This patch implements as much of the narrowing conversion error specified by

[dcl.init.list] as is possible without generalized initializer lists or full
constant expression support, and adds a c++0x-compat warning in C++98 mode.

The FixIt currently uses a typedef's basename without qualification, which is
likely to be incorrect on some code.  If it's incorrect on too much code, we
should write a function to get the string that refers to a type from a
particular context.

The warning is currently off by default. I'll fix LLVM and clang before turning
it on.

llvm-svn: 136181
This commit is contained in:
Jeffrey Yasskin 2011-07-26 23:20:30 +00:00
parent 8771796493
commit a6667816d5
7 changed files with 436 additions and 8 deletions

View File

@ -55,8 +55,9 @@ def FormatExtraArgs : DiagGroup<"format-extra-args">;
def FormatZeroLength : DiagGroup<"format-zero-length">;
def CXXHexFloats : DiagGroup<"c++-hex-floats">;
def CXX0xNarrowing : DiagGroup<"c++0x-narrowing">;
def CXX0xCompat : DiagGroup<"c++0x-compat", [CXXHexFloats]>;
def CXX0xCompat : DiagGroup<"c++0x-compat", [CXXHexFloats, CXX0xNarrowing]>;
def : DiagGroup<"effc++">;
def ExitTimeDestructors : DiagGroup<"exit-time-destructors">;
def FourByteMultiChar : DiagGroup<"four-char-constants">;

View File

@ -2464,6 +2464,21 @@ def err_empty_scalar_initializer : Error<"scalar initializer cannot be empty">;
def err_illegal_initializer : Error<
"illegal initializer (only variables can be initialized)">;
def err_illegal_initializer_type : Error<"illegal initializer type %0">;
def err_init_list_variable_narrowing : Error<
"non-constant-expression cannot be narrowed from type %0 to %1 in "
"initializer list">;
def err_init_list_constant_narrowing : Error<
"constant expression evaluates to %0 which cannot be narrowed to type %1">;
def warn_init_list_variable_narrowing : Warning<
"non-constant-expression cannot be narrowed from type %0 to %1 in "
"initializer list in C++0x">,
InGroup<CXX0xNarrowing>, DefaultIgnore;
def warn_init_list_constant_narrowing : Warning<
"constant expression evaluates to %0 which cannot be narrowed to type %1 in "
"C++0x">,
InGroup<CXX0xNarrowing>, DefaultIgnore;
def note_init_list_narrowing_override : Note<
"override this message by inserting an explicit cast">;
def err_init_objc_class : Error<
"cannot initialize Objective-C class type %0">;
def err_implicit_empty_initializer : Error<

View File

@ -732,7 +732,18 @@ public:
/// \brief Determine whether this initialization is direct call to a
/// constructor.
bool isConstructorInitialization() const;
// \brief Returns whether the last step in this initialization sequence is a
// narrowing conversion, defined by C++0x [dcl.init.list]p7.
//
// If this function returns true, *isInitializerConstant will be set to
// describe whether *Initializer was a constant expression. If
// *isInitializerConstant is set to true, *ConstantValue will be set to the
// evaluated value of *Initializer.
bool endsWithNarrowing(ASTContext &Ctx, const Expr *Initializer,
bool *isInitializerConstant,
APValue *ConstantValue) const;
/// \brief Add a new step in the initialization that resolves the address
/// of an overloaded function to a specific function declaration.
///

View File

@ -1342,7 +1342,8 @@ public:
ExprResult Init);
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
SourceLocation EqualLoc,
ExprResult Init);
ExprResult Init,
bool TopLevelOfInitList = false);
ExprResult PerformObjectArgumentInitialization(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,

View File

@ -24,6 +24,7 @@
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace clang;
@ -778,7 +779,8 @@ void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
// We cannot initialize this element, so let
// PerformCopyInitialization produce the appropriate diagnostic.
SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
SemaRef.Owned(expr));
SemaRef.Owned(expr),
/*TopLevelOfInitList=*/true);
hadError = true;
++Index;
++StructuredIndex;
@ -820,7 +822,8 @@ void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
ExprResult Result =
SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
SemaRef.Owned(expr));
SemaRef.Owned(expr),
/*TopLevelOfInitList=*/true);
Expr *ResultExpr = 0;
@ -859,7 +862,8 @@ void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
ExprResult Result =
SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
SemaRef.Owned(expr));
SemaRef.Owned(expr),
/*TopLevelOfInitList=*/true);
if (Result.isInvalid())
hadError = true;
@ -908,7 +912,8 @@ void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
ExprResult Result =
SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
SemaRef.Owned(Init));
SemaRef.Owned(Init),
/*TopLevelOfInitList=*/true);
Expr *ResultExpr = 0;
if (Result.isInvalid())
@ -2197,6 +2202,158 @@ bool InitializationSequence::isConstructorInitialization() const {
return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
}
bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
const Expr *Initializer,
bool *isInitializerConstant,
APValue *ConstantValue) const {
if (Steps.empty() || Initializer->isValueDependent())
return false;
const Step &LastStep = Steps.back();
if (LastStep.Kind != SK_ConversionSequence)
return false;
const ImplicitConversionSequence &ICS = *LastStep.ICS;
const StandardConversionSequence *SCS = NULL;
switch (ICS.getKind()) {
case ImplicitConversionSequence::StandardConversion:
SCS = &ICS.Standard;
break;
case ImplicitConversionSequence::UserDefinedConversion:
SCS = &ICS.UserDefined.After;
break;
case ImplicitConversionSequence::AmbiguousConversion:
case ImplicitConversionSequence::EllipsisConversion:
case ImplicitConversionSequence::BadConversion:
return false;
}
// Check if SCS represents a narrowing conversion, according to C++0x
// [dcl.init.list]p7:
//
// A narrowing conversion is an implicit conversion ...
ImplicitConversionKind PossibleNarrowing = SCS->Second;
QualType FromType = SCS->getToType(0);
QualType ToType = SCS->getToType(1);
switch (PossibleNarrowing) {
// * from a floating-point type to an integer type, or
//
// * from an integer type or unscoped enumeration type to a floating-point
// type, except where the source is a constant expression and the actual
// value after conversion will fit into the target type and will produce
// the original value when converted back to the original type, or
case ICK_Floating_Integral:
if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
*isInitializerConstant = false;
return true;
} else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
llvm::APSInt IntConstantValue;
if (Initializer &&
Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
// Convert the integer to the floating type.
llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
llvm::APFloat::rmNearestTiesToEven);
// And back.
llvm::APSInt ConvertedValue = IntConstantValue;
bool ignored;
Result.convertToInteger(ConvertedValue,
llvm::APFloat::rmTowardZero, &ignored);
// If the resulting value is different, this was a narrowing conversion.
if (IntConstantValue != ConvertedValue) {
*isInitializerConstant = true;
*ConstantValue = APValue(IntConstantValue);
return true;
}
} else {
// Variables are always narrowings.
*isInitializerConstant = false;
return true;
}
}
return false;
// * from long double to double or float, or from double to float, except
// where the source is a constant expression and the actual value after
// conversion is within the range of values that can be represented (even
// if it cannot be represented exactly), or
case ICK_Floating_Conversion:
if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
// FromType is larger than ToType.
Expr::EvalResult InitializerValue;
// FIXME: Check whether Initializer is a constant expression according
// to C++0x [expr.const], rather than just whether it can be folded.
if (Initializer->Evaluate(InitializerValue, Ctx) &&
!InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
// Constant! (Except for FIXME above.)
llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
// Convert the source value into the target type.
bool ignored;
llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
Ctx.getFloatTypeSemantics(ToType),
llvm::APFloat::rmNearestTiesToEven, &ignored);
// If there was no overflow, the source value is within the range of
// values that can be represented.
if (ConvertStatus & llvm::APFloat::opOverflow) {
*isInitializerConstant = true;
*ConstantValue = InitializerValue.Val;
return true;
}
} else {
*isInitializerConstant = false;
return true;
}
}
return false;
// * from an integer type or unscoped enumeration type to an integer type
// that cannot represent all the values of the original type, except where
// the source is a constant expression and the actual value after
// conversion will fit into the target type and will produce the original
// value when converted back to the original type.
case ICK_Integral_Conversion: {
assert(FromType->isIntegralOrUnscopedEnumerationType());
assert(ToType->isIntegralOrUnscopedEnumerationType());
const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
const unsigned FromWidth = Ctx.getIntWidth(FromType);
const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
const unsigned ToWidth = Ctx.getIntWidth(ToType);
if (FromWidth > ToWidth ||
(FromWidth == ToWidth && FromSigned != ToSigned)) {
// Not all values of FromType can be represented in ToType.
llvm::APSInt InitializerValue;
if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
*isInitializerConstant = true;
*ConstantValue = APValue(InitializerValue);
// Add a bit to the InitializerValue so we don't have to worry about
// signed vs. unsigned comparisons.
InitializerValue = InitializerValue.extend(
InitializerValue.getBitWidth() + 1);
// Convert the initializer to and from the target width and signed-ness.
llvm::APSInt ConvertedValue = InitializerValue;
ConvertedValue = ConvertedValue.trunc(ToWidth);
ConvertedValue.setIsSigned(ToSigned);
ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
ConvertedValue.setIsSigned(InitializerValue.isSigned());
// If the result is different, this was a narrowing conversion.
return ConvertedValue != InitializerValue;
} else {
// Variables are always narrowings.
*isInitializerConstant = false;
return true;
}
}
return false;
}
default:
// Other kinds of conversions are not narrowings.
return false;
}
}
void InitializationSequence::AddAddressOverloadResolutionStep(
FunctionDecl *Function,
DeclAccessPair Found) {
@ -4972,6 +5129,51 @@ void InitializationSequence::dump() const {
dump(llvm::errs());
}
static void DiagnoseNarrowingInInitList(
Sema& S, QualType EntityType, const Expr *InitE,
bool Constant, const APValue &ConstantValue) {
if (Constant) {
S.Diag(InitE->getLocStart(),
S.getLangOptions().CPlusPlus0x
? diag::err_init_list_constant_narrowing
: diag::warn_init_list_constant_narrowing)
<< InitE->getSourceRange()
<< ConstantValue
<< EntityType;
} else
S.Diag(InitE->getLocStart(),
S.getLangOptions().CPlusPlus0x
? diag::err_init_list_variable_narrowing
: diag::warn_init_list_variable_narrowing)
<< InitE->getSourceRange()
<< InitE->getType()
<< EntityType;
llvm::SmallString<128> StaticCast;
llvm::raw_svector_ostream OS(StaticCast);
OS << "static_cast<";
if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
// It's important to use the typedef's name if there is one so that the
// fixit doesn't break code using types like int64_t.
//
// FIXME: This will break if the typedef requires qualification. But
// getQualifiedNameAsString() includes non-machine-parsable components.
OS << TT->getDecl();
} else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
OS << BT->getName(S.getLangOptions());
else {
// Oops, we didn't find the actual type of the variable. Don't emit a fixit
// with a broken cast.
return;
}
OS << ">(";
S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
<< InitE->getSourceRange()
<< FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
<< FixItHint::CreateInsertion(
S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
}
//===----------------------------------------------------------------------===//
// Initialization helper functions
//===----------------------------------------------------------------------===//
@ -4993,7 +5195,8 @@ Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
ExprResult
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
SourceLocation EqualLoc,
ExprResult Init) {
ExprResult Init,
bool TopLevelOfInitList) {
if (Init.isInvalid())
return ExprError();
@ -5007,5 +5210,13 @@ Sema::PerformCopyInitialization(const InitializedEntity &Entity,
EqualLoc);
InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
Init.release();
bool Constant = false;
APValue Result;
if (TopLevelOfInitList &&
Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
Constant, Result);
}
return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
}

View File

@ -0,0 +1,33 @@
// RUN: %clang_cc1 -fsyntax-only -Wc++0x-compat -fdiagnostics-parseable-fixits %s 2>&1 | FileCheck %s
// Verify that the appropriate fixits are emitted for narrowing conversions in
// initializer lists.
typedef short int16_t;
void fixits() {
int x = 999;
struct {char c;} c2 = {x};
// CHECK: warning:{{.*}} cannot be narrowed
// CHECK: fix-it:{{.*}}:26}:"static_cast<char>("
// CHECK: fix-it:{{.*}}:27}:")"
struct {int16_t i;} i16 = {70000};
// CHECK: warning:{{.*}} cannot be narrowed
// CHECK: fix-it:{{.*}}:30}:"static_cast<int16_t>("
// CHECK: fix-it:{{.*}}:35}:")"
}
template<typename T>
void maybe_shrink_int(T t) {
struct {T t;} t2 = {700};
}
void test_template() {
maybe_shrink_int((char)3);
// CHECK: warning:{{.*}} cannot be narrowed
// CHECK: note:{{.*}} in instantiation
// CHECK: note:{{.*}} override
// FIXME: This should be static_cast<T>.
// CHECK: fix-it:{{.*}}"static_cast<char>("
// CHECK: fix-it:{{.*}}")"
}

View File

@ -0,0 +1,156 @@
// RUN: %clang_cc1 -fsyntax-only -std=c++0x -triple x86_64-apple-macosx10.6.7 -verify %s
// Verify that narrowing conversions in initializer lists cause errors in C++0x
// mode.
void std_example() {
int x = 999; // x is not a constant expression
const int y = 999;
const int z = 99;
char c1 = x; // OK, though it might narrow (in this case, it does narrow)
char c2{x}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
char c3{y}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
char c4{z}; // OK: no narrowing needed
unsigned char uc1 = {5}; // OK: no narrowing needed
unsigned char uc2 = {-1}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
unsigned int ui1 = {-1}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
signed int si1 =
{ (unsigned int)-1 }; // expected-error {{ cannot be narrowed }} expected-note {{override}}
int ii = {2.0}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
float f1 { x }; // expected-error {{ cannot be narrowed }} expected-note {{override}}
float f2 { 7 }; // OK: 7 can be exactly represented as a float
int f(int);
int a[] =
{ 2, f(2), f(2.0) }; // OK: the double-to-int conversion is not at the top level
}
// Test each rule individually.
template<typename T>
struct Agg {
T t;
};
// C++0x [dcl.init.list]p7: A narrowing conversion is an implicit conversion
//
// * from a floating-point type to an integer type, or
void float_to_int() {
Agg<char> a1 = {1.0F}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<char> a2 = {1.0}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<char> a3 = {1.0L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
float f = 1.0;
double d = 1.0;
long double ld = 1.0;
Agg<char> a4 = {f}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<char> a5 = {d}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<char> a6 = {ld}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
}
// * from long double to double or float, or from double to float, except where
// the source is a constant expression and the actual value after conversion
// is within the range of values that can be represented (even if it cannot be
// represented exactly), or
void shrink_float() {
// These aren't constant expressions.
float f = 1.0;
double d = 1.0;
long double ld = 1.0;
// Variables.
Agg<float> f1 = {f}; // OK (no-op)
Agg<float> f2 = {d}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<float> f3 = {ld}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
// Exact constants.
Agg<float> f4 = {1.0}; // OK (double constant represented exactly)
Agg<float> f5 = {1.0L}; // OK (long double constant represented exactly)
// Inexact but in-range constants.
Agg<float> f6 = {0.1}; // OK (double constant in range but rounded)
Agg<float> f7 = {0.1L}; // OK (long double constant in range but rounded)
// Out of range constants.
Agg<float> f8 = {1E50}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<float> f9 = {1E50L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
// More complex constant expression.
constexpr long double e40 = 1E40L, e30 = 1E30L, e39 = 1E39L;
Agg<float> f10 = {e40 - 5 * e39 + e30 - 5 * e39}; // OK
// Variables.
Agg<double> d1 = {f}; // OK (widening)
Agg<double> d2 = {d}; // OK (no-op)
Agg<double> d3 = {ld}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
// Exact constant.
Agg<double> d4 = {1.0L}; // OK (long double constant represented exactly)
// Inexact but in-range constant.
Agg<double> d5 = {0.1L}; // OK (long double constant in range but rounded)
// Out of range constant.
Agg<double> d6 = {1E315L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
// More complex constant expression.
constexpr long double e315 = 1E315L, e305 = 1E305L, e314 = 1E314L;
Agg<double> d7 = {e315 - 5 * e314 + e305 - 5 * e314}; // OK
}
// * from an integer type or unscoped enumeration type to a floating-point type,
// except where the source is a constant expression and the actual value after
// conversion will fit into the target type and will produce the original
// value when converted back to the original type, or
void int_to_float() {
// Not a constant expression.
char c = 1;
// Variables. Yes, even though all char's will fit into any floating type.
Agg<float> f1 = {c}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<double> f2 = {c}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<long double> f3 = {c}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
// Constants.
Agg<float> f4 = {12345678}; // OK (exactly fits in a float)
Agg<float> f5 = {123456789}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
}
// * from an integer type or unscoped enumeration type to an integer type that
// cannot represent all the values of the original type, except where the
// source is a constant expression and the actual value after conversion will
// fit into the target type and will produce the original value when converted
// back to the original type.
void shrink_int() {
// Not a constant expression.
short s = 1;
unsigned short us = 1;
Agg<char> c1 = {s}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<unsigned short> s1 = {s}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<short> s2 = {us}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
// "that cannot represent all the values of the original type" means that the
// validity of the program depends on the relative sizes of integral types.
// This test compiles with -m64, so sizeof(int)<sizeof(long)==sizeof(long
// long).
long l1 = 1;
Agg<int> i1 = {l1}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
long long ll = 1;
Agg<long> l2 = {ll}; // OK
// Constants.
Agg<char> c2 = {127}; // OK
Agg<char> c3 = {300}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
Agg<int> i2 = {0x7FFFFFFFU}; // OK
Agg<int> i3 = {0x80000000U}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<unsigned int> i4 = {-0x80000000L}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
}
// Be sure that type- and value-dependent expressions in templates get the error
// too.
template<int I, typename T>
void maybe_shrink_int(T t) {
Agg<short> s1 = {t}; // expected-error {{ cannot be narrowed }} expected-note {{override}}
Agg<short> s2 = {I}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
Agg<T> t2 = {700}; // expected-error {{ cannot be narrowed }} expected-note {{override}} expected-warning {{changes value}}
}
void test_template() {
maybe_shrink_int<15>((int)3); // expected-note {{in instantiation}}
maybe_shrink_int<70000>((char)3); // expected-note {{in instantiation}}
}