[clangd] add inlay hints for std::forward-ed parameter packs

This adds special-case treatment for parameter packs in
make_unique-like functions to forward parameter names to inlay hints.
The parameter packs are being resolved recursively by traversing the
function body of forwarding functions looking for expressions matching
the (std::forwarded) parameters expanded from a pack.
The implementation checks whether parameters are being passed by
(rvalue) reference or value and adds reference inlay hints accordingly.
The traversal has a limited recursion stack depth, and recursive calls
like std::make_tuple are cut off to avoid hinting duplicate parameter
names.

Reviewed By: sammccall

Differential Revision: https://reviews.llvm.org/D124690
This commit is contained in:
Tobias Ribizel 2022-07-06 22:09:15 +02:00
parent a60360f99a
commit a638648fef
No known key found for this signature in database
GPG Key ID: CEAFBE6D1C2DB92D
4 changed files with 904 additions and 58 deletions

View File

@ -16,19 +16,23 @@
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
@ -667,5 +671,300 @@ bool isDeeplyNested(const Decl *D, unsigned MaxDepth) {
}
return false;
}
namespace {
// returns true for `X` in `template <typename... X> void foo()`
bool isTemplateTypeParameterPack(NamedDecl *D) {
if (const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(D)) {
return TTPD->isParameterPack();
}
return false;
}
// Returns the template parameter pack type from an instantiated function
// template, if it exists, nullptr otherwise.
const TemplateTypeParmType *getFunctionPackType(const FunctionDecl *Callee) {
if (const auto *TemplateDecl = Callee->getPrimaryTemplate()) {
auto TemplateParams = TemplateDecl->getTemplateParameters()->asArray();
// find the template parameter pack from the back
const auto It = std::find_if(TemplateParams.rbegin(), TemplateParams.rend(),
isTemplateTypeParameterPack);
if (It != TemplateParams.rend()) {
const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(*It);
return TTPD->getTypeForDecl()->castAs<TemplateTypeParmType>();
}
}
return nullptr;
}
// Returns the template parameter pack type that this parameter was expanded
// from (if in the Args... or Args&... or Args&&... form), if this is the case,
// nullptr otherwise.
const TemplateTypeParmType *getUnderylingPackType(const ParmVarDecl *Param) {
const auto *PlainType = Param->getType().getTypePtr();
if (auto *RT = dyn_cast<ReferenceType>(PlainType))
PlainType = RT->getPointeeTypeAsWritten().getTypePtr();
if (const auto *SubstType = dyn_cast<SubstTemplateTypeParmType>(PlainType)) {
const auto *ReplacedParameter = SubstType->getReplacedParameter();
if (ReplacedParameter->isParameterPack()) {
return dyn_cast<TemplateTypeParmType>(
ReplacedParameter->getCanonicalTypeUnqualified()->getTypePtr());
}
}
return nullptr;
}
// This visitor walks over the body of an instantiated function template.
// The template accepts a parameter pack and the visitor records whether
// the pack parameters were forwarded to another call. For example, given:
//
// template <typename T, typename... Args>
// auto make_unique(Args... args) {
// return unique_ptr<T>(new T(args...));
// }
//
// When called as `make_unique<std::string>(2, 'x')` this yields a function
// `make_unique<std::string, int, char>` with two parameters.
// The visitor records that those two parameters are forwarded to the
// `constructor std::string(int, char);`.
//
// This information is recorded in the `ForwardingInfo` split into fully
// resolved parameters (passed as argument to a parameter that is not an
// expanded template type parameter pack) and forwarding parameters (passed to a
// parameter that is an expanded template type parameter pack).
class ForwardingCallVisitor
: public RecursiveASTVisitor<ForwardingCallVisitor> {
public:
ForwardingCallVisitor(ArrayRef<const ParmVarDecl *> Parameters)
: Parameters{Parameters}, PackType{getUnderylingPackType(
Parameters.front())} {}
bool VisitCallExpr(CallExpr *E) {
auto *Callee = getCalleeDeclOrUniqueOverload(E);
if (Callee) {
handleCall(Callee, E->arguments());
}
return !Info.hasValue();
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
auto *Callee = E->getConstructor();
if (Callee) {
handleCall(Callee, E->arguments());
}
return !Info.hasValue();
}
// The expanded parameter pack to be resolved
ArrayRef<const ParmVarDecl *> Parameters;
// The type of the parameter pack
const TemplateTypeParmType *PackType;
struct ForwardingInfo {
// If the parameters were resolved to another FunctionDecl, these are its
// first non-variadic parameters (i.e. the first entries of the parameter
// pack that are passed as arguments bound to a non-pack parameter.)
ArrayRef<const ParmVarDecl *> Head;
// If the parameters were resolved to another FunctionDecl, these are its
// variadic parameters (i.e. the entries of the parameter pack that are
// passed as arguments bound to a pack parameter.)
ArrayRef<const ParmVarDecl *> Pack;
// If the parameters were resolved to another FunctionDecl, these are its
// last non-variadic parameters (i.e. the last entries of the parameter pack
// that are passed as arguments bound to a non-pack parameter.)
ArrayRef<const ParmVarDecl *> Tail;
// If the parameters were resolved to another forwarding FunctionDecl, this
// is it.
Optional<FunctionDecl *> PackTarget;
};
// The output of this visitor
Optional<ForwardingInfo> Info;
private:
// inspects the given callee with the given args to check whether it
// contains Parameters, and sets Info accordingly.
void handleCall(FunctionDecl *Callee, typename CallExpr::arg_range Args) {
if (std::any_of(Args.begin(), Args.end(), [](const Expr *E) {
return dyn_cast<PackExpansionExpr>(E) != nullptr;
})) {
return;
}
auto OptPackLocation = findPack(Args);
if (OptPackLocation) {
size_t PackLocation = OptPackLocation.getValue();
ArrayRef<ParmVarDecl *> MatchingParams =
Callee->parameters().slice(PackLocation, Parameters.size());
// Check whether the function has a parameter pack as the last template
// parameter
if (const auto *TTPT = getFunctionPackType(Callee)) {
// In this case: Separate the parameters into head, pack and tail
auto IsExpandedPack = [&](const ParmVarDecl *P) {
return getUnderylingPackType(P) == TTPT;
};
ForwardingInfo FI;
FI.Head = MatchingParams.take_until(IsExpandedPack);
FI.Pack = MatchingParams.drop_front(FI.Head.size())
.take_while(IsExpandedPack);
FI.Tail = MatchingParams.drop_front(FI.Head.size() + FI.Pack.size());
FI.PackTarget = Callee;
Info = FI;
return;
}
// Default case: assume all parameters were fully resolved
ForwardingInfo FI;
FI.Head = MatchingParams;
Info = FI;
}
}
// Returns the beginning of the expanded pack represented by Parameters
// in the given arguments, if it is there.
llvm::Optional<size_t> findPack(typename CallExpr::arg_range Args) {
// find the argument directly referring to the first parameter
auto FirstMatch = std::find_if(Args.begin(), Args.end(), [&](Expr *Arg) {
const auto *RefArg = unwrapArgument(Arg);
if (RefArg) {
if (Parameters.front() == dyn_cast<ParmVarDecl>(RefArg->getDecl())) {
return true;
}
}
return false;
});
if (FirstMatch == Args.end()) {
return llvm::None;
}
return std::distance(Args.begin(), FirstMatch);
}
static FunctionDecl *getCalleeDeclOrUniqueOverload(CallExpr *E) {
Decl *CalleeDecl = E->getCalleeDecl();
auto *Callee = dyn_cast_or_null<FunctionDecl>(CalleeDecl);
if (!Callee) {
if (auto *Lookup = dyn_cast<UnresolvedLookupExpr>(E->getCallee())) {
Callee = resolveOverload(Lookup, E);
}
}
// Ignore the callee if the number of arguments is wrong (deal with va_args)
if (Callee->getNumParams() == E->getNumArgs())
return Callee;
return nullptr;
}
static FunctionDecl *resolveOverload(UnresolvedLookupExpr *Lookup,
CallExpr *E) {
FunctionDecl *MatchingDecl = nullptr;
if (!Lookup->requiresADL()) {
// Check whether there is a single overload with this number of
// parameters
for (auto *Candidate : Lookup->decls()) {
if (auto *FuncCandidate = dyn_cast_or_null<FunctionDecl>(Candidate)) {
if (FuncCandidate->getNumParams() == E->getNumArgs()) {
if (MatchingDecl) {
// there are multiple candidates - abort
return nullptr;
}
MatchingDecl = FuncCandidate;
}
}
}
}
return MatchingDecl;
}
// Removes any implicit cast expressions around the given expression.
static const Expr *unwrapImplicitCast(const Expr *E) {
while (const auto *Cast = dyn_cast<ImplicitCastExpr>(E)) {
E = Cast->getSubExpr();
}
return E;
}
// Maps std::forward(E) to E, nullptr otherwise
static const Expr *unwrapForward(const Expr *E) {
if (const auto *Call = dyn_cast<CallExpr>(E)) {
const auto Callee = Call->getBuiltinCallee();
if (Callee == Builtin::BIforward) {
return Call->getArg(0);
}
}
return E;
}
// Maps std::forward(DeclRefExpr) to DeclRefExpr, removing any intermediate
// implicit casts, nullptr otherwise
static const DeclRefExpr *unwrapArgument(const Expr *E) {
E = unwrapImplicitCast(E);
E = unwrapForward(E);
E = unwrapImplicitCast(E);
return dyn_cast<DeclRefExpr>(E);
}
};
} // namespace
SmallVector<const ParmVarDecl *>
resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth) {
auto Parameters = D->parameters();
// If the function has a template parameter pack
if (const auto *TTPT = getFunctionPackType(D)) {
// Split the parameters into head, pack and tail
auto IsExpandedPack = [TTPT](const ParmVarDecl *P) {
return getUnderylingPackType(P) == TTPT;
};
ArrayRef<const ParmVarDecl *> Head = Parameters.take_until(IsExpandedPack);
ArrayRef<const ParmVarDecl *> Pack =
Parameters.drop_front(Head.size()).take_while(IsExpandedPack);
ArrayRef<const ParmVarDecl *> Tail =
Parameters.drop_front(Head.size() + Pack.size());
SmallVector<const ParmVarDecl *> Result(Parameters.size());
// Fill in non-pack parameters
auto HeadIt = std::copy(Head.begin(), Head.end(), Result.begin());
auto TailIt = std::copy(Tail.rbegin(), Tail.rend(), Result.rbegin());
// Recurse on pack parameters
size_t Depth = 0;
const FunctionDecl *CurrentFunction = D;
llvm::SmallSet<const FunctionTemplateDecl *, 4> SeenTemplates;
if (const auto *Template = D->getPrimaryTemplate()) {
SeenTemplates.insert(Template);
}
while (!Pack.empty() && CurrentFunction && Depth < MaxDepth) {
// Find call expressions involving the pack
ForwardingCallVisitor V{Pack};
V.TraverseStmt(CurrentFunction->getBody());
if (!V.Info) {
break;
}
// If we found something: Fill in non-pack parameters
auto Info = V.Info.getValue();
HeadIt = std::copy(Info.Head.begin(), Info.Head.end(), HeadIt);
TailIt = std::copy(Info.Tail.rbegin(), Info.Tail.rend(), TailIt);
// Prepare next recursion level
Pack = Info.Pack;
CurrentFunction = Info.PackTarget.getValueOr(nullptr);
Depth++;
// If we are recursing into a previously encountered function: Abort
if (CurrentFunction) {
if (const auto *Template = CurrentFunction->getPrimaryTemplate()) {
bool NewFunction = SeenTemplates.insert(Template).second;
if (!NewFunction) {
return {Parameters.begin(), Parameters.end()};
}
}
}
}
// Fill in the remaining unresolved pack parameters
HeadIt = std::copy(Pack.begin(), Pack.end(), HeadIt);
assert(TailIt.base() == HeadIt);
return Result;
}
return {Parameters.begin(), Parameters.end()};
}
bool isExpandedFromParameterPack(const ParmVarDecl *D) {
return getUnderylingPackType(D) != nullptr;
}
} // namespace clangd
} // namespace clang

View File

@ -199,6 +199,18 @@ bool hasUnstableLinkage(const Decl *D);
/// reasonable.
bool isDeeplyNested(const Decl *D, unsigned MaxDepth = 10);
/// Recursively resolves the parameters of a FunctionDecl that forwards its
/// parameters to another function via variadic template parameters. This can
/// for example be used to retrieve the constructor parameter ParmVarDecl for a
/// make_unique or emplace_back call.
llvm::SmallVector<const ParmVarDecl *>
resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth = 10);
/// Checks whether D is instantiated from a function parameter pack
/// whose type is a bare type parameter pack (e.g. `Args...`), or a
/// reference to one (e.g. `Args&...` or `Args&&...`).
bool isExpandedFromParameterPack(const ParmVarDecl *D);
} // namespace clangd
} // namespace clang

View File

@ -379,7 +379,7 @@ private:
// assume that if this location does not come from a macro definition, then
// the entire argument list likely appears in the main file and can be hinted.
void processCall(SourceLocation Anchor, const FunctionDecl *Callee,
llvm::ArrayRef<const Expr *const> Args) {
llvm::ArrayRef<const Expr *> Args) {
if (!Cfg.InlayHints.Parameters || Args.size() == 0 || !Callee)
return;
@ -393,12 +393,10 @@ private:
if (Ctor->isCopyOrMoveConstructor())
return;
// Don't show hints for variadic parameters.
size_t FixedParamCount = getFixedParamCount(Callee);
size_t ArgCount = std::min(FixedParamCount, Args.size());
auto Params = Callee->parameters();
// Resolve parameter packs to their forwarded parameter
auto ForwardedParams = resolveForwardingParameters(Callee);
NameVec ParameterNames = chooseParameterNames(Callee, ArgCount);
NameVec ParameterNames = chooseParameterNames(ForwardedParams);
// Exclude setters (i.e. functions with one argument whose name begins with
// "set"), and builtins like std::move/forward/... as their parameter name
@ -406,10 +404,18 @@ private:
if (isSetter(Callee, ParameterNames) || isSimpleBuiltin(Callee))
return;
for (size_t I = 0; I < ArgCount; ++I) {
for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
// Pack expansion expressions cause the 1:1 mapping between arguments and
// parameters to break down, so we don't add further inlay hints if we
// encounter one.
if (isa<PackExpansionExpr>(Args[I])) {
break;
}
StringRef Name = ParameterNames[I];
bool NameHint = shouldHintName(Args[I], Name);
bool ReferenceHint = shouldHintReference(Params[I]);
bool ReferenceHint =
shouldHintReference(Callee->getParamDecl(I), ForwardedParams[I]);
if (NameHint || ReferenceHint) {
addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
@ -473,11 +479,36 @@ private:
return true;
}
bool shouldHintReference(const ParmVarDecl *Param) {
// If the parameter is a non-const reference type, print an inlay hint
bool shouldHintReference(const ParmVarDecl *Param,
const ParmVarDecl *ForwardedParam) {
// We add a & hint only when the argument is passed as mutable reference.
// For parameters that are not part of an expanded pack, this is
// straightforward. For expanded pack parameters, it's likely that they will
// be forwarded to another function. In this situation, we only want to add
// the reference hint if the argument is actually being used via mutable
// reference. This means we need to check
// 1. whether the value category of the argument is preserved, i.e. each
// pack expansion uses std::forward correctly.
// 2. whether the argument is ever copied/cast instead of passed
// by-reference
// Instead of checking this explicitly, we use the following proxy:
// 1. the value category can only change from rvalue to lvalue during
// forwarding, so checking whether both the parameter of the forwarding
// function and the forwarded function are lvalue references detects such
// a conversion.
// 2. if the argument is copied/cast somewhere in the chain of forwarding
// calls, it can only be passed on to an rvalue reference or const lvalue
// reference parameter. Thus if the forwarded parameter is a mutable
// lvalue reference, it cannot have been copied/cast to on the way.
// Additionally, we should not add a reference hint if the forwarded
// parameter was only partially resolved, i.e. points to an expanded pack
// parameter, since we do not know how it will be used eventually.
auto Type = Param->getType();
auto ForwardedType = ForwardedParam->getType();
return Type->isLValueReferenceType() &&
!Type.getNonReferenceType().isConstQualified();
ForwardedType->isLValueReferenceType() &&
!ForwardedType.getNonReferenceType().isConstQualified() &&
!isExpandedFromParameterPack(ForwardedParam);
}
// Checks if "E" is spelled in the main file and preceded by a C-style comment
@ -524,23 +555,26 @@ private:
return {};
}
NameVec chooseParameterNames(const FunctionDecl *Callee, size_t ArgCount) {
// The current strategy here is to use all the parameter names from the
// canonical declaration, unless they're all empty, in which case we
// use all the parameter names from the definition (in present in the
// translation unit).
// We could try a bit harder, e.g.:
// - try all re-declarations, not just canonical + definition
// - fall back arg-by-arg rather than wholesale
NameVec ParameterNames = getParameterNamesForDecl(Callee, ArgCount);
if (llvm::all_of(ParameterNames, std::mem_fn(&StringRef::empty))) {
if (const FunctionDecl *Def = Callee->getDefinition()) {
ParameterNames = getParameterNamesForDecl(Def, ArgCount);
NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
NameVec ParameterNames;
for (const auto *P : Parameters) {
if (isExpandedFromParameterPack(P)) {
// If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
// non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
// unlikely to be useful.
ParameterNames.emplace_back();
} else {
auto SimpleName = getSimpleName(*P);
// If the parameter is unnamed in the declaration:
// attempt to get its name from the definition
if (SimpleName.empty()) {
if (const auto *PD = getParamDefinition(P)) {
SimpleName = getSimpleName(*PD);
}
}
ParameterNames.emplace_back(SimpleName);
}
}
assert(ParameterNames.size() == ArgCount);
// Standard library functions often have parameter names that start
// with underscores, which makes the hints noisy, so strip them out.
@ -550,28 +584,24 @@ private:
return ParameterNames;
}
static void stripLeadingUnderscores(StringRef &Name) {
Name = Name.ltrim('_');
// for a ParmVarDecl from a function declaration, returns the corresponding
// ParmVarDecl from the definition if possible, nullptr otherwise.
static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
if (auto *Def = Callee->getDefinition()) {
auto I = std::distance(
Callee->param_begin(),
std::find(Callee->param_begin(), Callee->param_end(), P));
if (I < Callee->getNumParams()) {
return Def->getParamDecl(I);
}
}
}
return nullptr;
}
// Return the number of fixed parameters Function has, that is, not counting
// parameters that are variadic (instantiated from a parameter pack) or
// C-style varargs.
static size_t getFixedParamCount(const FunctionDecl *Function) {
if (FunctionTemplateDecl *Template = Function->getPrimaryTemplate()) {
FunctionDecl *F = Template->getTemplatedDecl();
size_t Result = 0;
for (ParmVarDecl *Parm : F->parameters()) {
if (Parm->isParameterPack()) {
break;
}
++Result;
}
return Result;
}
// C-style varargs don't need special handling, they're already
// not included in getNumParams().
return Function->getNumParams();
static void stripLeadingUnderscores(StringRef &Name) {
Name = Name.ltrim('_');
}
static StringRef getSimpleName(const NamedDecl &D) {
@ -582,17 +612,6 @@ private:
return StringRef();
}
NameVec getParameterNamesForDecl(const FunctionDecl *Function,
size_t ArgCount) {
NameVec Result;
for (size_t I = 0; I < ArgCount; ++I) {
const ParmVarDecl *Parm = Function->getParamDecl(I);
assert(Parm);
Result.emplace_back(getSimpleName(*Parm));
}
return Result;
}
// We pass HintSide rather than SourceLocation because we want to ensure
// it is in the same file as the common file range.
void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,

View File

@ -174,6 +174,43 @@ TEST(ParameterHints, NoNameRValueReference) {
)cpp");
}
TEST(ParameterHints, NoNameVariadicDeclaration) {
// No hint for anonymous variadic parameter
assertParameterHints(R"cpp(
template <typename... Args>
void foo(Args&& ...);
void bar() {
foo(42);
}
)cpp");
}
TEST(ParameterHints, NoNameVariadicForwarded) {
// No hint for anonymous variadic parameter
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
bar(42);
}
)cpp");
}
TEST(ParameterHints, NoNameVariadicPlain) {
// No hint for anonymous variadic parameter
assertParameterHints(R"cpp(
void foo(int);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
bar(42);
}
)cpp");
}
TEST(ParameterHints, NameInDefinition) {
// Parameter name picked up from definition if necessary.
assertParameterHints(R"cpp(
@ -186,6 +223,36 @@ TEST(ParameterHints, NameInDefinition) {
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, NamePartiallyInDefinition) {
// Parameter name picked up from definition if necessary.
assertParameterHints(R"cpp(
void foo(int, int b);
void bar() {
foo($param1[[42]], $param2[[42]]);
}
void foo(int a, int) {};
)cpp",
ExpectedHint{"a: ", "param1"},
ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, NameInDefinitionVariadic) {
// Parameter name picked up from definition in a resolved forwarded parameter.
assertParameterHints(R"cpp(
void foo(int, int);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
void baz() {
bar($param1[[42]], $param2[[42]]);
}
void foo(int a, int b) {};
)cpp",
ExpectedHint{"a: ", "param1"},
ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, NameMismatch) {
// Prefer name from declaration.
assertParameterHints(R"cpp(
@ -258,6 +325,455 @@ TEST(ParameterHints, NameRValueReference) {
ExpectedHint{"param: ", "param"});
}
TEST(ParameterHints, VariadicForwardedConstructor) {
// Name hint for variadic parameter using std::forward in a constructor call
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
struct S { S(int a); };
template <typename T, typename... Args>
T bar(Args&&... args) { return T{std::forward<Args>(args)...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlainConstructor) {
// Name hint for variadic parameter in a constructor call
assertParameterHints(R"cpp(
struct S { S(int a); };
template <typename T, typename... Args>
T bar(Args&&... args) { return T{args...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicForwardedNewConstructor) {
// Name hint for variadic parameter using std::forward in a new expression
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
struct S { S(int a); };
template <typename T, typename... Args>
T* bar(Args&&... args) { return new T{std::forward<Args>(args)...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlainNewConstructor) {
// Name hint for variadic parameter in a new expression
assertParameterHints(R"cpp(
struct S { S(int a); };
template <typename T, typename... Args>
T* bar(Args&&... args) { return new T{args...}; }
void baz() {
int b;
bar<S>($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicForwarded) {
// Name for variadic parameter using std::forward
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int b;
bar($param[[b]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlain) {
// Name hint for variadic parameter
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
bar($param[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicPlainWithPackFirst) {
// Name hint for variadic parameter when the parameter pack is not the last
// template parameter
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args, typename Arg>
void bar(Arg, Args&&... args) { return foo(args...); }
void baz() {
bar(1, $param[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param"});
}
TEST(ParameterHints, VariadicSplitTwolevel) {
// Name for variadic parameter that involves both head and tail parameters to
// deal with.
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void baz(int, int b, double);
template <typename... Args>
void foo(int a, Args&&... args) {
return baz(1, std::forward<Args>(args)..., 1.0);
}
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void bazz() {
bar($param1[[32]], $param2[[42]]);
}
)cpp",
ExpectedHint{"a: ", "param1"},
ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, VariadicNameFromSpecialization) {
// We don't try to resolve forwarding parameters if the function call uses a
// specialization.
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <>
void bar<int>(int b);
void baz() {
bar($param[[42]]);
}
)cpp",
ExpectedHint{"b: ", "param"});
}
TEST(ParameterHints, VariadicNameFromSpecializationRecursive) {
// We don't try to resolve forwarding parameters inside a forwarding function
// call if that function call uses a specialization.
assertParameterHints(R"cpp(
void foo2(int a);
template <typename... Args>
void foo(Args... args) {
foo2(args...);
}
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <>
void foo<int>(int b);
void baz() {
bar($param[[42]]);
}
)cpp",
ExpectedHint{"b: ", "param"});
}
TEST(ParameterHints, VariadicOverloaded) {
// Name for variadic parameter for an overloaded function with unique number
// of parameters.
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(
R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void baz(int b, int c);
void baz(int bb, int cc, int dd);
template <typename... Args>
void foo(int a, Args&&... args) {
return baz(std::forward<Args>(args)...);
}
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void bazz() {
bar($param1[[32]], $param2[[42]], $param3[[52]]);
bar($param4[[1]], $param5[[2]], $param6[[3]], $param7[[4]]);
}
)cpp",
ExpectedHint{"a: ", "param1"}, ExpectedHint{"b: ", "param2"},
ExpectedHint{"c: ", "param3"}, ExpectedHint{"a: ", "param4"},
ExpectedHint{"bb: ", "param5"}, ExpectedHint{"cc: ", "param6"},
ExpectedHint{"dd: ", "param7"});
}
TEST(ParameterHints, VariadicRecursive) {
// make_tuple-like recursive variadic call
assertParameterHints(
R"cpp(
void foo();
template <typename Head, typename... Tail>
void foo(Head head, Tail... tail) {
foo(tail...);
}
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
int main() {
bar(1, 2, 3);
}
)cpp");
}
TEST(ParameterHints, VariadicVarargs) {
// variadic call involving varargs (to make sure we don't crash)
assertParameterHints(R"cpp(
void foo(int fixed, ...);
template <typename... Args>
void bar(Args&&... args) {
foo(args...);
}
void baz() {
bar($fixed[[41]], 42, 43);
}
)cpp");
}
TEST(ParameterHints, VariadicTwolevelUnresolved) {
// the same setting as VariadicVarargs, only with parameter pack
assertParameterHints(R"cpp(
template <typename... Args>
void foo(int fixed, Args&& ... args);
template <typename... Args>
void bar(Args&&... args) {
foo(args...);
}
void baz() {
bar($fixed[[41]], 42, 43);
}
)cpp",
ExpectedHint{"fixed: ", "fixed"});
}
TEST(ParameterHints, VariadicTwoCalls) {
// only the first call using the parameter pack should be picked up
assertParameterHints(
R"cpp(
void f1(int a, int b);
void f2(int c, int d);
bool cond;
template <typename... Args>
void foo(Args... args) {
if (cond) {
f1(args...);
} else {
f2(args...);
}
}
int main() {
foo($param1[[1]], $param2[[2]]);
}
)cpp",
ExpectedHint{"a: ", "param1"}, ExpectedHint{"b: ", "param2"});
}
TEST(ParameterHints, VariadicInfinite) {
// infinite recursion should not break clangd
assertParameterHints(
R"cpp(
template <typename... Args>
void foo(Args...);
template <typename... Args>
void bar(Args... args) {
foo(args...);
}
template <typename... Args>
void foo(Args... args) {
bar(args...);
}
int main() {
foo(1, 2);
}
)cpp");
}
TEST(ParameterHints, VariadicDuplicatePack) {
// edge cases with multiple adjacent packs should work
assertParameterHints(
R"cpp(
void foo(int a, int b, int c, int);
template <typename... Args>
void bar(int, Args... args, int d) {
foo(args..., d);
}
template <typename... Args>
void baz(Args... args, Args... args2) {
bar<Args..., int>(1, args..., args2...);
}
int main() {
baz<int, int>($p1[[1]], $p2[[2]], $p3[[3]], $p4[[4]]);
}
)cpp",
ExpectedHint{"a: ", "p1"}, ExpectedHint{"b: ", "p2"},
ExpectedHint{"c: ", "p3"}, ExpectedHint{"d: ", "p4"});
}
TEST(ParameterHints, VariadicEmplace) {
// emplace-like calls should forward constructor parameters
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(
R"cpp(
namespace std { template <typename T> T&& forward(T&); }
using size_t = decltype(sizeof(0));
void *operator new(size_t, void *);
struct S {
S(int A);
S(int B, int C);
};
struct alloc {
template <typename T>
T* allocate();
template <typename T, typename... Args>
void construct(T* ptr, Args&&... args) {
::new ((void*)ptr) T{std::forward<Args>(args)...};
}
};
template <typename T>
struct container {
template <typename... Args>
void emplace(Args&&... args) {
alloc a;
auto ptr = a.template allocate<T>();
a.construct(ptr, std::forward<Args>(args)...);
}
};
void foo() {
container<S> c;
c.emplace($param1[[1]]);
c.emplace($param2[[2]], $param3[[3]]);
}
)cpp",
ExpectedHint{"A: ", "param1"}, ExpectedHint{"B: ", "param2"},
ExpectedHint{"C: ", "param3"});
}
TEST(ParameterHints, VariadicReferenceHint) {
assertParameterHints(R"cpp(
void foo(int&);
template <typename... Args>
void bar(Args... args) { return foo(args...); }
void baz() {
int a;
bar(a);
bar(1);
}
)cpp");
}
TEST(ParameterHints, VariadicReferenceHintForwardingRef) {
assertParameterHints(R"cpp(
void foo(int&);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
int a;
bar($param[[a]]);
bar(1);
}
)cpp",
ExpectedHint{"&: ", "param"});
}
TEST(ParameterHints, VariadicReferenceHintForwardingRefStdForward) {
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int&);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int a;
bar($param[[a]]);
}
)cpp",
ExpectedHint{"&: ", "param"});
}
TEST(ParameterHints, VariadicNoReferenceHintForwardingRefStdForward) {
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int a;
bar(a);
bar(1);
}
)cpp");
}
TEST(ParameterHints, VariadicNoReferenceHintUnresolvedForward) {
assertParameterHints(R"cpp(
template <typename... Args>
void foo(Args&&... args);
void bar() {
int a;
foo(a);
}
)cpp");
}
TEST(ParameterHints, MatchingNameVariadicForwarded) {
// No name hint for variadic parameter with matching name
// This prototype of std::forward is sufficient for clang to recognize it
assertParameterHints(R"cpp(
namespace std { template <typename T> T&& forward(T&); }
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(std::forward<Args>(args)...); }
void baz() {
int a;
bar(a);
}
)cpp");
}
TEST(ParameterHints, MatchingNameVariadicPlain) {
// No name hint for variadic parameter with matching name
assertParameterHints(R"cpp(
void foo(int a);
template <typename... Args>
void bar(Args&&... args) { return foo(args...); }
void baz() {
int a;
bar(a);
}
)cpp");
}
TEST(ParameterHints, Operator) {
// No hint for operator call with operator syntax.
assertParameterHints(R"cpp(
@ -470,7 +986,7 @@ TEST(ParameterHints, VarargsFunction) {
assertParameterHints(R"cpp(
void foo(int fixed, ...);
void bar() {
void bar() {
foo($fixed[[41]], 42, 43);
}
)cpp",