forked from OSchip/llvm-project
This patch implements as much of the narrowing conversion error specified by
[dcl.init.list] as is possible without generalized initializer lists or full constant expression support, and adds a c++0x-compat warning in C++98 mode. The FixIt currently uses a typedef's basename without qualification, which is likely to be incorrect on some code. If it's incorrect on too much code, we should write a function to get the string that refers to a type from a particular context. The warning is currently off by default. I'll fix LLVM and clang before turning it on. llvm-svn: 136181
This commit is contained in:
parent
8771796493
commit
a6667816d5
|
@ -55,8 +55,9 @@ def FormatExtraArgs : DiagGroup<"format-extra-args">;
|
|||
def FormatZeroLength : DiagGroup<"format-zero-length">;
|
||||
|
||||
def CXXHexFloats : DiagGroup<"c++-hex-floats">;
|
||||
def CXX0xNarrowing : DiagGroup<"c++0x-narrowing">;
|
||||
|
||||
def CXX0xCompat : DiagGroup<"c++0x-compat", [CXXHexFloats]>;
|
||||
def CXX0xCompat : DiagGroup<"c++0x-compat", [CXXHexFloats, CXX0xNarrowing]>;
|
||||
def : DiagGroup<"effc++">;
|
||||
def ExitTimeDestructors : DiagGroup<"exit-time-destructors">;
|
||||
def FourByteMultiChar : DiagGroup<"four-char-constants">;
|
||||
|
|
|
@ -2464,6 +2464,21 @@ def err_empty_scalar_initializer : Error<"scalar initializer cannot be empty">;
|
|||
def err_illegal_initializer : Error<
|
||||
"illegal initializer (only variables can be initialized)">;
|
||||
def err_illegal_initializer_type : Error<"illegal initializer type %0">;
|
||||
def err_init_list_variable_narrowing : Error<
|
||||
"non-constant-expression cannot be narrowed from type %0 to %1 in "
|
||||
"initializer list">;
|
||||
def err_init_list_constant_narrowing : Error<
|
||||
"constant expression evaluates to %0 which cannot be narrowed to type %1">;
|
||||
def warn_init_list_variable_narrowing : Warning<
|
||||
"non-constant-expression cannot be narrowed from type %0 to %1 in "
|
||||
"initializer list in C++0x">,
|
||||
InGroup<CXX0xNarrowing>, DefaultIgnore;
|
||||
def warn_init_list_constant_narrowing : Warning<
|
||||
"constant expression evaluates to %0 which cannot be narrowed to type %1 in "
|
||||
"C++0x">,
|
||||
InGroup<CXX0xNarrowing>, DefaultIgnore;
|
||||
def note_init_list_narrowing_override : Note<
|
||||
"override this message by inserting an explicit cast">;
|
||||
def err_init_objc_class : Error<
|
||||
"cannot initialize Objective-C class type %0">;
|
||||
def err_implicit_empty_initializer : Error<
|
||||
|
|
|
@ -732,7 +732,18 @@ public:
|
|||
/// \brief Determine whether this initialization is direct call to a
|
||||
/// constructor.
|
||||
bool isConstructorInitialization() const;
|
||||
|
||||
|
||||
// \brief Returns whether the last step in this initialization sequence is a
|
||||
// narrowing conversion, defined by C++0x [dcl.init.list]p7.
|
||||
//
|
||||
// If this function returns true, *isInitializerConstant will be set to
|
||||
// describe whether *Initializer was a constant expression. If
|
||||
// *isInitializerConstant is set to true, *ConstantValue will be set to the
|
||||
// evaluated value of *Initializer.
|
||||
bool endsWithNarrowing(ASTContext &Ctx, const Expr *Initializer,
|
||||
bool *isInitializerConstant,
|
||||
APValue *ConstantValue) const;
|
||||
|
||||
/// \brief Add a new step in the initialization that resolves the address
|
||||
/// of an overloaded function to a specific function declaration.
|
||||
///
|
||||
|
|
|
@ -1342,7 +1342,8 @@ public:
|
|||
ExprResult Init);
|
||||
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
|
||||
SourceLocation EqualLoc,
|
||||
ExprResult Init);
|
||||
ExprResult Init,
|
||||
bool TopLevelOfInitList = false);
|
||||
ExprResult PerformObjectArgumentInitialization(Expr *From,
|
||||
NestedNameSpecifier *Qualifier,
|
||||
NamedDecl *FoundDecl,
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include "clang/AST/ExprObjC.h"
|
||||
#include "clang/AST/TypeLoc.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <map>
|
||||
using namespace clang;
|
||||
|
||||
|
@ -778,7 +779,8 @@ void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
|
|||
// We cannot initialize this element, so let
|
||||
// PerformCopyInitialization produce the appropriate diagnostic.
|
||||
SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
|
||||
SemaRef.Owned(expr));
|
||||
SemaRef.Owned(expr),
|
||||
/*TopLevelOfInitList=*/true);
|
||||
hadError = true;
|
||||
++Index;
|
||||
++StructuredIndex;
|
||||
|
@ -820,7 +822,8 @@ void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
|
|||
|
||||
ExprResult Result =
|
||||
SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
|
||||
SemaRef.Owned(expr));
|
||||
SemaRef.Owned(expr),
|
||||
/*TopLevelOfInitList=*/true);
|
||||
|
||||
Expr *ResultExpr = 0;
|
||||
|
||||
|
@ -859,7 +862,8 @@ void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
|
|||
|
||||
ExprResult Result =
|
||||
SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
|
||||
SemaRef.Owned(expr));
|
||||
SemaRef.Owned(expr),
|
||||
/*TopLevelOfInitList=*/true);
|
||||
|
||||
if (Result.isInvalid())
|
||||
hadError = true;
|
||||
|
@ -908,7 +912,8 @@ void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
|
|||
if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
|
||||
ExprResult Result =
|
||||
SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
|
||||
SemaRef.Owned(Init));
|
||||
SemaRef.Owned(Init),
|
||||
/*TopLevelOfInitList=*/true);
|
||||
|
||||
Expr *ResultExpr = 0;
|
||||
if (Result.isInvalid())
|
||||
|
@ -2197,6 +2202,158 @@ bool InitializationSequence::isConstructorInitialization() const {
|
|||
return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
|
||||
}
|
||||
|
||||
bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
|
||||
const Expr *Initializer,
|
||||
bool *isInitializerConstant,
|
||||
APValue *ConstantValue) const {
|
||||
if (Steps.empty() || Initializer->isValueDependent())
|
||||
return false;
|
||||
|
||||
const Step &LastStep = Steps.back();
|
||||
if (LastStep.Kind != SK_ConversionSequence)
|
||||
return false;
|
||||
|
||||
const ImplicitConversionSequence &ICS = *LastStep.ICS;
|
||||
const StandardConversionSequence *SCS = NULL;
|
||||
switch (ICS.getKind()) {
|
||||
case ImplicitConversionSequence::StandardConversion:
|
||||
SCS = &ICS.Standard;
|
||||
break;
|
||||
case ImplicitConversionSequence::UserDefinedConversion:
|
||||
SCS = &ICS.UserDefined.After;
|
||||
break;
|
||||
case ImplicitConversionSequence::AmbiguousConversion:
|
||||
case ImplicitConversionSequence::EllipsisConversion:
|
||||
case ImplicitConversionSequence::BadConversion:
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if SCS represents a narrowing conversion, according to C++0x
|
||||
// [dcl.init.list]p7:
|
||||
//
|
||||
// A narrowing conversion is an implicit conversion ...
|
||||
ImplicitConversionKind PossibleNarrowing = SCS->Second;
|
||||
QualType FromType = SCS->getToType(0);
|
||||
QualType ToType = SCS->getToType(1);
|
||||
switch (PossibleNarrowing) {
|
||||
// * from a floating-point type to an integer type, or
|
||||
//
|
||||
// * from an integer type or unscoped enumeration type to a floating-point
|
||||
// type, except where the source is a constant expression and the actual
|
||||
// value after conversion will fit into the target type and will produce
|
||||
// the original value when converted back to the original type, or
|
||||
case ICK_Floating_Integral:
|
||||
if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
|
||||
*isInitializerConstant = false;
|
||||
return true;
|
||||
} else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
|
||||
llvm::APSInt IntConstantValue;
|
||||
if (Initializer &&
|
||||
Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
|
||||
// Convert the integer to the floating type.
|
||||
llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
|
||||
Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
|
||||
llvm::APFloat::rmNearestTiesToEven);
|
||||
// And back.
|
||||
llvm::APSInt ConvertedValue = IntConstantValue;
|
||||
bool ignored;
|
||||
Result.convertToInteger(ConvertedValue,
|
||||
llvm::APFloat::rmTowardZero, &ignored);
|
||||
// If the resulting value is different, this was a narrowing conversion.
|
||||
if (IntConstantValue != ConvertedValue) {
|
||||
*isInitializerConstant = true;
|
||||
*ConstantValue = APValue(IntConstantValue);
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
// Variables are always narrowings.
|
||||
*isInitializerConstant = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
// * from long double to double or float, or from double to float, except
|
||||
// where the source is a constant expression and the actual value after
|
||||
// conversion is within the range of values that can be represented (even
|
||||
// if it cannot be represented exactly), or
|
||||
case ICK_Floating_Conversion:
|
||||
if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
|
||||
// FromType is larger than ToType.
|
||||
Expr::EvalResult InitializerValue;
|
||||
// FIXME: Check whether Initializer is a constant expression according
|
||||
// to C++0x [expr.const], rather than just whether it can be folded.
|
||||
if (Initializer->Evaluate(InitializerValue, Ctx) &&
|
||||
!InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
|
||||
// Constant! (Except for FIXME above.)
|
||||
llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
|
||||
// Convert the source value into the target type.
|
||||
bool ignored;
|
||||
llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
|
||||
Ctx.getFloatTypeSemantics(ToType),
|
||||
llvm::APFloat::rmNearestTiesToEven, &ignored);
|
||||
// If there was no overflow, the source value is within the range of
|
||||
// values that can be represented.
|
||||
if (ConvertStatus & llvm::APFloat::opOverflow) {
|
||||
*isInitializerConstant = true;
|
||||
*ConstantValue = InitializerValue.Val;
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
*isInitializerConstant = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
// * from an integer type or unscoped enumeration type to an integer type
|
||||
// that cannot represent all the values of the original type, except where
|
||||
// the source is a constant expression and the actual value after
|
||||
// conversion will fit into the target type and will produce the original
|
||||
// value when converted back to the original type.
|
||||
case ICK_Integral_Conversion: {
|
||||
assert(FromType->isIntegralOrUnscopedEnumerationType());
|
||||
assert(ToType->isIntegralOrUnscopedEnumerationType());
|
||||
const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
|
||||
const unsigned FromWidth = Ctx.getIntWidth(FromType);
|
||||
const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
|
||||
const unsigned ToWidth = Ctx.getIntWidth(ToType);
|
||||
|
||||
if (FromWidth > ToWidth ||
|
||||
(FromWidth == ToWidth && FromSigned != ToSigned)) {
|
||||
// Not all values of FromType can be represented in ToType.
|
||||
llvm::APSInt InitializerValue;
|
||||
if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
|
||||
*isInitializerConstant = true;
|
||||
*ConstantValue = APValue(InitializerValue);
|
||||
|
||||
// Add a bit to the InitializerValue so we don't have to worry about
|
||||
// signed vs. unsigned comparisons.
|
||||
InitializerValue = InitializerValue.extend(
|
||||
InitializerValue.getBitWidth() + 1);
|
||||
// Convert the initializer to and from the target width and signed-ness.
|
||||
llvm::APSInt ConvertedValue = InitializerValue;
|
||||
ConvertedValue = ConvertedValue.trunc(ToWidth);
|
||||
ConvertedValue.setIsSigned(ToSigned);
|
||||
ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
|
||||
ConvertedValue.setIsSigned(InitializerValue.isSigned());
|
||||
// If the result is different, this was a narrowing conversion.
|
||||
return ConvertedValue != InitializerValue;
|
||||
} else {
|
||||
// Variables are always narrowings.
|
||||
*isInitializerConstant = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
default:
|
||||
// Other kinds of conversions are not narrowings.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void InitializationSequence::AddAddressOverloadResolutionStep(
|
||||
FunctionDecl *Function,
|
||||
DeclAccessPair Found) {
|
||||
|
@ -4972,6 +5129,51 @@ void InitializationSequence::dump() const {
|
|||
dump(llvm::errs());
|
||||
}
|
||||
|
||||
static void DiagnoseNarrowingInInitList(
|
||||
Sema& S, QualType EntityType, const Expr *InitE,
|
||||
bool Constant, const APValue &ConstantValue) {
|
||||
if (Constant) {
|
||||
S.Diag(InitE->getLocStart(),
|
||||
S.getLangOptions().CPlusPlus0x
|
||||
? diag::err_init_list_constant_narrowing
|
||||
: diag::warn_init_list_constant_narrowing)
|
||||
<< InitE->getSourceRange()
|
||||
<< ConstantValue
|
||||
<< EntityType;
|
||||
} else
|
||||
S.Diag(InitE->getLocStart(),
|
||||
S.getLangOptions().CPlusPlus0x
|
||||
? diag::err_init_list_variable_narrowing
|
||||
: diag::warn_init_list_variable_narrowing)
|
||||
<< InitE->getSourceRange()
|
||||
<< InitE->getType()
|
||||
<< EntityType;
|
||||
|
||||
llvm::SmallString<128> StaticCast;
|
||||
llvm::raw_svector_ostream OS(StaticCast);
|
||||
OS << "static_cast<";
|
||||
if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
|
||||
// It's important to use the typedef's name if there is one so that the
|
||||
// fixit doesn't break code using types like int64_t.
|
||||
//
|
||||
// FIXME: This will break if the typedef requires qualification. But
|
||||
// getQualifiedNameAsString() includes non-machine-parsable components.
|
||||
OS << TT->getDecl();
|
||||
} else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
|
||||
OS << BT->getName(S.getLangOptions());
|
||||
else {
|
||||
// Oops, we didn't find the actual type of the variable. Don't emit a fixit
|
||||
// with a broken cast.
|
||||
return;
|
||||
}
|
||||
OS << ">(";
|
||||
S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
|
||||
<< InitE->getSourceRange()
|
||||
<< FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
|
||||
<< FixItHint::CreateInsertion(
|
||||
S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Initialization helper functions
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -4993,7 +5195,8 @@ Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
|
|||
ExprResult
|
||||
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
|
||||
SourceLocation EqualLoc,
|
||||
ExprResult Init) {
|
||||
ExprResult Init,
|
||||
bool TopLevelOfInitList) {
|
||||
if (Init.isInvalid())
|
||||
return ExprError();
|
||||
|
||||
|
@ -5007,5 +5210,13 @@ Sema::PerformCopyInitialization(const InitializedEntity &Entity,
|
|||
EqualLoc);
|
||||
InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
|
||||
Init.release();
|
||||
|
||||
bool Constant = false;
|
||||
APValue Result;
|
||||
if (TopLevelOfInitList &&
|
||||
Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
|
||||
DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
|
||||
Constant, Result);
|
||||
}
|
||||
return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
|
||||
}
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
// RUN: %clang_cc1 -fsyntax-only -Wc++0x-compat -fdiagnostics-parseable-fixits %s 2>&1 | FileCheck %s
|
||||
|
||||
// Verify that the appropriate fixits are emitted for narrowing conversions in
|
||||
// initializer lists.
|
||||
|
||||
typedef short int16_t;
|
||||
|
||||
void fixits() {
|
||||
int x = 999;
|
||||
struct {char c;} c2 = {x};
|
||||
// CHECK: warning:{{.*}} cannot be narrowed
|
||||
// CHECK: fix-it:{{.*}}:26}:"static_cast<char>("
|
||||
// CHECK: fix-it:{{.*}}:27}:")"
|
||||
struct {int16_t i;} i16 = {70000};
|
||||
// CHECK: warning:{{.*}} cannot be narrowed
|
||||
// CHECK: fix-it:{{.*}}:30}:"static_cast<int16_t>("
|
||||
// CHECK: fix-it:{{.*}}:35}:")"
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void maybe_shrink_int(T t) {
|
||||
struct {T t;} t2 = {700};
|
||||
}
|
||||
|
||||
void test_template() {
|
||||
maybe_shrink_int((char)3);
|
||||
// CHECK: warning:{{.*}} cannot be narrowed
|
||||
// CHECK: note:{{.*}} in instantiation
|
||||
// CHECK: note:{{.*}} override
|
||||
// FIXME: This should be static_cast<T>.
|
||||
// CHECK: fix-it:{{.*}}"static_cast<char>("
|
||||
// CHECK: fix-it:{{.*}}")"
|
||||
}
|
|
@ -0,0 +1,156 @@
|
|||
// RUN: %clang_cc1 -fsyntax-only -std=c++0x -triple x86_64-apple-macosx10.6.7 -verify %s
|
||||
|
||||
// Verify that narrowing conversions in initializer lists cause errors in C++0x
|
||||
// mode.
|
||||
|
||||
void std_example() {
|
||||
int x = 999; // x is not a constant expression
|
||||
const int y = 999;
|
||||
const int z = 99;
|
||||
char c1 = x; // OK, though it might narrow (in this case, it does narrow)
|
||||
char c2{x}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
char c3{y}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
|
||||
char c4{z}; // OK: no narrowing needed
|
||||
unsigned char uc1 = {5}; // OK: no narrowing needed
|
||||
unsigned char uc2 = {-1}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
unsigned int ui1 = {-1}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
signed int si1 =
|
||||
{ (unsigned int)-1 }; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
int ii = {2.0}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
float f1 { x }; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
float f2 { 7 }; // OK: 7 can be exactly represented as a float
|
||||
int f(int);
|
||||
int a[] =
|
||||
{ 2, f(2), f(2.0) }; // OK: the double-to-int conversion is not at the top level
|
||||
}
|
||||
|
||||
// Test each rule individually.
|
||||
|
||||
template<typename T>
|
||||
struct Agg {
|
||||
T t;
|
||||
};
|
||||
|
||||
// C++0x [dcl.init.list]p7: A narrowing conversion is an implicit conversion
|
||||
//
|
||||
// * from a floating-point type to an integer type, or
|
||||
|
||||
void float_to_int() {
|
||||
Agg<char> a1 = {1.0F}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<char> a2 = {1.0}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<char> a3 = {1.0L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
|
||||
float f = 1.0;
|
||||
double d = 1.0;
|
||||
long double ld = 1.0;
|
||||
Agg<char> a4 = {f}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<char> a5 = {d}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<char> a6 = {ld}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
}
|
||||
|
||||
// * from long double to double or float, or from double to float, except where
|
||||
// the source is a constant expression and the actual value after conversion
|
||||
// is within the range of values that can be represented (even if it cannot be
|
||||
// represented exactly), or
|
||||
|
||||
void shrink_float() {
|
||||
// These aren't constant expressions.
|
||||
float f = 1.0;
|
||||
double d = 1.0;
|
||||
long double ld = 1.0;
|
||||
|
||||
// Variables.
|
||||
Agg<float> f1 = {f}; // OK (no-op)
|
||||
Agg<float> f2 = {d}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<float> f3 = {ld}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
// Exact constants.
|
||||
Agg<float> f4 = {1.0}; // OK (double constant represented exactly)
|
||||
Agg<float> f5 = {1.0L}; // OK (long double constant represented exactly)
|
||||
// Inexact but in-range constants.
|
||||
Agg<float> f6 = {0.1}; // OK (double constant in range but rounded)
|
||||
Agg<float> f7 = {0.1L}; // OK (long double constant in range but rounded)
|
||||
// Out of range constants.
|
||||
Agg<float> f8 = {1E50}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<float> f9 = {1E50L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
// More complex constant expression.
|
||||
constexpr long double e40 = 1E40L, e30 = 1E30L, e39 = 1E39L;
|
||||
Agg<float> f10 = {e40 - 5 * e39 + e30 - 5 * e39}; // OK
|
||||
|
||||
// Variables.
|
||||
Agg<double> d1 = {f}; // OK (widening)
|
||||
Agg<double> d2 = {d}; // OK (no-op)
|
||||
Agg<double> d3 = {ld}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
// Exact constant.
|
||||
Agg<double> d4 = {1.0L}; // OK (long double constant represented exactly)
|
||||
// Inexact but in-range constant.
|
||||
Agg<double> d5 = {0.1L}; // OK (long double constant in range but rounded)
|
||||
// Out of range constant.
|
||||
Agg<double> d6 = {1E315L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
// More complex constant expression.
|
||||
constexpr long double e315 = 1E315L, e305 = 1E305L, e314 = 1E314L;
|
||||
Agg<double> d7 = {e315 - 5 * e314 + e305 - 5 * e314}; // OK
|
||||
}
|
||||
|
||||
// * from an integer type or unscoped enumeration type to a floating-point type,
|
||||
// except where the source is a constant expression and the actual value after
|
||||
// conversion will fit into the target type and will produce the original
|
||||
// value when converted back to the original type, or
|
||||
void int_to_float() {
|
||||
// Not a constant expression.
|
||||
char c = 1;
|
||||
|
||||
// Variables. Yes, even though all char's will fit into any floating type.
|
||||
Agg<float> f1 = {c}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<double> f2 = {c}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<long double> f3 = {c}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
|
||||
// Constants.
|
||||
Agg<float> f4 = {12345678}; // OK (exactly fits in a float)
|
||||
Agg<float> f5 = {123456789}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
}
|
||||
|
||||
// * from an integer type or unscoped enumeration type to an integer type that
|
||||
// cannot represent all the values of the original type, except where the
|
||||
// source is a constant expression and the actual value after conversion will
|
||||
// fit into the target type and will produce the original value when converted
|
||||
// back to the original type.
|
||||
void shrink_int() {
|
||||
// Not a constant expression.
|
||||
short s = 1;
|
||||
unsigned short us = 1;
|
||||
Agg<char> c1 = {s}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<unsigned short> s1 = {s}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<short> s2 = {us}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
|
||||
// "that cannot represent all the values of the original type" means that the
|
||||
// validity of the program depends on the relative sizes of integral types.
|
||||
// This test compiles with -m64, so sizeof(int)<sizeof(long)==sizeof(long
|
||||
// long).
|
||||
long l1 = 1;
|
||||
Agg<int> i1 = {l1}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
long long ll = 1;
|
||||
Agg<long> l2 = {ll}; // OK
|
||||
|
||||
// Constants.
|
||||
Agg<char> c2 = {127}; // OK
|
||||
Agg<char> c3 = {300}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
|
||||
|
||||
Agg<int> i2 = {0x7FFFFFFFU}; // OK
|
||||
Agg<int> i3 = {0x80000000U}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<unsigned int> i4 = {-0x80000000L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
}
|
||||
|
||||
// Be sure that type- and value-dependent expressions in templates get the error
|
||||
// too.
|
||||
|
||||
template<int I, typename T>
|
||||
void maybe_shrink_int(T t) {
|
||||
Agg<short> s1 = {t}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
|
||||
Agg<short> s2 = {I}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
|
||||
Agg<T> t2 = {700}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
|
||||
}
|
||||
|
||||
void test_template() {
|
||||
maybe_shrink_int<15>((int)3); // expected-note {{in instantiation}}
|
||||
maybe_shrink_int<70000>((char)3); // expected-note {{in instantiation}}
|
||||
}
|
Loading…
Reference in New Issue