[MCJIT] Significantly refactor the RuntimeDyldMachO class.

The previous implementation of RuntimeDyldMachO mixed logic for all targets
within a single class, creating problems for readability, maintainability, and
performance. To address these issues, this patch strips the RuntimeDyldMachO
class down to just target-independent functionality, and moves all
target-specific functionality into target-specific subclasses RuntimeDyldMachO.

The new class hierarchy is as follows:

class RuntimeDyldMachO
Implemented in RuntimeDyldMachO.{h,cpp}
Contains logic that is completely independent of the target. This consists
mostly of MachO helper utilities which the derived classes use to get their
work done.


template <typename Impl>
class RuntimeDyldMachOCRTPBase<Impl> : public RuntimeDyldMachO
Implemented in RuntimeDyldMachO.h
Contains generic MachO algorithms/data structures that defer to the Impl class
for target-specific behaviors.

RuntimeDyldMachOARM : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM>
RuntimeDyldMachOARM64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM64>
RuntimeDyldMachOI386 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386>
RuntimeDyldMachOX86_64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64>
Implemented in their respective *.h files in lib/ExecutionEngine/RuntimeDyld/MachOTargets
Each of these contains the relocation logic specific to their target architecture.

llvm-svn: 213293
This commit is contained in:
Lang Hames 2014-07-17 18:54:50 +00:00
parent 535b6f9361
commit a521688cf4
7 changed files with 1097 additions and 826 deletions

View File

@ -697,8 +697,9 @@ createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
}
static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) {
std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM));
createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
bool ProcessAllSections) {
std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
Dyld->setProcessAllSections(ProcessAllSections);
return Dyld;
}
@ -715,7 +716,9 @@ ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
} else if (InputObject->isMachO()) {
InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
if (!Dyld)
Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
Dyld = createRuntimeDyldMachO(
static_cast<Triple::ArchType>(InputImage->getArch()),
MM, ProcessAllSections).release();
} else
report_fatal_error("Incompatible object format!");
@ -751,7 +754,9 @@ ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
case sys::fs::file_magic::macho_dsym_companion:
InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
if (!Dyld)
Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
Dyld = createRuntimeDyldMachO(
static_cast<Triple::ArchType>(InputImage->getArch()),
MM, ProcessAllSections).release();
break;
case sys::fs::file_magic::unknown:
case sys::fs::file_magic::bitcode:

View File

@ -14,6 +14,12 @@
#include "RuntimeDyldMachO.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "Targets/RuntimeDyldMachOARM.h"
#include "Targets/RuntimeDyldMachOAArch64.h"
#include "Targets/RuntimeDyldMachOI386.h"
#include "Targets/RuntimeDyldMachOX86_64.h"
using namespace llvm;
using namespace llvm::object;
@ -21,6 +27,134 @@ using namespace llvm::object;
namespace llvm {
RelocationEntry
RuntimeDyldMachO::getBasicRelocationEntry(unsigned SectionID,
ObjectImage &ObjImg,
const relocation_iterator &RI) const {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
const SectionEntry &Section = Sections[SectionID];
bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
unsigned Size = Obj.getAnyRelocationLength(RelInfo);
uint64_t Offset;
RI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
uint64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
return RelocationEntry(SectionID, Offset, RelType, Addend, IsPCRel, Size);
}
RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
ObjectImage &ObjImg, const relocation_iterator &RI,
const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols) {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
RelocationValueRef Value;
bool IsExternal = Obj.getPlainRelocationExternal(RelInfo);
if (IsExternal) {
symbol_iterator Symbol = RI->getSymbol();
StringRef TargetName;
Symbol->getName(TargetName);
SymbolTableMap::const_iterator SI = Symbols.find(TargetName.data());
if (SI != Symbols.end()) {
Value.SectionID = SI->second.first;
Value.Addend = SI->second.second + RE.Addend;
} else {
SI = GlobalSymbolTable.find(TargetName.data());
if (SI != GlobalSymbolTable.end()) {
Value.SectionID = SI->second.first;
Value.Addend = SI->second.second + RE.Addend;
} else {
Value.SymbolName = TargetName.data();
Value.Addend = RE.Addend;
}
}
} else {
SectionRef Sec = Obj.getRelocationSection(RelInfo);
bool IsCode = false;
Sec.isText(IsCode);
Value.SectionID = findOrEmitSection(ObjImg, Sec, IsCode, ObjSectionToID);
uint64_t Addr;
Sec.getAddress(Addr);
Value.Addend = RE.Addend - Addr;
}
return Value;
}
void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value,
ObjectImage &ObjImg,
const relocation_iterator &RI) {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
if (IsPCRel) {
uint64_t RelocAddr = 0;
RI->getAddress(RelocAddr);
unsigned RelocSize = Obj.getAnyRelocationLength(RelInfo);
Value.Addend += RelocAddr + (1 << RelocSize);
}
}
void RuntimeDyldMachO::dumpRelocationToResolve(const RelocationEntry &RE,
uint64_t Value) const {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
dbgs() << "resolveRelocation Section: " << RE.SectionID
<< " LocalAddress: " << format("%p", LocalAddress)
<< " FinalAddress: " << format("%p", FinalAddress)
<< " Value: " << format("%p", Value) << " Addend: " << RE.Addend
<< " isPCRel: " << RE.IsPCRel << " MachoType: " << RE.RelType
<< " Size: " << (1 << RE.Size) << "\n";
}
bool RuntimeDyldMachO::writeBytesUnaligned(uint8_t *Addr, uint64_t Value,
unsigned Size) {
for (unsigned i = 0; i < Size; ++i) {
*Addr++ = (uint8_t)Value;
Value >>= 8;
}
return false;
}
bool
RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const {
if (InputBuffer->getBufferSize() < 4)
return false;
StringRef Magic(InputBuffer->getBufferStart(), 4);
if (Magic == "\xFE\xED\xFA\xCE")
return true;
if (Magic == "\xCE\xFA\xED\xFE")
return true;
if (Magic == "\xFE\xED\xFA\xCF")
return true;
if (Magic == "\xCF\xFA\xED\xFE")
return true;
return false;
}
bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const {
return Obj->isMachO();
}
static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText,
intptr_t DeltaForEH) {
DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText
@ -90,764 +224,17 @@ void RuntimeDyldMachO::registerEHFrames() {
UnregisteredEHFrameSections.clear();
}
void RuntimeDyldMachO::finalizeLoad(ObjectImage &ObjImg,
ObjSectionToIDMap &SectionMap) {
unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID;
ObjSectionToIDMap::iterator i, e;
for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
const SectionRef &Section = i->first;
StringRef Name;
Section.getName(Name);
if (Name == "__eh_frame")
EHFrameSID = i->second;
else if (Name == "__text")
TextSID = i->second;
else if (Name == "__gcc_except_tab")
ExceptTabSID = i->second;
else if (Name == "__jump_table")
populateJumpTable(cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, i->second);
else if (Name == "__pointers")
populatePointersSection(cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, i->second);
}
UnregisteredEHFrameSections.push_back(
EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID));
}
// The target location for the relocation is described by RE.SectionID and
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process. SectionEntry::LoadAddress is the
// address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
// Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied. For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location). For external symbols, Value will be the address of the
// symbol in the target address space.
void RuntimeDyldMachO::resolveRelocation(const RelocationEntry &RE,
uint64_t Value) {
DEBUG (
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
dbgs() << "resolveRelocation Section: " << RE.SectionID
<< " LocalAddress: " << format("%p", LocalAddress)
<< " FinalAddress: " << format("%p", FinalAddress)
<< " Value: " << format("%p", Value)
<< " Addend: " << RE.Addend
<< " isPCRel: " << RE.IsPCRel
<< " MachoType: " << RE.RelType
<< " Size: " << (1 << RE.Size) << "\n";
);
// This just dispatches to the proper target specific routine.
std::unique_ptr<RuntimeDyldMachO>
llvm::RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
switch (Arch) {
default:
llvm_unreachable("Unsupported CPU type!");
case Triple::x86_64:
resolveX86_64Relocation(RE, Value);
break;
case Triple::x86:
resolveI386Relocation(RE, Value);
break;
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(RE, Value);
break;
case Triple::aarch64:
case Triple::arm64:
resolveAArch64Relocation(RE, Value);
llvm_unreachable("Unsupported target for RuntimeDyldMachO.");
break;
case Triple::arm: return make_unique<RuntimeDyldMachOARM>(MM);
case Triple::arm64: return make_unique<RuntimeDyldMachOAArch64>(MM);
case Triple::x86: return make_unique<RuntimeDyldMachOI386>(MM);
case Triple::x86_64: return make_unique<RuntimeDyldMachOX86_64>(MM);
}
}
bool RuntimeDyldMachO::resolveI386Relocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::GENERIC_RELOC_VANILLA:
return applyRelocationValue(LocalAddress, Value + RE.Addend,
1 << RE.Size);
case MachO::GENERIC_RELOC_SECTDIFF:
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress;
uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress;
assert((Value == SectionABase || Value == SectionBBase) &&
"Unexpected SECTDIFF relocation value.");
Value = SectionABase - SectionBBase + RE.Addend;
return applyRelocationValue(LocalAddress, Value, 1 << RE.Size);
}
case MachO::GENERIC_RELOC_PB_LA_PTR:
return Error("Relocation type not implemented yet!");
}
}
bool RuntimeDyldMachO::resolveX86_64Relocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
// FIXME: It seems this value needs to be adjusted by 4 for an effective PC
// address. Is that expected? Only for branches, perhaps?
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::X86_64_RELOC_SIGNED_1:
case MachO::X86_64_RELOC_SIGNED_2:
case MachO::X86_64_RELOC_SIGNED_4:
case MachO::X86_64_RELOC_SIGNED:
case MachO::X86_64_RELOC_UNSIGNED:
case MachO::X86_64_RELOC_BRANCH:
return applyRelocationValue(LocalAddress, Value + RE.Addend, 1 << RE.Size);
case MachO::X86_64_RELOC_GOT_LOAD:
case MachO::X86_64_RELOC_GOT:
case MachO::X86_64_RELOC_SUBTRACTOR:
case MachO::X86_64_RELOC_TLV:
return Error("Relocation type not implemented yet!");
}
}
bool RuntimeDyldMachO::resolveARMRelocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress;
// ARM PCRel relocations have an effective-PC offset of two instructions
// (four bytes in Thumb mode, 8 bytes in ARM mode).
// FIXME: For now, assume ARM mode.
Value -= 8;
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM_RELOC_VANILLA:
return applyRelocationValue(LocalAddress, Value, 1 << RE.Size);
case MachO::ARM_RELOC_BR24: {
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// The low two bits of the value are not encoded.
Value >>= 2;
// Mask the value to 24 bits.
uint64_t FinalValue = Value & 0xffffff;
// Check for overflow.
if (Value != FinalValue)
return Error("ARM BR24 relocation out of range.");
// FIXME: If the destination is a Thumb function (and the instruction
// is a non-predicated BL instruction), we need to change it to a BLX
// instruction instead.
// Insert the value into the instruction.
*p = (*p & ~0xffffff) | FinalValue;
break;
}
case MachO::ARM_THUMB_RELOC_BR22:
case MachO::ARM_THUMB_32BIT_BRANCH:
case MachO::ARM_RELOC_HALF:
case MachO::ARM_RELOC_HALF_SECTDIFF:
case MachO::ARM_RELOC_PAIR:
case MachO::ARM_RELOC_SECTDIFF:
case MachO::ARM_RELOC_LOCAL_SECTDIFF:
case MachO::ARM_RELOC_PB_LA_PTR:
return Error("Relocation type not implemented yet!");
}
return false;
}
bool RuntimeDyldMachO::resolveAArch64Relocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM64_RELOC_UNSIGNED: {
assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_UNSIGNED not supported");
// Mask in the target value a byte at a time (we don't have an alignment
// guarantee for the target address, so this is safest).
if (RE.Size < 2)
llvm_unreachable("Invalid size for ARM64_RELOC_UNSIGNED");
applyRelocationValue(LocalAddress, Value + RE.Addend, 1 << RE.Size);
break;
}
case MachO::ARM64_RELOC_BRANCH26: {
assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_BRANCH26 not supported");
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t*)LocalAddress;
// Check if the addend is encoded in the instruction.
uint32_t EncodedAddend = *p & 0x03FFFFFF;
if (EncodedAddend != 0 ) {
if (RE.Addend == 0)
llvm_unreachable("branch26 instruction has embedded addend.");
else
llvm_unreachable("branch26 instruction has embedded addend and" \
"ARM64_RELOC_ADDEND.");
}
// Check if branch is in range.
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
uint64_t PCRelVal = Value - FinalAddress + RE.Addend;
assert(isInt<26>(PCRelVal) && "Branch target out of range!");
// Insert the value into the instruction.
*p = (*p & 0xFC000000) | ((uint32_t)(PCRelVal >> 2) & 0x03FFFFFF);
break;
}
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
case MachO::ARM64_RELOC_PAGE21: {
assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_PAGE21 not supported");
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t*)LocalAddress;
// Check if the addend is encoded in the instruction.
uint32_t EncodedAddend = ((*p & 0x60000000) >> 29) |
((*p & 0x01FFFFE0) >> 3);
if (EncodedAddend != 0) {
if (RE.Addend == 0)
llvm_unreachable("adrp instruction has embedded addend.");
else
llvm_unreachable("adrp instruction has embedded addend and" \
"ARM64_RELOC_ADDEND.");
}
// Adjust for PC-relative relocation and offset.
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
uint64_t PCRelVal = ((Value + RE.Addend) & (-4096)) -
(FinalAddress & (-4096));
// Check that the value fits into 21 bits (+ 12 lower bits).
assert(isInt<33>(PCRelVal) && "Invalid page reloc value!");
// Insert the value into the instruction.
uint32_t ImmLoValue = (uint32_t)(PCRelVal << 17) & 0x60000000;
uint32_t ImmHiValue = (uint32_t)(PCRelVal >> 9) & 0x00FFFFE0;
*p = (*p & 0x9F00001F) | ImmHiValue | ImmLoValue;
break;
}
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
case MachO::ARM64_RELOC_PAGEOFF12: {
assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_PAGEOFF21 not supported");
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t*)LocalAddress;
// Check if the addend is encoded in the instruction.
uint32_t EncodedAddend = *p & 0x003FFC00;
if (EncodedAddend != 0) {
if (RE.Addend == 0)
llvm_unreachable("adrp instruction has embedded addend.");
else
llvm_unreachable("adrp instruction has embedded addend and" \
"ARM64_RELOC_ADDEND.");
}
// Add the offset from the symbol.
Value += RE.Addend;
// Mask out the page address and only use the lower 12 bits.
Value &= 0xFFF;
// Check which instruction we are updating to obtain the implicit shift
// factor from LDR/STR instructions.
if (*p & 0x08000000) {
uint32_t ImplicitShift = ((*p >> 30) & 0x3);
switch (ImplicitShift) {
case 0:
// Check if this a vector op.
if ((*p & 0x04800000) == 0x04800000) {
ImplicitShift = 4;
assert(((Value & 0xF) == 0) &&
"128-bit LDR/STR not 16-byte aligned.");
}
break;
case 1:
assert(((Value & 0x1) == 0) && "16-bit LDR/STR not 2-byte aligned.");
case 2:
assert(((Value & 0x3) == 0) && "32-bit LDR/STR not 4-byte aligned.");
case 3:
assert(((Value & 0x7) == 0) && "64-bit LDR/STR not 8-byte aligned.");
}
// Compensate for implicit shift.
Value >>= ImplicitShift;
}
// Insert the value into the instruction.
*p = (*p & 0xFFC003FF) | ((uint32_t)(Value << 10) & 0x003FFC00);
break;
}
case MachO::ARM64_RELOC_SUBTRACTOR:
case MachO::ARM64_RELOC_POINTER_TO_GOT:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
llvm_unreachable("Relocation type not implemented yet!");
return Error("Relocation type not implemented yet!");
case MachO::ARM64_RELOC_ADDEND:
llvm_unreachable("ARM64_RELOC_ADDEND should have been handeled by " \
"processRelocationRef!");
}
return false;
}
void RuntimeDyldMachO::populateJumpTable(MachOObjectFile &Obj,
const SectionRef &JTSection,
unsigned JTSectionID) {
assert(!Obj.is64Bit() &&
"__jump_table section not supported in 64-bit MachO.");
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(JTSection.getRawDataRefImpl());
uint32_t JTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
unsigned JTEntrySize = Sec32.reserved2;
unsigned NumJTEntries = JTSectionSize / JTEntrySize;
uint8_t* JTSectionAddr = getSectionAddress(JTSectionID);
unsigned JTEntryOffset = 0;
assert((JTSectionSize % JTEntrySize) == 0 &&
"Jump-table section does not contain a whole number of stubs?");
for (unsigned i = 0; i < NumJTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
StringRef IndirectSymbolName;
SI->getName(IndirectSymbolName);
uint8_t* JTEntryAddr = JTSectionAddr + JTEntryOffset;
createStubFunction(JTEntryAddr);
RelocationEntry RE(JTSectionID, JTEntryOffset + 1,
MachO::GENERIC_RELOC_VANILLA, 0, true, 2);
addRelocationForSymbol(RE, IndirectSymbolName);
JTEntryOffset += JTEntrySize;
}
}
void RuntimeDyldMachO::populatePointersSection(MachOObjectFile &Obj,
const SectionRef &PTSection,
unsigned PTSectionID) {
assert(!Obj.is64Bit() &&
"__pointers section not supported in 64-bit MachO.");
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl());
uint32_t PTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
const unsigned PTEntrySize = 4;
unsigned NumPTEntries = PTSectionSize / PTEntrySize;
unsigned PTEntryOffset = 0;
assert((PTSectionSize % PTEntrySize) == 0 &&
"Pointers section does not contain a whole number of stubs?");
DEBUG(dbgs() << "Populating __pointers, Section ID " << PTSectionID
<< ", " << NumPTEntries << " entries, "
<< PTEntrySize << " bytes each:\n");
for (unsigned i = 0; i < NumPTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
StringRef IndirectSymbolName;
SI->getName(IndirectSymbolName);
DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex
<< ", PT offset: " << PTEntryOffset << "\n");
RelocationEntry RE(PTSectionID, PTEntryOffset,
MachO::GENERIC_RELOC_VANILLA, 0, false, 2);
addRelocationForSymbol(RE, IndirectSymbolName);
PTEntryOffset += PTEntrySize;
}
}
section_iterator getSectionByAddress(const MachOObjectFile &Obj,
uint64_t Addr) {
section_iterator SI = Obj.section_begin();
section_iterator SE = Obj.section_end();
for (; SI != SE; ++SI) {
uint64_t SAddr, SSize;
SI->getAddress(SAddr);
SI->getSize(SSize);
if ((Addr >= SAddr) && (Addr < SAddr + SSize))
return SI;
}
return SE;
}
relocation_iterator RuntimeDyldMachO::processSECTDIFFRelocation(
unsigned SectionID,
relocation_iterator RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile*>(Obj.getObjectFile());
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
++RelI;
MachO::any_relocation_info RE2 =
MachO->getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = MachO->getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(*MachO, AddrA);
assert(SAI != MachO->section_end() && "Can't find section for address A");
uint64_t SectionABase;
SAI->getAddress(SectionABase);
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
bool IsCode;
SectionA.isText(IsCode);
uint32_t SectionAID = findOrEmitSection(Obj, SectionA, IsCode,
ObjSectionToID);
uint32_t AddrB = MachO->getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(*MachO, AddrB);
assert(SBI != MachO->section_end() && "Can't find section for address B");
uint64_t SectionBBase;
SBI->getAddress(SectionBBase);
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
uint32_t SectionBID = findOrEmitSection(Obj, SectionB, IsCode,
ObjSectionToID);
if (Addend != AddrA - AddrB)
Error("Unexpected SECTDIFF relocation addend.");
DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB
<< ", Addend: " << Addend << ", SectionA ID: "
<< SectionAID << ", SectionAOffset: " << SectionAOffset
<< ", SectionB ID: " << SectionBID << ", SectionBOffset: "
<< SectionBOffset << "\n");
RelocationEntry R(SectionID, Offset, RelocType, 0,
SectionAID, SectionAOffset, SectionBID, SectionBOffset,
IsPCRel, Size);
addRelocationForSection(R, SectionAID);
addRelocationForSection(R, SectionBID);
return ++RelI;
}
relocation_iterator RuntimeDyldMachO::processI386ScatteredVANILLA(
unsigned SectionID,
relocation_iterator RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile*>(Obj.getObjectFile());
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
unsigned SymbolBaseAddr = MachO->getScatteredRelocationValue(RE);
section_iterator TargetSI = getSectionByAddress(*MachO, SymbolBaseAddr);
assert(TargetSI != MachO->section_end() && "Can't find section for symbol");
uint64_t SectionBaseAddr;
TargetSI->getAddress(SectionBaseAddr);
SectionRef TargetSection = *TargetSI;
bool IsCode;
TargetSection.isText(IsCode);
uint32_t TargetSectionID = findOrEmitSection(Obj, TargetSection, IsCode,
ObjSectionToID);
Addend -= SectionBaseAddr;
RelocationEntry R(SectionID, Offset, RelocType, Addend,
IsPCRel, Size);
addRelocationForSection(R, TargetSectionID);
return ++RelI;
}
relocation_iterator RuntimeDyldMachO::processRelocationRef(
unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
StubMap &Stubs) {
const ObjectFile *OF = Obj.getObjectFile();
const MachOObjectFile *MachO = static_cast<const MachOObjectFile *>(OF);
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
int64_t RelocAddendValue = 0;
bool HasRelocAddendValue = false;
uint32_t RelType = MachO->getAnyRelocationType(RE);
if (Arch == Triple::arm64) {
// ARM64_RELOC_ADDEND provides the offset (addend) that will be used by the
// next relocation entry. Save the value and advance to the next relocation
// entry.
if (RelType == MachO::ARM64_RELOC_ADDEND) {
assert(!MachO->getPlainRelocationExternal(RE));
assert(!MachO->getAnyRelocationPCRel(RE));
assert(MachO->getAnyRelocationLength(RE) == 2);
uint64_t RawAddend = MachO->getPlainRelocationSymbolNum(RE);
// Sign-extend the 24-bit to 64-bit.
RelocAddendValue = RawAddend << 40;
RelocAddendValue >>= 40;
HasRelocAddendValue = true;
// Get the next entry.
RE = MachO->getRelocation((++RelI)->getRawDataRefImpl());
RelType = MachO->getAnyRelocationType(RE);
assert(RelType == MachO::ARM64_RELOC_BRANCH26 ||
RelType == MachO::ARM64_RELOC_PAGE21 ||
RelType == MachO::ARM64_RELOC_PAGEOFF12);
} else if (RelType == MachO::ARM64_RELOC_BRANCH26 ||
RelType == MachO::ARM64_RELOC_PAGE21 ||
RelType == MachO::ARM64_RELOC_PAGEOFF12 ||
RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGE21 ||
RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12) {
RelocAddendValue = 0;
HasRelocAddendValue = true;
}
}
// FIXME: Properly handle scattered relocations.
// Special case the couple of scattered relocations that we know how
// to handle: SECTDIFF relocations, and scattered VANILLA relocations
// on I386.
// For all other scattered relocations, just bail out and hope for the
// best, since the offsets computed by scattered relocations have often
// been optimisticaly filled in by the compiler. This will fail
// horribly where the relocations *do* need to be applied, but that was
// already the case.
if (MachO->isRelocationScattered(RE)) {
if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
return processSECTDIFFRelocation(SectionID, RelI, Obj, ObjSectionToID);
else if (Arch == Triple::x86 && RelType == MachO::GENERIC_RELOC_VANILLA)
return processI386ScatteredVANILLA(SectionID, RelI, Obj, ObjSectionToID);
else
return ++RelI;
}
RelocationValueRef Value;
SectionEntry &Section = Sections[SectionID];
bool IsExtern = MachO->getPlainRelocationExternal(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = 0;
if (HasRelocAddendValue)
Addend = RelocAddendValue;
else
memcpy(&Addend, LocalAddress, NumBytes);
if (IsExtern) {
// Obtain the symbol name which is referenced in the relocation
symbol_iterator Symbol = RelI->getSymbol();
StringRef TargetName;
Symbol->getName(TargetName);
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
Value.Addend = lsi->second.second + Addend;
} else {
// Search for the symbol in the global symbol table
SymbolTableMap::const_iterator gsi =
GlobalSymbolTable.find(TargetName.data());
if (gsi != GlobalSymbolTable.end()) {
Value.SectionID = gsi->second.first;
Value.Addend = gsi->second.second + Addend;
} else {
Value.SymbolName = TargetName.data();
Value.Addend = Addend;
}
}
// Addends for external, PC-rel relocations on i386 point back to the zero
// offset. Calculate the final offset from the relocation target instead.
// This allows us to use the same logic for both external and internal
// relocations in resolveI386RelocationRef.
if (Arch == Triple::x86 && IsPCRel) {
uint64_t RelocAddr = 0;
RelI->getAddress(RelocAddr);
Value.Addend += RelocAddr + 4;
}
} else {
SectionRef Sec = MachO->getRelocationSection(RE);
bool IsCode = false;
Sec.isText(IsCode);
Value.SectionID = findOrEmitSection(Obj, Sec, IsCode, ObjSectionToID);
uint64_t Addr;
Sec.getAddress(Addr);
Value.Addend = Addend - Addr;
if (IsPCRel)
Value.Addend += Offset + NumBytes;
}
if (Arch == Triple::x86_64 && (RelType == MachO::X86_64_RELOC_GOT ||
RelType == MachO::X86_64_RELOC_GOT_LOAD)) {
assert(IsPCRel);
assert(Size == 2);
// FIXME: Teach the generic code above not to prematurely conflate
// relocation addends and symbol offsets.
Value.Addend -= Addend;
StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
Addr = Section.Address + i->second;
} else {
Stubs[Value] = Section.StubOffset;
uint8_t *GOTEntry = Section.Address + Section.StubOffset;
RelocationEntry GOTRE(SectionID, Section.StubOffset,
MachO::X86_64_RELOC_UNSIGNED, Value.Addend, false,
3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
else
addRelocationForSection(GOTRE, Value.SectionID);
Section.StubOffset += 8;
Addr = GOTEntry;
}
RelocationEntry TargetRE(SectionID, Offset,
MachO::X86_64_RELOC_UNSIGNED, Addend, true,
2);
resolveRelocation(TargetRE, (uint64_t)Addr);
} else if (Arch == Triple::arm && (RelType & 0xf) == MachO::ARM_RELOC_BR24) {
// This is an ARM branch relocation, need to use a stub function.
// Look up for existing stub.
StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
Addr = Section.Address + i->second;
} else {
// Create a new stub function.
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr =
createStubFunction(Section.Address + Section.StubOffset);
RelocationEntry StubRE(SectionID, StubTargetAddr - Section.Address,
MachO::GENERIC_RELOC_VANILLA, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(StubRE, Value.SymbolName);
else
addRelocationForSection(StubRE, Value.SectionID);
Addr = Section.Address + Section.StubOffset;
Section.StubOffset += getMaxStubSize();
}
RelocationEntry TargetRE(Value.SectionID, Offset, RelType, 0, IsPCRel,
Size);
resolveRelocation(TargetRE, (uint64_t)Addr);
} else if (Arch == Triple::arm64 &&
(RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGE21 ||
RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12)) {
assert(Size == 2);
StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end())
Addr = Section.Address + i->second;
else {
// FIXME: There must be a better way to do this then to check and fix the
// alignment every time!!!
uintptr_t BaseAddress = uintptr_t(Section.Address);
uintptr_t StubAlignment = getStubAlignment();
uintptr_t StubAddress
= (BaseAddress + Section.StubOffset + StubAlignment - 1) &
-StubAlignment;
unsigned StubOffset = StubAddress - BaseAddress;
Stubs[Value] = StubOffset;
assert(((StubAddress % getStubAlignment()) == 0) &&
"GOT entry not aligned");
RelocationEntry GOTRE(SectionID, StubOffset, MachO::ARM64_RELOC_UNSIGNED,
Value.Addend, /*IsPCRel=*/false, /*Size=*/3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
else
addRelocationForSection(GOTRE, Value.SectionID);
Section.StubOffset = StubOffset + getMaxStubSize();
Addr = (uint8_t *)StubAddress;
}
RelocationEntry TargetRE(SectionID, Offset, RelType, /*Addend=*/0, IsPCRel,
Size);
resolveRelocation(TargetRE, (uint64_t)Addr);
} else {
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, IsPCRel, Size);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
return ++RelI;
}
bool
RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const {
if (InputBuffer->getBufferSize() < 4)
return false;
StringRef Magic(InputBuffer->getBufferStart(), 4);
if (Magic == "\xFE\xED\xFA\xCE")
return true;
if (Magic == "\xCE\xFA\xED\xFE")
return true;
if (Magic == "\xFE\xED\xFA\xCF")
return true;
if (Magic == "\xCF\xFA\xED\xFE")
return true;
return false;
}
bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const {
return Obj->isMachO();
}
} // end namespace llvm

View File

@ -19,68 +19,18 @@
#include "llvm/Object/MachO.h"
#include "llvm/Support/Format.h"
#define DEBUG_TYPE "dyld"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
class RuntimeDyldMachO : public RuntimeDyldImpl {
private:
/// Write the least significant 'Size' bytes in 'Value' out at the address
/// pointed to by Addr.
bool applyRelocationValue(uint8_t *Addr, uint64_t Value, unsigned Size) {
for (unsigned i = 0; i < Size; ++i) {
*Addr++ = (uint8_t)Value;
Value >>= 8;
}
return false;
}
bool resolveI386Relocation(const RelocationEntry &RE, uint64_t Value);
bool resolveX86_64Relocation(const RelocationEntry &RE, uint64_t Value);
bool resolveARMRelocation(const RelocationEntry &RE, uint64_t Value);
bool resolveAArch64Relocation(const RelocationEntry &RE, uint64_t Value);
// Populate stubs in __jump_table section.
void populateJumpTable(MachOObjectFile &Obj, const SectionRef &JTSection,
unsigned JTSectionID);
// Populate __pointers section.
void populatePointersSection(MachOObjectFile &Obj, const SectionRef &PTSection,
unsigned PTSectionID);
unsigned getMaxStubSize() override {
if (Arch == Triple::arm || Arch == Triple::thumb)
return 8; // 32-bit instruction and 32-bit address
else if (Arch == Triple::x86_64)
return 8; // GOT entry
else if (Arch == Triple::arm64)
return 8; // GOT entry
else
return 0;
}
unsigned getStubAlignment() override {
if (Arch == Triple::arm || Arch == Triple::thumb)
return 4;
else if (Arch == Triple::arm64)
return 8;
else
return 1;
}
relocation_iterator processSECTDIFFRelocation(
unsigned SectionID,
relocation_iterator RelI,
ObjectImage &ObjImg,
ObjSectionToIDMap &ObjSectionToID);
relocation_iterator processI386ScatteredVANILLA(
unsigned SectionID,
relocation_iterator RelI,
ObjectImage &ObjImg,
ObjSectionToIDMap &ObjSectionToID);
protected:
struct SectionOffsetPair {
unsigned SectionID;
uint64_t Offset;
};
struct EHFrameRelatedSections {
EHFrameRelatedSections()
@ -99,30 +49,105 @@ private:
// EH frame sections with the memory manager.
SmallVector<EHFrameRelatedSections, 2> UnregisteredEHFrameSections;
public:
RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override;
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override;
bool isCompatibleFormat(const ObjectBuffer *Buffer) const override;
bool isCompatibleFile(const object::ObjectFile *Obj) const override;
void registerEHFrames() override;
void finalizeLoad(ObjectImage &ObjImg,
ObjSectionToIDMap &SectionMap) override;
/// Parse the given relocation, which must be a non-scattered, and
/// return a RelocationEntry representing the information. The 'Addend' field
/// will contain the unmodified instruction immediate.
RelocationEntry getBasicRelocationEntry(unsigned SectionID, ObjectImage &Obj,
const relocation_iterator &RI) const;
/// Construct a RelocationValueRef representing the relocation target.
/// For Symbols in known sections, this will return a RelocationValueRef
/// representing a (SectionID, Offset) pair.
/// For Symbols whose section is not known, this will return a
/// (SymbolName, Offset) pair, where the Offset is taken from the instruction
/// immediate (held in RE.Addend).
/// In both cases the Addend field is *NOT* fixed up to be PC-relative. That
/// should be done by the caller where appropriate by calling makePCRel on
/// the RelocationValueRef.
RelocationValueRef getRelocationValueRef(ObjectImage &ObjImg,
const relocation_iterator &RI,
const RelocationEntry &RE,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols);
/// Make the RelocationValueRef addend PC-relative.
void makeValueAddendPCRel(RelocationValueRef &Value, ObjectImage &ObjImg,
const relocation_iterator &RI);
/// Dump information about the relocation entry (RE) and resolved value.
void dumpRelocationToResolve(const RelocationEntry &RE, uint64_t Value) const;
public:
/// Create an ObjectImage from the given ObjectBuffer.
static ObjectImage *createObjectImage(ObjectBuffer *InputBuffer) {
return new ObjectImageCommon(InputBuffer);
}
/// Create an ObjectImage from the given ObjectFile.
static ObjectImage *
createObjectImageFromFile(std::unique_ptr<object::ObjectFile> InputObject) {
return new ObjectImageCommon(std::move(InputObject));
}
/// Create a RuntimeDyldMachO instance for the given target architecture.
static std::unique_ptr<RuntimeDyldMachO> create(Triple::ArchType Arch,
RTDyldMemoryManager *mm);
/// Write the least significant 'Size' bytes in 'Value' out at the address
/// pointed to by Addr. Check for overflow.
bool writeBytesUnaligned(uint8_t *Addr, uint64_t Value, unsigned Size);
SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; }
bool isCompatibleFormat(const ObjectBuffer *Buffer) const override;
bool isCompatibleFile(const object::ObjectFile *Obj) const override;
void registerEHFrames() override;
};
/// RuntimeDyldMachOTarget - Templated base class for generic MachO linker
/// algorithms and data structures.
///
/// Concrete, target specific sub-classes can be accessed via the impl()
/// methods. (i.e. the RuntimeDyldMachO hierarchy uses the Curiously
/// Recurring Template Idiom). Concrete subclasses for each target
/// can be found in ./Targets.
template <typename Impl>
class RuntimeDyldMachOCRTPBase : public RuntimeDyldMachO {
private:
Impl &impl() { return static_cast<Impl &>(*this); }
const Impl &impl() const { return static_cast<Impl &>(*this); }
public:
RuntimeDyldMachOCRTPBase(RTDyldMemoryManager *mm) : RuntimeDyldMachO(mm) {}
void finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) {
unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID;
ObjSectionToIDMap::iterator i, e;
for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
const SectionRef &Section = i->first;
StringRef Name;
Section.getName(Name);
if (Name == "__eh_frame")
EHFrameSID = i->second;
else if (Name == "__text")
TextSID = i->second;
else if (Name == "__gcc_except_tab")
ExceptTabSID = i->second;
else
impl().finalizeSection(ObjImg, i->second, Section);
}
UnregisteredEHFrameSections.push_back(
EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID));
}
};
} // end namespace llvm
#undef DEBUG_TYPE
#endif

View File

@ -0,0 +1,253 @@
//===-- RuntimeDyldMachOAArch64.h -- MachO/AArch64 specific code. -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIMEDYLDMACHOAARCH64_H
#define LLVM_RUNTIMEDYLDMACHOAARCH64_H
#include "../RuntimeDyldMachO.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldMachOAArch64
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOAArch64> {
public:
RuntimeDyldMachOAArch64(RTDyldMemoryManager *MM)
: RuntimeDyldMachOCRTPBase(MM) {}
unsigned getMaxStubSize() override { return 8; }
unsigned getStubAlignment() override { return 1; }
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
assert(!Obj.isRelocationScattered(RelInfo) && "");
// ARM64 has an ARM64_RELOC_ADDEND relocation type that carries an explicit
// addend for the following relocation. If found: (1) store the associated
// addend, (2) consume the next relocation, and (3) use the stored addend to
// override the addend.
bool HasExplicitAddend = false;
int64_t ExplicitAddend = 0;
if (Obj.getAnyRelocationType(RelInfo) == MachO::ARM64_RELOC_ADDEND) {
assert(!Obj.getPlainRelocationExternal(RelInfo));
assert(!Obj.getAnyRelocationPCRel(RelInfo));
assert(Obj.getAnyRelocationLength(RelInfo) == 2);
HasExplicitAddend = true;
int64_t RawAddend = Obj.getPlainRelocationSymbolNum(RelInfo);
// Sign-extend the 24-bit to 64-bit.
ExplicitAddend = (RawAddend << 40) >> 40;
++RelI;
RelInfo = Obj.getRelocation(RelI->getRawDataRefImpl());
}
RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
if (HasExplicitAddend)
Value.Addend = ExplicitAddend;
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI);
RE.Addend = Value.Addend;
if (RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGE21 ||
RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12)
processGOTRelocation(RE, Value, Stubs);
else {
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM64_RELOC_UNSIGNED: {
assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_UNSIGNED not supported");
// Mask in the target value a byte at a time (we don't have an alignment
// guarantee for the target address, so this is safest).
if (RE.Size < 2)
llvm_unreachable("Invalid size for ARM64_RELOC_UNSIGNED");
writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size);
break;
}
case MachO::ARM64_RELOC_BRANCH26: {
assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_BRANCH26 not supported");
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// Check if the addend is encoded in the instruction.
uint32_t EncodedAddend = *p & 0x03FFFFFF;
if (EncodedAddend != 0) {
if (RE.Addend == 0)
llvm_unreachable("branch26 instruction has embedded addend.");
else
llvm_unreachable("branch26 instruction has embedded addend and"
"ARM64_RELOC_ADDEND.");
}
// Check if branch is in range.
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
uint64_t PCRelVal = Value - FinalAddress + RE.Addend;
assert(isInt<26>(PCRelVal) && "Branch target out of range!");
// Insert the value into the instruction.
*p = (*p & 0xFC000000) | ((uint32_t)(PCRelVal >> 2) & 0x03FFFFFF);
break;
}
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
case MachO::ARM64_RELOC_PAGE21: {
assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_PAGE21 not supported");
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// Check if the addend is encoded in the instruction.
uint32_t EncodedAddend =
((*p & 0x60000000) >> 29) | ((*p & 0x01FFFFE0) >> 3);
if (EncodedAddend != 0) {
if (RE.Addend == 0)
llvm_unreachable("adrp instruction has embedded addend.");
else
llvm_unreachable("adrp instruction has embedded addend and"
"ARM64_RELOC_ADDEND.");
}
// Adjust for PC-relative relocation and offset.
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
uint64_t PCRelVal =
((Value + RE.Addend) & (-4096)) - (FinalAddress & (-4096));
// Check that the value fits into 21 bits (+ 12 lower bits).
assert(isInt<33>(PCRelVal) && "Invalid page reloc value!");
// Insert the value into the instruction.
uint32_t ImmLoValue = (uint32_t)(PCRelVal << 17) & 0x60000000;
uint32_t ImmHiValue = (uint32_t)(PCRelVal >> 9) & 0x00FFFFE0;
*p = (*p & 0x9F00001F) | ImmHiValue | ImmLoValue;
break;
}
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
case MachO::ARM64_RELOC_PAGEOFF12: {
assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_PAGEOFF21 not supported");
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// Check if the addend is encoded in the instruction.
uint32_t EncodedAddend = *p & 0x003FFC00;
if (EncodedAddend != 0) {
if (RE.Addend == 0)
llvm_unreachable("adrp instruction has embedded addend.");
else
llvm_unreachable("adrp instruction has embedded addend and"
"ARM64_RELOC_ADDEND.");
}
// Add the offset from the symbol.
Value += RE.Addend;
// Mask out the page address and only use the lower 12 bits.
Value &= 0xFFF;
// Check which instruction we are updating to obtain the implicit shift
// factor from LDR/STR instructions.
if (*p & 0x08000000) {
uint32_t ImplicitShift = ((*p >> 30) & 0x3);
switch (ImplicitShift) {
case 0:
// Check if this a vector op.
if ((*p & 0x04800000) == 0x04800000) {
ImplicitShift = 4;
assert(((Value & 0xF) == 0) &&
"128-bit LDR/STR not 16-byte aligned.");
}
break;
case 1:
assert(((Value & 0x1) == 0) && "16-bit LDR/STR not 2-byte aligned.");
case 2:
assert(((Value & 0x3) == 0) && "32-bit LDR/STR not 4-byte aligned.");
case 3:
assert(((Value & 0x7) == 0) && "64-bit LDR/STR not 8-byte aligned.");
}
// Compensate for implicit shift.
Value >>= ImplicitShift;
}
// Insert the value into the instruction.
*p = (*p & 0xFFC003FF) | ((uint32_t)(Value << 10) & 0x003FFC00);
break;
}
case MachO::ARM64_RELOC_SUBTRACTOR:
case MachO::ARM64_RELOC_POINTER_TO_GOT:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
llvm_unreachable("Relocation type not implemented yet!");
case MachO::ARM64_RELOC_ADDEND:
llvm_unreachable("ARM64_RELOC_ADDEND should have been handeled by "
"processRelocationRef!");
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
const SectionRef &Section) {}
private:
void processGOTRelocation(const RelocationEntry &RE,
RelocationValueRef &Value, StubMap &Stubs) {
assert(RE.Size == 2);
SectionEntry &Section = Sections[RE.SectionID];
StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end())
Addr = Section.Address + i->second;
else {
// FIXME: There must be a better way to do this then to check and fix the
// alignment every time!!!
uintptr_t BaseAddress = uintptr_t(Section.Address);
uintptr_t StubAlignment = getStubAlignment();
uintptr_t StubAddress =
(BaseAddress + Section.StubOffset + StubAlignment - 1) &
-StubAlignment;
unsigned StubOffset = StubAddress - BaseAddress;
Stubs[Value] = StubOffset;
assert(((StubAddress % getStubAlignment()) == 0) &&
"GOT entry not aligned");
RelocationEntry GOTRE(RE.SectionID, StubOffset,
MachO::ARM64_RELOC_UNSIGNED, Value.Addend,
/*IsPCRel=*/false, /*Size=*/3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
else
addRelocationForSection(GOTRE, Value.SectionID);
Section.StubOffset = StubOffset + getMaxStubSize();
Addr = (uint8_t *)StubAddress;
}
RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, /*Addend=*/0,
RE.IsPCRel, RE.Size);
resolveRelocation(TargetRE, (uint64_t)Addr);
}
};
}
#undef DEBUG_TYPE
#endif // LLVM_RUNTIMEDYLDMACHOAARCH64_H

View File

@ -0,0 +1,154 @@
//===----- RuntimeDyldMachOARM.h ---- MachO/ARM specific code. ----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIMEDYLDMACHOARM_H
#define LLVM_RUNTIMEDYLDMACHOARM_H
#include "../RuntimeDyldMachO.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldMachOARM
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM> {
public:
RuntimeDyldMachOARM(RTDyldMemoryManager *MM) : RuntimeDyldMachOCRTPBase(MM) {}
unsigned getMaxStubSize() override { return 8; }
unsigned getStubAlignment() override { return 1; }
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
if (Obj.isRelocationScattered(RelInfo))
return ++++RelI;
RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI);
if ((RE.RelType & 0xf) == MachO::ARM_RELOC_BR24)
processBranchRelocation(RE, Value, Stubs);
else {
RE.Addend = Value.Addend;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress;
// ARM PCRel relocations have an effective-PC offset of two instructions
// (four bytes in Thumb mode, 8 bytes in ARM mode).
// FIXME: For now, assume ARM mode.
Value -= 8;
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM_RELOC_VANILLA:
writeBytesUnaligned(LocalAddress, Value, 1 << RE.Size);
break;
case MachO::ARM_RELOC_BR24: {
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// The low two bits of the value are not encoded.
Value >>= 2;
// Mask the value to 24 bits.
uint64_t FinalValue = Value & 0xffffff;
// Check for overflow.
if (Value != FinalValue) {
Error("ARM BR24 relocation out of range.");
return;
}
// FIXME: If the destination is a Thumb function (and the instruction
// is a non-predicated BL instruction), we need to change it to a BLX
// instruction instead.
// Insert the value into the instruction.
*p = (*p & ~0xffffff) | FinalValue;
break;
}
case MachO::ARM_THUMB_RELOC_BR22:
case MachO::ARM_THUMB_32BIT_BRANCH:
case MachO::ARM_RELOC_HALF:
case MachO::ARM_RELOC_HALF_SECTDIFF:
case MachO::ARM_RELOC_PAIR:
case MachO::ARM_RELOC_SECTDIFF:
case MachO::ARM_RELOC_LOCAL_SECTDIFF:
case MachO::ARM_RELOC_PB_LA_PTR:
Error("Relocation type not implemented yet!");
return;
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
const SectionRef &Section) {}
private:
void processBranchRelocation(const RelocationEntry &RE,
const RelocationValueRef &Value,
StubMap &Stubs) {
// This is an ARM branch relocation, need to use a stub function.
// Look up for existing stub.
SectionEntry &Section = Sections[RE.SectionID];
RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
Addr = Section.Address + i->second;
} else {
// Create a new stub function.
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr =
createStubFunction(Section.Address + Section.StubOffset);
RelocationEntry StubRE(RE.SectionID, StubTargetAddr - Section.Address,
MachO::GENERIC_RELOC_VANILLA, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(StubRE, Value.SymbolName);
else
addRelocationForSection(StubRE, Value.SectionID);
Addr = Section.Address + Section.StubOffset;
Section.StubOffset += getMaxStubSize();
}
RelocationEntry TargetRE(Value.SectionID, RE.Offset, RE.RelType, 0,
RE.IsPCRel, RE.Size);
resolveRelocation(TargetRE, (uint64_t)Addr);
}
};
}
#undef DEBUG_TYPE
#endif // LLVM_RUNTIMEDYLDMACHOARM_H

View File

@ -0,0 +1,315 @@
//===---- RuntimeDyldMachOI386.h ---- MachO/I386 specific code. ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIMEDYLDMACHOI386_H
#define LLVM_RUNTIMEDYLDMACHOI386_H
#include "../RuntimeDyldMachO.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldMachOI386
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386> {
public:
RuntimeDyldMachOI386(RTDyldMemoryManager *MM)
: RuntimeDyldMachOCRTPBase(MM) {}
unsigned getMaxStubSize() override { return 0; }
unsigned getStubAlignment() override { return 1; }
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
if (Obj.isRelocationScattered(RelInfo)) {
if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
return processSECTDIFFRelocation(SectionID, RelI, ObjImg,
ObjSectionToID);
else if (Arch == Triple::x86 && RelType == MachO::GENERIC_RELOC_VANILLA)
return processI386ScatteredVANILLA(SectionID, RelI, ObjImg,
ObjSectionToID);
llvm_unreachable("Unhandled scattered relocation.");
}
RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
// Addends for external, PC-rel relocations on i386 point back to the zero
// offset. Calculate the final offset from the relocation target instead.
// This allows us to use the same logic for both external and internal
// relocations in resolveI386RelocationRef.
// bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
// if (IsExtern && RE.IsPCRel) {
// uint64_t RelocAddr = 0;
// RelI->getAddress(RelocAddr);
// Value.Addend += RelocAddr + 4;
// }
if (RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI);
RE.Addend = Value.Addend;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::GENERIC_RELOC_VANILLA:
writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size);
break;
case MachO::GENERIC_RELOC_SECTDIFF:
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress;
uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress;
assert((Value == SectionABase || Value == SectionBBase) &&
"Unexpected SECTDIFF relocation value.");
Value = SectionABase - SectionBBase + RE.Addend;
writeBytesUnaligned(LocalAddress, Value, 1 << RE.Size);
break;
}
case MachO::GENERIC_RELOC_PB_LA_PTR:
Error("Relocation type not implemented yet!");
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
const SectionRef &Section) {
StringRef Name;
Section.getName(Name);
if (Name == "__jump_table")
populateJumpTable(cast<MachOObjectFile>(*ObjImg.getObjectFile()), Section,
SectionID);
else if (Name == "__pointers")
populatePointersSection(cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, SectionID);
}
private:
relocation_iterator
processSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile *>(Obj.getObjectFile());
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
++RelI;
MachO::any_relocation_info RE2 =
MachO->getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = MachO->getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(*MachO, AddrA);
assert(SAI != MachO->section_end() && "Can't find section for address A");
uint64_t SectionABase;
SAI->getAddress(SectionABase);
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
bool IsCode;
SectionA.isText(IsCode);
uint32_t SectionAID =
findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID);
uint32_t AddrB = MachO->getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(*MachO, AddrB);
assert(SBI != MachO->section_end() && "Can't find section for address B");
uint64_t SectionBBase;
SBI->getAddress(SectionBBase);
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
uint32_t SectionBID =
findOrEmitSection(Obj, SectionB, IsCode, ObjSectionToID);
if (Addend != AddrA - AddrB)
Error("Unexpected SECTDIFF relocation addend.");
DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB
<< ", Addend: " << Addend << ", SectionA ID: " << SectionAID
<< ", SectionAOffset: " << SectionAOffset
<< ", SectionB ID: " << SectionBID
<< ", SectionBOffset: " << SectionBOffset << "\n");
RelocationEntry R(SectionID, Offset, RelocType, 0, SectionAID,
SectionAOffset, SectionBID, SectionBOffset, IsPCRel,
Size);
addRelocationForSection(R, SectionAID);
addRelocationForSection(R, SectionBID);
return ++RelI;
}
relocation_iterator processI386ScatteredVANILLA(
unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
RuntimeDyldMachO::ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile *>(Obj.getObjectFile());
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
unsigned SymbolBaseAddr = MachO->getScatteredRelocationValue(RE);
section_iterator TargetSI = getSectionByAddress(*MachO, SymbolBaseAddr);
assert(TargetSI != MachO->section_end() && "Can't find section for symbol");
uint64_t SectionBaseAddr;
TargetSI->getAddress(SectionBaseAddr);
SectionRef TargetSection = *TargetSI;
bool IsCode;
TargetSection.isText(IsCode);
uint32_t TargetSectionID =
findOrEmitSection(Obj, TargetSection, IsCode, ObjSectionToID);
Addend -= SectionBaseAddr;
RelocationEntry R(SectionID, Offset, RelocType, Addend, IsPCRel, Size);
addRelocationForSection(R, TargetSectionID);
return ++RelI;
}
// Populate stubs in __jump_table section.
void populateJumpTable(MachOObjectFile &Obj, const SectionRef &JTSection,
unsigned JTSectionID) {
assert(!Obj.is64Bit() &&
"__jump_table section not supported in 64-bit MachO.");
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(JTSection.getRawDataRefImpl());
uint32_t JTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
unsigned JTEntrySize = Sec32.reserved2;
unsigned NumJTEntries = JTSectionSize / JTEntrySize;
uint8_t *JTSectionAddr = getSectionAddress(JTSectionID);
unsigned JTEntryOffset = 0;
assert((JTSectionSize % JTEntrySize) == 0 &&
"Jump-table section does not contain a whole number of stubs?");
for (unsigned i = 0; i < NumJTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
StringRef IndirectSymbolName;
SI->getName(IndirectSymbolName);
uint8_t *JTEntryAddr = JTSectionAddr + JTEntryOffset;
createStubFunction(JTEntryAddr);
RelocationEntry RE(JTSectionID, JTEntryOffset + 1,
MachO::GENERIC_RELOC_VANILLA, 0, true, 2);
addRelocationForSymbol(RE, IndirectSymbolName);
JTEntryOffset += JTEntrySize;
}
}
// Populate __pointers section.
void populatePointersSection(MachOObjectFile &Obj,
const SectionRef &PTSection,
unsigned PTSectionID) {
assert(!Obj.is64Bit() &&
"__pointers section not supported in 64-bit MachO.");
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl());
uint32_t PTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
const unsigned PTEntrySize = 4;
unsigned NumPTEntries = PTSectionSize / PTEntrySize;
unsigned PTEntryOffset = 0;
assert((PTSectionSize % PTEntrySize) == 0 &&
"Pointers section does not contain a whole number of stubs?");
DEBUG(dbgs() << "Populating __pointers, Section ID " << PTSectionID << ", "
<< NumPTEntries << " entries, " << PTEntrySize
<< " bytes each:\n");
for (unsigned i = 0; i < NumPTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
StringRef IndirectSymbolName;
SI->getName(IndirectSymbolName);
DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex
<< ", PT offset: " << PTEntryOffset << "\n");
RelocationEntry RE(PTSectionID, PTEntryOffset,
MachO::GENERIC_RELOC_VANILLA, 0, false, 2);
addRelocationForSymbol(RE, IndirectSymbolName);
PTEntryOffset += PTEntrySize;
}
}
static section_iterator getSectionByAddress(const MachOObjectFile &Obj,
uint64_t Addr) {
section_iterator SI = Obj.section_begin();
section_iterator SE = Obj.section_end();
for (; SI != SE; ++SI) {
uint64_t SAddr, SSize;
SI->getAddress(SAddr);
SI->getSize(SSize);
if ((Addr >= SAddr) && (Addr < SAddr + SSize))
return SI;
}
return SE;
}
};
}
#undef DEBUG_TYPE
#endif // LLVM_RUNTIMEDYLDMACHOI386_H

View File

@ -0,0 +1,132 @@
//===-- RuntimeDyldMachOX86_64.h ---- MachO/X86_64 specific code. -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIMEDYLDMACHOX86_64_H
#define LLVM_RUNTIMEDYLDMACHOX86_64_H
#include "../RuntimeDyldMachO.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldMachOX86_64
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64> {
public:
RuntimeDyldMachOX86_64(RTDyldMemoryManager *MM)
: RuntimeDyldMachOCRTPBase(MM) {}
unsigned getMaxStubSize() override { return 8; }
unsigned getStubAlignment() override { return 1; }
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
assert(!Obj.isRelocationScattered(RelInfo) &&
"Scattered relocations not supported on X86_64");
RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI);
if (RE.RelType == MachO::X86_64_RELOC_GOT ||
RE.RelType == MachO::X86_64_RELOC_GOT_LOAD)
processGOTRelocation(RE, Value, Stubs);
else {
RE.Addend = Value.Addend;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
// FIXME: It seems this value needs to be adjusted by 4 for an effective
// PC address. Is that expected? Only for branches, perhaps?
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress + 4;
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::X86_64_RELOC_SIGNED_1:
case MachO::X86_64_RELOC_SIGNED_2:
case MachO::X86_64_RELOC_SIGNED_4:
case MachO::X86_64_RELOC_SIGNED:
case MachO::X86_64_RELOC_UNSIGNED:
case MachO::X86_64_RELOC_BRANCH:
writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size);
break;
case MachO::X86_64_RELOC_GOT_LOAD:
case MachO::X86_64_RELOC_GOT:
case MachO::X86_64_RELOC_SUBTRACTOR:
case MachO::X86_64_RELOC_TLV:
Error("Relocation type not implemented yet!");
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
const SectionRef &Section) {}
private:
void processGOTRelocation(const RelocationEntry &RE,
RelocationValueRef &Value, StubMap &Stubs) {
SectionEntry &Section = Sections[RE.SectionID];
assert(RE.IsPCRel);
assert(RE.Size == 2);
Value.Addend -= RE.Addend;
RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
Addr = Section.Address + i->second;
} else {
Stubs[Value] = Section.StubOffset;
uint8_t *GOTEntry = Section.Address + Section.StubOffset;
RelocationEntry GOTRE(RE.SectionID, Section.StubOffset,
MachO::X86_64_RELOC_UNSIGNED, Value.Addend, false,
3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
else
addRelocationForSection(GOTRE, Value.SectionID);
Section.StubOffset += 8;
Addr = GOTEntry;
}
RelocationEntry TargetRE(RE.SectionID, RE.Offset,
MachO::X86_64_RELOC_UNSIGNED, RE.Addend, true, 2);
resolveRelocation(TargetRE, (uint64_t)Addr);
}
};
}
#undef DEBUG_TYPE
#endif // LLVM_RUNTIMEDYLDMACHOX86_64_H