");
assert(V.getValueType().isScalableVector() &&
"Expected a scalable vector operand!");
SDLoc DL(V);
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
}
SDValue
RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
SelectionDAG &DAG) const {
auto *Load = cast<LoadSDNode>(Op);
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
SDValue VL =
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
SDValue NewLoad = DAG.getMemIntrinsicNode(
RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
Load->getMemoryVT(), Load->getMemOperand());
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
return DAG.getMergeValues({Result, Load->getChain()}, DL);
}
SDValue
RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
SelectionDAG &DAG) const {
auto *Store = cast<StoreSDNode>(Op);
SDLoc DL(Op);
MVT VT = Store->getValue().getSimpleValueType();
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
SDValue VL =
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
SDValue NewValue =
convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
return DAG.getMemIntrinsicNode(
RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
{Store->getChain(), NewValue, Store->getBasePtr(), VL},
Store->getMemoryVT(), Store->getMemOperand());
}
SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
unsigned NewOpc) const {
MVT VT = Op.getSimpleValueType();
assert(useRVVForFixedLengthVectorVT(VT) &&
"Only expected to lower fixed length vector operation!");
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
// Create list of operands by converting existing ones to scalable types.
SmallVector<SDValue, 6> Ops;
for (const SDValue &V : Op->op_values()) {
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
// Pass through non-vector operands.
if (!V.getValueType().isVector()) {
Ops.push_back(V);
continue;
}
// "cast" fixed length vector to a scalable vector.
assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
"Only fixed length vectors are supported!");
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
}
SDLoc DL(Op);
SDValue VL =
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
Ops.push_back(Mask);
Ops.push_back(VL);
SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
}
// Returns the opcode of the target-specific SDNode that implements the 32-bit
// form of the given Opcode.
static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
@ -4310,6 +4557,28 @@ const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
NODE_NAME_CASE(VECREDUCE_XOR)
NODE_NAME_CASE(VECREDUCE_FADD)
NODE_NAME_CASE(VECREDUCE_SEQ_FADD)
NODE_NAME_CASE(ADD_VL)
NODE_NAME_CASE(AND_VL)
NODE_NAME_CASE(MUL_VL)
NODE_NAME_CASE(OR_VL)
NODE_NAME_CASE(SDIV_VL)
NODE_NAME_CASE(SHL_VL)
NODE_NAME_CASE(SREM_VL)
NODE_NAME_CASE(SRA_VL)
NODE_NAME_CASE(SRL_VL)
NODE_NAME_CASE(SUB_VL)
NODE_NAME_CASE(UDIV_VL)
NODE_NAME_CASE(UREM_VL)
NODE_NAME_CASE(XOR_VL)
NODE_NAME_CASE(FADD_VL)
NODE_NAME_CASE(FSUB_VL)
NODE_NAME_CASE(FMUL_VL)
NODE_NAME_CASE(FDIV_VL)
NODE_NAME_CASE(FNEG_VL)
NODE_NAME_CASE(VMCLR_VL)
NODE_NAME_CASE(VMSET_VL)
NODE_NAME_CASE(VLE_VL)
NODE_NAME_CASE(VSE_VL)
}
// clang-format on
return nullptr;
@ -4747,6 +5016,50 @@ bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
return false;
}
bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
if (!Subtarget.useRVVForFixedLengthVectors())
return false;
if (!VT.isFixedLengthVector())
return false;
// Don't use RVV for vectors we cannot scalarize if required.
switch (VT.getVectorElementType().SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
break;
case MVT::f16:
if (!Subtarget.hasStdExtZfh())
return false;
break;
case MVT::f32:
if (!Subtarget.hasStdExtF())
return false;
break;
case MVT::f64:
if (!Subtarget.hasStdExtD())
return false;
break;
}
unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
// Don't use RVV for types that don't fit.
if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
return false;
// TODO: Perhaps an artificial restriction, but worth having whilst getting
// the base fixed length RVV support in place.
if (!VT.isPow2VectorType())
return false;
return true;
}
#define GET_REGISTER_MATCHER
#include "RISCVGenAsmMatcher.inc"

View File

@ -133,6 +133,39 @@ enum NodeType : unsigned {
VECREDUCE_XOR,
VECREDUCE_FADD,
VECREDUCE_SEQ_FADD,
// Vector binary and unary ops with VL as a third operand.
// FIXME: Can we replace these with ISD::VP_*?
ADD_VL,
AND_VL,
MUL_VL,
OR_VL,
SDIV_VL,
SHL_VL,
SREM_VL,
SRA_VL,
SRL_VL,
SUB_VL,
UDIV_VL,
UREM_VL,
XOR_VL,
FADD_VL,
FSUB_VL,
FMUL_VL,
FDIV_VL,
FNEG_VL,
// Set mask vector to all zeros or ones.
VMCLR_VL,
VMSET_VL,
// Memory opcodes start here.
VLE_VL = ISD::FIRST_TARGET_MEMORY_OPCODE,
VSE_VL,
// WARNING: Do not add anything in the end unless you want the node to
// have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
// opcodes will be thought as target memory ops!
};
} // namespace RISCVISD
@ -336,6 +369,10 @@ private:
SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFPVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorLoadToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorStoreToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
unsigned NewOpc) const;
bool isEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
@ -346,6 +383,8 @@ private:
void validateCCReservedRegs(
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
MachineFunction &MF) const;
bool useRVVForFixedLengthVectorVT(MVT VT) const;
};
namespace RISCVVIntrinsicsTable {

View File

@ -4435,3 +4435,4 @@ let Predicates = [HasStdExtV, HasStdExtF] in {
// Include the non-intrinsic ISel patterns
include "RISCVInstrInfoVSDPatterns.td"
include "RISCVInstrInfoVVLPatterns.td"

View File

@ -0,0 +1,190 @@
//===- RISCVInstrInfoVVLPatterns.td - RVV VL patterns ------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains the required infrastructure and VL patterns to
/// support code generation for the standard 'V' (Vector) extension, version
/// 0.10. This version is still experimental as the 'V' extension hasn't been
/// ratified yet.
///
/// This file is included from and depends upon RISCVInstrInfoVPseudos.td
///
/// Note: the patterns for RVV intrinsics are found in
/// RISCVInstrInfoVPseudos.td.
///
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Helpers to define the VL patterns.
//===----------------------------------------------------------------------===//
def SDT_RISCVVLE_VL : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisPtrTy<1>,
SDTCisVT<2, XLenVT>]>;
def SDT_RISCVVSE_VL : SDTypeProfile<0, 3, [SDTCisVec<0>, SDTCisPtrTy<1>,
SDTCisVT<2, XLenVT>]>;
def SDT_RISCVIntBinOp_VL : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVec<0>, SDTCisInt<0>,
SDTCVecEltisVT<3, i1>,
SDTCisSameNumEltsAs<0, 3>,
SDTCisVT<4, XLenVT>]>;
def SDT_RISCVFPUnOp_VL : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisVec<0>, SDTCisFP<0>,
SDTCVecEltisVT<2, i1>,
SDTCisSameNumEltsAs<0, 2>,
SDTCisVT<3, XLenVT>]>;
def SDT_RISCVFPBinOp_VL : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVec<0>, SDTCisFP<0>,
SDTCVecEltisVT<3, i1>,
SDTCisSameNumEltsAs<0, 3>,
SDTCisVT<4, XLenVT>]>;
def riscv_vle_vl : SDNode<"RISCVISD::VLE_VL", SDT_RISCVVLE_VL,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def riscv_vse_vl : SDNode<"RISCVISD::VSE_VL", SDT_RISCVVSE_VL,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def riscv_add_vl : SDNode<"RISCVISD::ADD_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_sub_vl : SDNode<"RISCVISD::SUB_VL", SDT_RISCVIntBinOp_VL>;
def riscv_mul_vl : SDNode<"RISCVISD::MUL_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_and_vl : SDNode<"RISCVISD::AND_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_or_vl : SDNode<"RISCVISD::OR_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_xor_vl : SDNode<"RISCVISD::XOR_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_sdiv_vl : SDNode<"RISCVISD::SDIV_VL", SDT_RISCVIntBinOp_VL>;
def riscv_srem_vl : SDNode<"RISCVISD::SREM_VL", SDT_RISCVIntBinOp_VL>;
def riscv_udiv_vl : SDNode<"RISCVISD::UDIV_VL", SDT_RISCVIntBinOp_VL>;
def riscv_urem_vl : SDNode<"RISCVISD::UREM_VL", SDT_RISCVIntBinOp_VL>;
def riscv_shl_vl : SDNode<"RISCVISD::SHL_VL", SDT_RISCVIntBinOp_VL>;
def riscv_sra_vl : SDNode<"RISCVISD::SRA_VL", SDT_RISCVIntBinOp_VL>;
def riscv_srl_vl : SDNode<"RISCVISD::SRL_VL", SDT_RISCVIntBinOp_VL>;
def riscv_fadd_vl : SDNode<"RISCVISD::FADD_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative]>;
def riscv_fsub_vl : SDNode<"RISCVISD::FSUB_VL", SDT_RISCVFPBinOp_VL>;
def riscv_fmul_vl : SDNode<"RISCVISD::FMUL_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative]>;
def riscv_fdiv_vl : SDNode<"RISCVISD::FDIV_VL", SDT_RISCVFPBinOp_VL>;
def riscv_fneg_vl : SDNode<"RISCVISD::FNEG_VL", SDT_RISCVFPUnOp_VL>;
def SDT_RISCVVMSETCLR_VL : SDTypeProfile<1, 1, [SDTCisVec<0>,
SDTCVecEltisVT<0, i1>,
SDTCisVT<1, XLenVT>]>;
def riscv_vmclr_vl : SDNode<"RISCVISD::VMCLR_VL", SDT_RISCVVMSETCLR_VL>;
def riscv_vmset_vl : SDNode<"RISCVISD::VMSET_VL", SDT_RISCVVMSETCLR_VL>;
def true_mask : PatLeaf<(riscv_vmset_vl (XLenVT srcvalue))>;
class VPatBinaryVL_VV<SDNode vop,
string instruction_name,
ValueType result_type,
ValueType op_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg RetClass,
VReg op_reg_class> :
Pat<(result_type (vop
(op_type op_reg_class:$rs1),
(op_type op_reg_class:$rs2),
(mask_type true_mask),
(XLenVT (VLOp GPR:$vl)))),
(!cast<Instruction>(instruction_name#"_VV_"# vlmul.MX)
op_reg_class:$rs1,
op_reg_class:$rs2,
GPR:$vl, sew)>;
multiclass VPatBinaryVL_VV_VX<SDNode vop, string instruction_name> {
foreach vti = AllIntegerVectors in {
def : VPatBinaryVL_VV<vop, instruction_name,
vti.Vector, vti.Vector, vti.Mask, vti.SEW,
vti.LMul, vti.RegClass, vti.RegClass>;
// FIXME: Support splats.
}
}
multiclass VPatBinaryVL_VV_VX_VI<SDNode vop, string instruction_name,
Operand ImmType = simm5> {
foreach vti = AllIntegerVectors in {
def : VPatBinaryVL_VV<vop, instruction_name,
vti.Vector, vti.Vector, vti.Mask, vti.SEW,
vti.LMul, vti.RegClass, vti.RegClass>;
// FIXME: Support splats.
}
}
multiclass VPatBinaryFPVL_VV_VF<SDNode vop, string instruction_name> {
foreach vti = AllFloatVectors in {
def : VPatBinaryVL_VV<vop, instruction_name,
vti.Vector, vti.Vector, vti.Mask, vti.SEW,
vti.LMul, vti.RegClass, vti.RegClass>;
// FIXME: Support splats.
}
}
//===----------------------------------------------------------------------===//
// Patterns.
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
// 7.4. Vector Unit-Stride Instructions
foreach vti = AllVectors in {
defvar load_instr = !cast<Instruction>("PseudoVLE"#vti.SEW#"_V_"#vti.LMul.MX);
defvar store_instr = !cast<Instruction>("PseudoVSE"#vti.SEW#"_V_"#vti.LMul.MX);
// Load
def : Pat<(vti.Vector (riscv_vle_vl RVVBaseAddr:$rs1, (XLenVT (VLOp GPR:$vl)))),
(load_instr RVVBaseAddr:$rs1, GPR:$vl, vti.SEW)>;
// Store
def : Pat<(riscv_vse_vl (vti.Vector vti.RegClass:$rs2), RVVBaseAddr:$rs1, (XLenVT (VLOp GPR:$vl))),
(store_instr vti.RegClass:$rs2, RVVBaseAddr:$rs1, GPR:$vl, vti.SEW)>;
}
// 12.1. Vector Single-Width Integer Add and Subtract
defm "" : VPatBinaryVL_VV_VX_VI<riscv_add_vl, "PseudoVADD">;
defm "" : VPatBinaryVL_VV_VX<riscv_sub_vl, "PseudoVSUB">;
// 12.5. Vector Bitwise Logical Instructions
defm "" : VPatBinaryVL_VV_VX_VI<riscv_and_vl, "PseudoVAND">;
defm "" : VPatBinaryVL_VV_VX_VI<riscv_or_vl, "PseudoVOR">;
defm "" : VPatBinaryVL_VV_VX_VI<riscv_xor_vl, "PseudoVXOR">;
// 12.6. Vector Single-Width Bit Shift Instructions
defm "" : VPatBinaryVL_VV_VX_VI<riscv_shl_vl, "PseudoVSLL", uimm5>;
defm "" : VPatBinaryVL_VV_VX_VI<riscv_srl_vl, "PseudoVSRL", uimm5>;
defm "" : VPatBinaryVL_VV_VX_VI<riscv_sra_vl, "PseudoVSRA", uimm5>;
// 12.10. Vector Single-Width Integer Multiply Instructions
defm "" : VPatBinaryVL_VV_VX<riscv_mul_vl, "PseudoVMUL">;
// 12.11. Vector Integer Divide Instructions
defm "" : VPatBinaryVL_VV_VX<riscv_udiv_vl, "PseudoVDIVU">;
defm "" : VPatBinaryVL_VV_VX<riscv_sdiv_vl, "PseudoVDIV">;
defm "" : VPatBinaryVL_VV_VX<riscv_urem_vl, "PseudoVREMU">;
defm "" : VPatBinaryVL_VV_VX<riscv_srem_vl, "PseudoVREM">;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
// 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions
defm "" : VPatBinaryFPVL_VV_VF<riscv_fadd_vl, "PseudoVFADD">;
defm "" : VPatBinaryFPVL_VV_VF<riscv_fsub_vl, "PseudoVFSUB">;
// 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
defm "" : VPatBinaryFPVL_VV_VF<riscv_fmul_vl, "PseudoVFMUL">;
defm "" : VPatBinaryFPVL_VV_VF<riscv_fdiv_vl, "PseudoVFDIV">;
// 14.10. Vector Floating-Point Sign-Injection Instructions
// Handle fneg with VFSGNJN using the same input for both operands.
foreach vti = AllFloatVectors in {
def : Pat<(riscv_fneg_vl (vti.Vector vti.RegClass:$rs), (vti.Mask true_mask),
(XLenVT (VLOp GPR:$vl))),
(!cast<Instruction>("PseudoVFSGNJN_VV_"# vti.LMul.MX)
vti.RegClass:$rs, vti.RegClass:$rs, GPR:$vl, vti.SEW)>;
}
} // Predicates = [HasStdExtV, HasStdExtF]

View File

@ -27,6 +27,18 @@ using namespace llvm;
#define GET_SUBTARGETINFO_CTOR
#include "RISCVGenSubtargetInfo.inc"
static cl::opt<unsigned> RVVVectorBitsMin(
"riscv-v-vector-bits-min",
cl::desc("Assume V extension vector registers are at least this big, "
"with zero meaning no minimum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<unsigned> RVVVectorLMULMax(
"riscv-v-fixed-length-vector-lmul-max",
cl::desc("The maximum LMUL value to use for fixed length vectors. "
"Fractional LMUL values are not supported."),
cl::init(8), cl::Hidden);
void RISCVSubtarget::anchor() {}
RISCVSubtarget &RISCVSubtarget::initializeSubtargetDependencies(
@ -81,3 +93,30 @@ const LegalizerInfo *RISCVSubtarget::getLegalizerInfo() const {
const RegisterBankInfo *RISCVSubtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
unsigned RISCVSubtarget::getMinRVVVectorSizeInBits() const {
assert(hasStdExtV() &&
"Tried to get vector length without V extension support!");
assert((RVVVectorBitsMin == 0 ||
(RVVVectorBitsMin >= 128 && isPowerOf2_32(RVVVectorBitsMin))) &&
"V extension requires vector length to be at least 128 and a power of "
"2!");
return PowerOf2Floor(RVVVectorBitsMin < 128 ? 0 : RVVVectorBitsMin);
}
unsigned RISCVSubtarget::getMaxLMULForFixedLengthVectors() const {
assert(hasStdExtV() &&
"Tried to get maximum LMUL without V extension support!");
assert(RVVVectorLMULMax <= 8 && isPowerOf2_32(RVVVectorLMULMax) &&
"V extension requires a LMUL to be at most 8 and a power of 2!");
return PowerOf2Floor(std::max<unsigned>(RVVVectorLMULMax, 1));
}
bool RISCVSubtarget::useRVVForFixedLengthVectors() const {
return hasStdExtV() && getMinRVVVectorSizeInBits() != 0;
}
unsigned RISCVSubtarget::getLMULForFixedLengthVector(MVT VT) const {
unsigned MinVLen = getMinRVVVectorSizeInBits();
return divideCeil(VT.getSizeInBits(), MinVLen);
}

View File

@ -147,6 +147,14 @@ public:
InstructionSelector *getInstructionSelector() const override;
const LegalizerInfo *getLegalizerInfo() const override;
const RegisterBankInfo *getRegBankInfo() const override;
// Return the known range for the bit length of RVV data registers. A value
// of 0 means nothing is known about that particular limit beyond what's
// implied by the architecture.
unsigned getMinRVVVectorSizeInBits() const;
unsigned getLMULForFixedLengthVector(MVT VT) const;
unsigned getMaxLMULForFixedLengthVectors() const;
bool useRVVForFixedLengthVectors() const;
};
} // End llvm namespace

View File

@ -0,0 +1,926 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=riscv32 -mattr=+experimental-v,+experimental-zfh,+f,+d -verify-machineinstrs -riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-lmul-max=2 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,LMULMAX2
; RUN: llc -mtriple=riscv64 -mattr=+experimental-v,+experimental-zfh,+f,+d -verify-machineinstrs -riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-lmul-max=2 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,LMULMAX2
; RUN: llc -mtriple=riscv32 -mattr=+experimental-v,+experimental-zfh,+f,+d -verify-machineinstrs -riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-lmul-max=1 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,LMULMAX1,LMULMAX1-RV32
; RUN: llc -mtriple=riscv64 -mattr=+experimental-v,+experimental-zfh,+f,+d -verify-machineinstrs -riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-lmul-max=1 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,LMULMAX1,LMULMAX1-RV64
define void @fadd_v8f16(<8 x half>* %x, <8 x half>* %y) {
; CHECK-LABEL: fadd_v8f16:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 8
; CHECK-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; CHECK-NEXT: vle16.v v25, (a0)
; CHECK-NEXT: vle16.v v26, (a1)
; CHECK-NEXT: vfadd.vv v25, v25, v26
; CHECK-NEXT: vse16.v v25, (a0)
; CHECK-NEXT: ret
%a = load <8 x half>, <8 x half>* %x
%b = load <8 x half>, <8 x half>* %y
%c = fadd <8 x half> %a, %b
store <8 x half> %c, <8 x half>* %x
ret void
}
define void @fadd_v4f32(<4 x float>* %x, <4 x float>* %y) {
; CHECK-LABEL: fadd_v4f32:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 4
; CHECK-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; CHECK-NEXT: vle32.v v25, (a0)
; CHECK-NEXT: vle32.v v26, (a1)
; CHECK-NEXT: vfadd.vv v25, v25, v26
; CHECK-NEXT: vse32.v v25, (a0)
; CHECK-NEXT: ret
%a = load <4 x float>, <4 x float>* %x
%b = load <4 x float>, <4 x float>* %y
%c = fadd <4 x float> %a, %b
store <4 x float> %c, <4 x float>* %x
ret void
}
define void @fadd_v2f64(<2 x double>* %x, <2 x double>* %y) {
; CHECK-LABEL: fadd_v2f64:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 2
; CHECK-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; CHECK-NEXT: vle64.v v25, (a0)
; CHECK-NEXT: vle64.v v26, (a1)
; CHECK-NEXT: vfadd.vv v25, v25, v26
; CHECK-NEXT: vse64.v v25, (a0)
; CHECK-NEXT: ret
%a = load <2 x double>, <2 x double>* %x
%b = load <2 x double>, <2 x double>* %y
%c = fadd <2 x double> %a, %b
store <2 x double> %c, <2 x double>* %x
ret void
}
define void @fsub_v8f16(<8 x half>* %x, <8 x half>* %y) {
; CHECK-LABEL: fsub_v8f16:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 8
; CHECK-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; CHECK-NEXT: vle16.v v25, (a0)
; CHECK-NEXT: vle16.v v26, (a1)
; CHECK-NEXT: vfsub.vv v25, v25, v26
; CHECK-NEXT: vse16.v v25, (a0)
; CHECK-NEXT: ret
%a = load <8 x half>, <8 x half>* %x
%b = load <8 x half>, <8 x half>* %y
%c = fsub <8 x half> %a, %b
store <8 x half> %c, <8 x half>* %x
ret void
}
define void @fsub_v4f32(<4 x float>* %x, <4 x float>* %y) {
; CHECK-LABEL: fsub_v4f32:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 4
; CHECK-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; CHECK-NEXT: vle32.v v25, (a0)
; CHECK-NEXT: vle32.v v26, (a1)
; CHECK-NEXT: vfsub.vv v25, v25, v26
; CHECK-NEXT: vse32.v v25, (a0)
; CHECK-NEXT: ret
%a = load <4 x float>, <4 x float>* %x
%b = load <4 x float>, <4 x float>* %y
%c = fsub <4 x float> %a, %b
store <4 x float> %c, <4 x float>* %x
ret void
}
define void @fsub_v2f64(<2 x double>* %x, <2 x double>* %y) {
; CHECK-LABEL: fsub_v2f64:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 2
; CHECK-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; CHECK-NEXT: vle64.v v25, (a0)
; CHECK-NEXT: vle64.v v26, (a1)
; CHECK-NEXT: vfsub.vv v25, v25, v26
; CHECK-NEXT: vse64.v v25, (a0)
; CHECK-NEXT: ret
%a = load <2 x double>, <2 x double>* %x
%b = load <2 x double>, <2 x double>* %y
%c = fsub <2 x double> %a, %b
store <2 x double> %c, <2 x double>* %x
ret void
}
define void @fmul_v8f16(<8 x half>* %x, <8 x half>* %y) {
; CHECK-LABEL: fmul_v8f16:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 8
; CHECK-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; CHECK-NEXT: vle16.v v25, (a0)
; CHECK-NEXT: vle16.v v26, (a1)
; CHECK-NEXT: vfmul.vv v25, v25, v26
; CHECK-NEXT: vse16.v v25, (a0)
; CHECK-NEXT: ret
%a = load <8 x half>, <8 x half>* %x
%b = load <8 x half>, <8 x half>* %y
%c = fmul <8 x half> %a, %b
store <8 x half> %c, <8 x half>* %x
ret void
}
define void @fmul_v4f32(<4 x float>* %x, <4 x float>* %y) {
; CHECK-LABEL: fmul_v4f32:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 4
; CHECK-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; CHECK-NEXT: vle32.v v25, (a0)
; CHECK-NEXT: vle32.v v26, (a1)
; CHECK-NEXT: vfmul.vv v25, v25, v26
; CHECK-NEXT: vse32.v v25, (a0)
; CHECK-NEXT: ret
%a = load <4 x float>, <4 x float>* %x
%b = load <4 x float>, <4 x float>* %y
%c = fmul <4 x float> %a, %b
store <4 x float> %c, <4 x float>* %x
ret void
}
define void @fmul_v2f64(<2 x double>* %x, <2 x double>* %y) {
; CHECK-LABEL: fmul_v2f64:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 2
; CHECK-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; CHECK-NEXT: vle64.v v25, (a0)
; CHECK-NEXT: vle64.v v26, (a1)
; CHECK-NEXT: vfmul.vv v25, v25, v26
; CHECK-NEXT: vse64.v v25, (a0)
; CHECK-NEXT: ret
%a = load <2 x double>, <2 x double>* %x
%b = load <2 x double>, <2 x double>* %y
%c = fmul <2 x double> %a, %b
store <2 x double> %c, <2 x double>* %x
ret void
}
define void @fdiv_v8f16(<8 x half>* %x, <8 x half>* %y) {
; CHECK-LABEL: fdiv_v8f16:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 8
; CHECK-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; CHECK-NEXT: vle16.v v25, (a0)
; CHECK-NEXT: vle16.v v26, (a1)
; CHECK-NEXT: vfdiv.vv v25, v25, v26
; CHECK-NEXT: vse16.v v25, (a0)
; CHECK-NEXT: ret
%a = load <8 x half>, <8 x half>* %x
%b = load <8 x half>, <8 x half>* %y
%c = fdiv <8 x half> %a, %b
store <8 x half> %c, <8 x half>* %x
ret void
}
define void @fdiv_v4f32(<4 x float>* %x, <4 x float>* %y) {
; CHECK-LABEL: fdiv_v4f32:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 4
; CHECK-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; CHECK-NEXT: vle32.v v25, (a0)
; CHECK-NEXT: vle32.v v26, (a1)
; CHECK-NEXT: vfdiv.vv v25, v25, v26
; CHECK-NEXT: vse32.v v25, (a0)
; CHECK-NEXT: ret
%a = load <4 x float>, <4 x float>* %x
%b = load <4 x float>, <4 x float>* %y
%c = fdiv <4 x float> %a, %b
store <4 x float> %c, <4 x float>* %x
ret void
}
define void @fdiv_v2f64(<2 x double>* %x, <2 x double>* %y) {
; CHECK-LABEL: fdiv_v2f64:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a2, zero, 2
; CHECK-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; CHECK-NEXT: vle64.v v25, (a0)
; CHECK-NEXT: vle64.v v26, (a1)
; CHECK-NEXT: vfdiv.vv v25, v25, v26
; CHECK-NEXT: vse64.v v25, (a0)
; CHECK-NEXT: ret
%a = load <2 x double>, <2 x double>* %x
%b = load <2 x double>, <2 x double>* %y
%c = fdiv <2 x double> %a, %b
store <2 x double> %c, <2 x double>* %x
ret void
}
define void @fneg_v8f16(<8 x half>* %x) {
; CHECK-LABEL: fneg_v8f16:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a1, zero, 8
; CHECK-NEXT: vsetvli a1, a1, e16,m1,ta,mu
; CHECK-NEXT: vle16.v v25, (a0)
; CHECK-NEXT: vfsgnjn.vv v25, v25, v25
; CHECK-NEXT: vse16.v v25, (a0)
; CHECK-NEXT: ret
%a = load <8 x half>, <8 x half>* %x
%b = fneg <8 x half> %a
store <8 x half> %b, <8 x half>* %x
ret void
}
define void @fneg_v4f32(<4 x float>* %x) {
; CHECK-LABEL: fneg_v4f32:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a1, zero, 4
; CHECK-NEXT: vsetvli a1, a1, e32,m1,ta,mu
; CHECK-NEXT: vle32.v v25, (a0)
; CHECK-NEXT: vfsgnjn.vv v25, v25, v25
; CHECK-NEXT: vse32.v v25, (a0)
; CHECK-NEXT: ret
%a = load <4 x float>, <4 x float>* %x
%b = fneg <4 x float> %a
store <4 x float> %b, <4 x float>* %x
ret void
}
define void @fneg_v2f64(<2 x double>* %x) {
; CHECK-LABEL: fneg_v2f64:
; CHECK: # %bb.0:
; CHECK-NEXT: addi a1, zero, 2
; CHECK-NEXT: vsetvli a1, a1, e64,m1,ta,mu
; CHECK-NEXT: vle64.v v25, (a0)
; CHECK-NEXT: vfsgnjn.vv v25, v25, v25
; CHECK-NEXT: vse64.v v25, (a0)
; CHECK-NEXT: ret
%a = load <2 x double>, <2 x double>* %x
%b = fneg <2 x double> %a
store <2 x double> %b, <2 x double>* %x
ret void
}
define void @fadd_v16f16(<16 x half>* %x, <16 x half>* %y) {
; LMULMAX2-LABEL: fadd_v16f16:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 16
; LMULMAX2-NEXT: vsetvli a2, a2, e16,m2,ta,mu
; LMULMAX2-NEXT: vle16.v v26, (a0)
; LMULMAX2-NEXT: vle16.v v28, (a1)
; LMULMAX2-NEXT: vfadd.vv v26, v26, v28
; LMULMAX2-NEXT: vse16.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fadd_v16f16:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 8
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle16.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfadd.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfadd.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fadd_v16f16:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 8
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle16.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfadd.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfadd.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <16 x half>, <16 x half>* %x
%b = load <16 x half>, <16 x half>* %y
%c = fadd <16 x half> %a, %b
store <16 x half> %c, <16 x half>* %x
ret void
}
define void @fadd_v8f32(<8 x float>* %x, <8 x float>* %y) {
; LMULMAX2-LABEL: fadd_v8f32:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 8
; LMULMAX2-NEXT: vsetvli a2, a2, e32,m2,ta,mu
; LMULMAX2-NEXT: vle32.v v26, (a0)
; LMULMAX2-NEXT: vle32.v v28, (a1)
; LMULMAX2-NEXT: vfadd.vv v26, v26, v28
; LMULMAX2-NEXT: vse32.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fadd_v8f32:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 4
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle32.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfadd.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfadd.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fadd_v8f32:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 4
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle32.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfadd.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfadd.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <8 x float>, <8 x float>* %x
%b = load <8 x float>, <8 x float>* %y
%c = fadd <8 x float> %a, %b
store <8 x float> %c, <8 x float>* %x
ret void
}
define void @fadd_v4f64(<4 x double>* %x, <4 x double>* %y) {
; LMULMAX2-LABEL: fadd_v4f64:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 4
; LMULMAX2-NEXT: vsetvli a2, a2, e64,m2,ta,mu
; LMULMAX2-NEXT: vle64.v v26, (a0)
; LMULMAX2-NEXT: vle64.v v28, (a1)
; LMULMAX2-NEXT: vfadd.vv v26, v26, v28
; LMULMAX2-NEXT: vse64.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fadd_v4f64:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 2
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle64.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfadd.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfadd.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fadd_v4f64:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 2
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle64.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfadd.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfadd.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <4 x double>, <4 x double>* %x
%b = load <4 x double>, <4 x double>* %y
%c = fadd <4 x double> %a, %b
store <4 x double> %c, <4 x double>* %x
ret void
}
define void @fsub_v16f16(<16 x half>* %x, <16 x half>* %y) {
; LMULMAX2-LABEL: fsub_v16f16:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 16
; LMULMAX2-NEXT: vsetvli a2, a2, e16,m2,ta,mu
; LMULMAX2-NEXT: vle16.v v26, (a0)
; LMULMAX2-NEXT: vle16.v v28, (a1)
; LMULMAX2-NEXT: vfsub.vv v26, v26, v28
; LMULMAX2-NEXT: vse16.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fsub_v16f16:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 8
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle16.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfsub.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfsub.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fsub_v16f16:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 8
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle16.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfsub.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfsub.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <16 x half>, <16 x half>* %x
%b = load <16 x half>, <16 x half>* %y
%c = fsub <16 x half> %a, %b
store <16 x half> %c, <16 x half>* %x
ret void
}
define void @fsub_v8f32(<8 x float>* %x, <8 x float>* %y) {
; LMULMAX2-LABEL: fsub_v8f32:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 8
; LMULMAX2-NEXT: vsetvli a2, a2, e32,m2,ta,mu
; LMULMAX2-NEXT: vle32.v v26, (a0)
; LMULMAX2-NEXT: vle32.v v28, (a1)
; LMULMAX2-NEXT: vfsub.vv v26, v26, v28
; LMULMAX2-NEXT: vse32.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fsub_v8f32:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 4
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle32.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfsub.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfsub.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fsub_v8f32:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 4
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle32.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfsub.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfsub.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <8 x float>, <8 x float>* %x
%b = load <8 x float>, <8 x float>* %y
%c = fsub <8 x float> %a, %b
store <8 x float> %c, <8 x float>* %x
ret void
}
define void @fsub_v4f64(<4 x double>* %x, <4 x double>* %y) {
; LMULMAX2-LABEL: fsub_v4f64:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 4
; LMULMAX2-NEXT: vsetvli a2, a2, e64,m2,ta,mu
; LMULMAX2-NEXT: vle64.v v26, (a0)
; LMULMAX2-NEXT: vle64.v v28, (a1)
; LMULMAX2-NEXT: vfsub.vv v26, v26, v28
; LMULMAX2-NEXT: vse64.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fsub_v4f64:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 2
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle64.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfsub.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfsub.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fsub_v4f64:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 2
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle64.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfsub.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfsub.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <4 x double>, <4 x double>* %x
%b = load <4 x double>, <4 x double>* %y
%c = fsub <4 x double> %a, %b
store <4 x double> %c, <4 x double>* %x
ret void
}
define void @fmul_v16f16(<16 x half>* %x, <16 x half>* %y) {
; LMULMAX2-LABEL: fmul_v16f16:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 16
; LMULMAX2-NEXT: vsetvli a2, a2, e16,m2,ta,mu
; LMULMAX2-NEXT: vle16.v v26, (a0)
; LMULMAX2-NEXT: vle16.v v28, (a1)
; LMULMAX2-NEXT: vfmul.vv v26, v26, v28
; LMULMAX2-NEXT: vse16.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fmul_v16f16:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 8
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle16.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfmul.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfmul.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fmul_v16f16:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 8
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle16.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfmul.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfmul.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <16 x half>, <16 x half>* %x
%b = load <16 x half>, <16 x half>* %y
%c = fmul <16 x half> %a, %b
store <16 x half> %c, <16 x half>* %x
ret void
}
define void @fmul_v8f32(<8 x float>* %x, <8 x float>* %y) {
; LMULMAX2-LABEL: fmul_v8f32:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 8
; LMULMAX2-NEXT: vsetvli a2, a2, e32,m2,ta,mu
; LMULMAX2-NEXT: vle32.v v26, (a0)
; LMULMAX2-NEXT: vle32.v v28, (a1)
; LMULMAX2-NEXT: vfmul.vv v26, v26, v28
; LMULMAX2-NEXT: vse32.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fmul_v8f32:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 4
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle32.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfmul.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfmul.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fmul_v8f32:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 4
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle32.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfmul.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfmul.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <8 x float>, <8 x float>* %x
%b = load <8 x float>, <8 x float>* %y
%c = fmul <8 x float> %a, %b
store <8 x float> %c, <8 x float>* %x
ret void
}
define void @fmul_v4f64(<4 x double>* %x, <4 x double>* %y) {
; LMULMAX2-LABEL: fmul_v4f64:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 4
; LMULMAX2-NEXT: vsetvli a2, a2, e64,m2,ta,mu
; LMULMAX2-NEXT: vle64.v v26, (a0)
; LMULMAX2-NEXT: vle64.v v28, (a1)
; LMULMAX2-NEXT: vfmul.vv v26, v26, v28
; LMULMAX2-NEXT: vse64.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fmul_v4f64:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 2
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle64.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfmul.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfmul.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fmul_v4f64:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 2
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle64.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfmul.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfmul.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <4 x double>, <4 x double>* %x
%b = load <4 x double>, <4 x double>* %y
%c = fmul <4 x double> %a, %b
store <4 x double> %c, <4 x double>* %x
ret void
}
define void @fdiv_v16f16(<16 x half>* %x, <16 x half>* %y) {
; LMULMAX2-LABEL: fdiv_v16f16:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 16
; LMULMAX2-NEXT: vsetvli a2, a2, e16,m2,ta,mu
; LMULMAX2-NEXT: vle16.v v26, (a0)
; LMULMAX2-NEXT: vle16.v v28, (a1)
; LMULMAX2-NEXT: vfdiv.vv v26, v26, v28
; LMULMAX2-NEXT: vse16.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fdiv_v16f16:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 8
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle16.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfdiv.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfdiv.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fdiv_v16f16:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 8
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e16,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle16.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle16.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle16.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle16.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfdiv.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfdiv.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse16.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse16.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <16 x half>, <16 x half>* %x
%b = load <16 x half>, <16 x half>* %y
%c = fdiv <16 x half> %a, %b
store <16 x half> %c, <16 x half>* %x
ret void
}
define void @fdiv_v8f32(<8 x float>* %x, <8 x float>* %y) {
; LMULMAX2-LABEL: fdiv_v8f32:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 8
; LMULMAX2-NEXT: vsetvli a2, a2, e32,m2,ta,mu
; LMULMAX2-NEXT: vle32.v v26, (a0)
; LMULMAX2-NEXT: vle32.v v28, (a1)
; LMULMAX2-NEXT: vfdiv.vv v26, v26, v28
; LMULMAX2-NEXT: vse32.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fdiv_v8f32:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 4
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle32.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfdiv.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfdiv.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fdiv_v8f32:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 4
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e32,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle32.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle32.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle32.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle32.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfdiv.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfdiv.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse32.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse32.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <8 x float>, <8 x float>* %x
%b = load <8 x float>, <8 x float>* %y
%c = fdiv <8 x float> %a, %b
store <8 x float> %c, <8 x float>* %x
ret void
}
define void @fdiv_v4f64(<4 x double>* %x, <4 x double>* %y) {
; LMULMAX2-LABEL: fdiv_v4f64:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a2, zero, 4
; LMULMAX2-NEXT: vsetvli a2, a2, e64,m2,ta,mu
; LMULMAX2-NEXT: vle64.v v26, (a0)
; LMULMAX2-NEXT: vle64.v v28, (a1)
; LMULMAX2-NEXT: vfdiv.vv v26, v26, v28
; LMULMAX2-NEXT: vse64.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-RV32-LABEL: fdiv_v4f64:
; LMULMAX1-RV32: # %bb.0:
; LMULMAX1-RV32-NEXT: addi a2, zero, 2
; LMULMAX1-RV32-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV32-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV32-NEXT: addi a2, a0, 16
; LMULMAX1-RV32-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV32-NEXT: addi a3, a1, 16
; LMULMAX1-RV32-NEXT: vle64.v v27, (a3)
; LMULMAX1-RV32-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV32-NEXT: vfdiv.vv v26, v26, v27
; LMULMAX1-RV32-NEXT: vfdiv.vv v25, v25, v28
; LMULMAX1-RV32-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV32-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV32-NEXT: ret
;
; LMULMAX1-RV64-LABEL: fdiv_v4f64:
; LMULMAX1-RV64: # %bb.0:
; LMULMAX1-RV64-NEXT: addi a2, zero, 2
; LMULMAX1-RV64-NEXT: vsetvli a2, a2, e64,m1,ta,mu
; LMULMAX1-RV64-NEXT: vle64.v v25, (a0)
; LMULMAX1-RV64-NEXT: addi a2, a1, 16
; LMULMAX1-RV64-NEXT: vle64.v v26, (a2)
; LMULMAX1-RV64-NEXT: addi a2, a0, 16
; LMULMAX1-RV64-NEXT: vle64.v v27, (a2)
; LMULMAX1-RV64-NEXT: vle64.v v28, (a1)
; LMULMAX1-RV64-NEXT: vfdiv.vv v26, v27, v26
; LMULMAX1-RV64-NEXT: vfdiv.vv v25, v25, v28
; LMULMAX1-RV64-NEXT: vse64.v v25, (a0)
; LMULMAX1-RV64-NEXT: vse64.v v26, (a2)
; LMULMAX1-RV64-NEXT: ret
%a = load <4 x double>, <4 x double>* %x
%b = load <4 x double>, <4 x double>* %y
%c = fdiv <4 x double> %a, %b
store <4 x double> %c, <4 x double>* %x
ret void
}
define void @fneg_v16f16(<16 x half>* %x) {
; LMULMAX2-LABEL: fneg_v16f16:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a1, zero, 16
; LMULMAX2-NEXT: vsetvli a1, a1, e16,m2,ta,mu
; LMULMAX2-NEXT: vle16.v v26, (a0)
; LMULMAX2-NEXT: vfsgnjn.vv v26, v26, v26
; LMULMAX2-NEXT: vse16.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-LABEL: fneg_v16f16:
; LMULMAX1: # %bb.0:
; LMULMAX1-NEXT: addi a1, zero, 8
; LMULMAX1-NEXT: vsetvli a1, a1, e16,m1,ta,mu
; LMULMAX1-NEXT: addi a1, a0, 16
; LMULMAX1-NEXT: vle16.v v25, (a1)
; LMULMAX1-NEXT: vle16.v v26, (a0)
; LMULMAX1-NEXT: vfsgnjn.vv v25, v25, v25
; LMULMAX1-NEXT: vfsgnjn.vv v26, v26, v26
; LMULMAX1-NEXT: vse16.v v26, (a0)
; LMULMAX1-NEXT: vse16.v v25, (a1)
; LMULMAX1-NEXT: ret
%a = load <16 x half>, <16 x half>* %x
%b = fneg <16 x half> %a
store <16 x half> %b, <16 x half>* %x
ret void
}
define void @fneg_v8f32(<8 x float>* %x) {
; LMULMAX2-LABEL: fneg_v8f32:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a1, zero, 8
; LMULMAX2-NEXT: vsetvli a1, a1, e32,m2,ta,mu
; LMULMAX2-NEXT: vle32.v v26, (a0)
; LMULMAX2-NEXT: vfsgnjn.vv v26, v26, v26
; LMULMAX2-NEXT: vse32.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-LABEL: fneg_v8f32:
; LMULMAX1: # %bb.0:
; LMULMAX1-NEXT: addi a1, zero, 4
; LMULMAX1-NEXT: vsetvli a1, a1, e32,m1,ta,mu
; LMULMAX1-NEXT: addi a1, a0, 16
; LMULMAX1-NEXT: vle32.v v25, (a1)
; LMULMAX1-NEXT: vle32.v v26, (a0)
; LMULMAX1-NEXT: vfsgnjn.vv v25, v25, v25
; LMULMAX1-NEXT: vfsgnjn.vv v26, v26, v26
; LMULMAX1-NEXT: vse32.v v26, (a0)
; LMULMAX1-NEXT: vse32.v v25, (a1)
; LMULMAX1-NEXT: ret
%a = load <8 x float>, <8 x float>* %x
%b = fneg <8 x float> %a
store <8 x float> %b, <8 x float>* %x
ret void
}
define void @fneg_v4f64(<4 x double>* %x) {
; LMULMAX2-LABEL: fneg_v4f64:
; LMULMAX2: # %bb.0:
; LMULMAX2-NEXT: addi a1, zero, 4
; LMULMAX2-NEXT: vsetvli a1, a1, e64,m2,ta,mu
; LMULMAX2-NEXT: vle64.v v26, (a0)
; LMULMAX2-NEXT: vfsgnjn.vv v26, v26, v26
; LMULMAX2-NEXT: vse64.v v26, (a0)
; LMULMAX2-NEXT: ret
;
; LMULMAX1-LABEL: fneg_v4f64:
; LMULMAX1: # %bb.0:
; LMULMAX1-NEXT: addi a1, zero, 2
; LMULMAX1-NEXT: vsetvli a1, a1, e64,m1,ta,mu
; LMULMAX1-NEXT: addi a1, a0, 16
; LMULMAX1-NEXT: vle64.v v25, (a1)
; LMULMAX1-NEXT: vle64.v v26, (a0)
; LMULMAX1-NEXT: vfsgnjn.vv v25, v25, v25
; LMULMAX1-NEXT: vfsgnjn.vv v26, v26, v26
; LMULMAX1-NEXT: vse64.v v26, (a0)
; LMULMAX1-NEXT: vse64.v v25, (a1)
; LMULMAX1-NEXT: ret
%a = load <4 x double>, <4 x double>* %x
%b = fneg <4 x double> %a
store <4 x double> %b, <4 x double>* %x
ret void
}

File diff suppressed because it is too large Load Diff