[InstCombine] fold fpext into exact integer-to-FP cast

We can combine a floating-point extension cast with a conversion
from integer if we know the earlier cast is exact.

This is an optimization suggested in PR36617:
https://bugs.llvm.org/show_bug.cgi?id=36617#c19

However, this patch does not change the example suggested there.
This patch only uses the existing analysis to handle cases where
the integer source value magnitude is narrower than the
intermediate FP mantissa (guarantees that the conversion to FP is
exact). Follow-up patches to the analysis function can enable
more cases.

Differential Revision: https://reviews.llvm.org/D79116
This commit is contained in:
Sanjay Patel 2020-05-10 06:59:30 -04:00
parent 1d2c1fcf41
commit a62533c29f
2 changed files with 22 additions and 6 deletions

View File

@ -1757,8 +1757,18 @@ static bool isKnownExactCastIntToFP(CastInst &I) {
return false; return false;
} }
Instruction *InstCombiner::visitFPExt(CastInst &CI) { Instruction *InstCombiner::visitFPExt(CastInst &FPExt) {
return commonCastTransforms(CI); // If the source operand is a cast from integer to FP and known exact, then
// cast the integer operand directly to the destination type.
Type *Ty = FPExt.getType();
Value *Src = FPExt.getOperand(0);
if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
auto *FPCast = cast<CastInst>(Src);
if (isKnownExactCastIntToFP(*FPCast))
return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
}
return commonCastTransforms(FPExt);
} }
/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)

View File

@ -259,10 +259,11 @@ define float @test18(half %x, half %y) nounwind {
ret float %t56 ret float %t56
} }
; Convert from integer is exact, so convert directly to double.
define double @ItoFtoF_s25_f32_f64(i25 %i) { define double @ItoFtoF_s25_f32_f64(i25 %i) {
; CHECK-LABEL: @ItoFtoF_s25_f32_f64( ; CHECK-LABEL: @ItoFtoF_s25_f32_f64(
; CHECK-NEXT: [[X:%.*]] = sitofp i25 [[I:%.*]] to float ; CHECK-NEXT: [[R:%.*]] = sitofp i25 [[I:%.*]] to double
; CHECK-NEXT: [[R:%.*]] = fpext float [[X]] to double
; CHECK-NEXT: ret double [[R]] ; CHECK-NEXT: ret double [[R]]
; ;
%x = sitofp i25 %i to float %x = sitofp i25 %i to float
@ -270,10 +271,11 @@ define double @ItoFtoF_s25_f32_f64(i25 %i) {
ret double %r ret double %r
} }
; Convert from integer is exact, so convert directly to fp128.
define fp128 @ItoFtoF_u24_f32_f128(i24 %i) { define fp128 @ItoFtoF_u24_f32_f128(i24 %i) {
; CHECK-LABEL: @ItoFtoF_u24_f32_f128( ; CHECK-LABEL: @ItoFtoF_u24_f32_f128(
; CHECK-NEXT: [[X:%.*]] = uitofp i24 [[I:%.*]] to float ; CHECK-NEXT: [[R:%.*]] = uitofp i24 [[I:%.*]] to fp128
; CHECK-NEXT: [[R:%.*]] = fpext float [[X]] to fp128
; CHECK-NEXT: ret fp128 [[R]] ; CHECK-NEXT: ret fp128 [[R]]
; ;
%x = uitofp i24 %i to float %x = uitofp i24 %i to float
@ -281,6 +283,8 @@ define fp128 @ItoFtoF_u24_f32_f128(i24 %i) {
ret fp128 %r ret fp128 %r
} }
; Negative test - intermediate rounding in float type.
define double @ItoFtoF_s26_f32_f64(i26 %i) { define double @ItoFtoF_s26_f32_f64(i26 %i) {
; CHECK-LABEL: @ItoFtoF_s26_f32_f64( ; CHECK-LABEL: @ItoFtoF_s26_f32_f64(
; CHECK-NEXT: [[X:%.*]] = sitofp i26 [[I:%.*]] to float ; CHECK-NEXT: [[X:%.*]] = sitofp i26 [[I:%.*]] to float
@ -292,6 +296,8 @@ define double @ItoFtoF_s26_f32_f64(i26 %i) {
ret double %r ret double %r
} }
; Negative test - intermediate rounding in float type.
define double @ItoFtoF_u25_f32_f64(i25 %i) { define double @ItoFtoF_u25_f32_f64(i25 %i) {
; CHECK-LABEL: @ItoFtoF_u25_f32_f64( ; CHECK-LABEL: @ItoFtoF_u25_f32_f64(
; CHECK-NEXT: [[X:%.*]] = uitofp i25 [[I:%.*]] to float ; CHECK-NEXT: [[X:%.*]] = uitofp i25 [[I:%.*]] to float