tsan: better addr->object hashmap

still experimental

llvm-svn: 204126
This commit is contained in:
Dmitry Vyukov 2014-03-18 08:30:14 +00:00
parent dba42d6652
commit a3b21b1d14
2 changed files with 270 additions and 87 deletions

View File

@ -22,7 +22,6 @@ namespace __sanitizer {
// Concurrent uptr->T hashmap.
// T must be a POD type, kSize is preferrably a prime but can be any number.
// The hashmap is fixed size, it crashes on overflow.
// Usage example:
//
// typedef AddrHashMap<uptr, 11> Map;
@ -44,11 +43,24 @@ template<typename T, uptr kSize>
class AddrHashMap {
private:
struct Cell {
StaticSpinMutex mtx;
atomic_uintptr_t addr;
T val;
};
struct AddBucket {
uptr cap;
uptr size;
Cell cells[1]; // variable len
};
static const uptr kBucketSize = 3;
struct Bucket {
RWMutex mtx;
atomic_uintptr_t add;
Cell cells[kBucketSize];
};
public:
AddrHashMap();
@ -61,23 +73,23 @@ class AddrHashMap {
bool exists() const;
private:
friend AddrHashMap<T, kSize>;
AddrHashMap<T, kSize> *map_;
Bucket *bucket_;
Cell *cell_;
uptr addr_;
uptr addidx_;
bool created_;
bool remove_;
};
private:
friend class Handle;
Cell *table_;
Bucket *table_;
static const uptr kLocked = 1;
static const uptr kRemoved = 2;
Cell *acquire(uptr addr, bool remove, bool *created);
void release(uptr addr, bool remove, bool created, Cell *c);
uptr hash(uptr addr);
void acquire(Handle *h);
void release(Handle *h);
uptr calcHash(uptr addr);
};
template<typename T, uptr kSize>
@ -86,12 +98,12 @@ AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr,
map_ = map;
addr_ = addr;
remove_ = remove;
cell_ = map_->acquire(addr_, remove_, &created_);
map_->acquire(this);
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::~Handle() {
map_->release(addr_, remove_, created_, cell_);
map_->release(this);
}
template<typename T, uptr kSize>
@ -111,96 +123,183 @@ bool AddrHashMap<T, kSize>::Handle::exists() const {
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::AddrHashMap() {
table_ = (Cell*)MmapOrDie(kSize * sizeof(Cell), "AddrHashMap");
table_ = (Bucket*)MmapOrDie(kSize * sizeof(table_[0]), "AddrHashMap");
}
template<typename T, uptr kSize>
typename AddrHashMap<T, kSize>::Cell *AddrHashMap<T, kSize>::acquire(uptr addr,
bool remove, bool *created) {
// When we access the element associated with addr,
// we lock its home cell (the cell associated with hash(addr).
// If the element was just created or is going to be removed,
// we lock the cell in write mode. Otherwise we lock in read mode.
// The locking protects the object lifetime (it's not removed while
// somebody else accesses it). And also it helps to resolve concurrent
// inserts.
// Note that the home cell is not necessary the cell where the element is
// stored.
*created = false;
uptr h0 = hash(addr);
Cell *c0 = &table_[h0];
void AddrHashMap<T, kSize>::acquire(Handle *h) {
uptr addr = h->addr_;
uptr hash = calcHash(addr);
Bucket *b = &table_[hash];
h->created_ = false;
h->addidx_ = -1;
h->bucket_ = b;
h->cell_ = 0;
// If we want to remove the element, we need exclusive access to the bucket,
// so skip the lock-free phase.
if (h->remove_)
goto locked;
retry:
// First try to find an existing element w/o read mutex.
{
uptr h = h0;
for (;;) {
Cell *c = &table_[h];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 == 0) // empty cell denotes end of the cell chain for the elem
break;
// Locked cell means that another thread can be concurrently inserting
// the same element, fallback to mutex.
if (addr1 == kLocked)
break;
if (addr1 == addr) // ok, found it
return c;
h++;
if (h == kSize)
h = 0;
CHECK_NE(h, h0); // made the full cycle
}
}
if (remove)
return 0;
// Now try to create it under the mutex.
c0->mtx.Lock();
uptr h = h0;
for (;;) {
Cell *c = &table_[h];
CHECK(!h->remove_);
// Check the embed cells.
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &b->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 == addr) { // another thread has inserted it ahead of us
c0->mtx.Unlock();
return c;
if (addr1 == addr) {
h->cell_ = c;
return;
}
// Skip kLocked, since we hold the home cell mutex, it can't be our elem.
if ((addr1 == 0 || addr1 == kRemoved) &&
atomic_compare_exchange_strong(&c->addr, &addr1, kLocked,
memory_order_acq_rel)) {
// we've created the element
*created = true;
return c;
}
h++;
if (h == kSize)
h = 0;
CHECK_NE(h, h0); // made the full cycle
}
}
template<typename T, uptr kSize>
void AddrHashMap<T, kSize>::release(uptr addr, bool remove, bool created,
Cell *c) {
if (c == 0)
// Check the add cells with read lock.
if (atomic_load(&b->add, memory_order_relaxed)) {
b->mtx.ReadLock();
AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
for (uptr i = 0; i < add->size; i++) {
Cell *c = &add->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == addr) {
h->addidx_ = i;
h->cell_ = c;
return;
}
}
b->mtx.ReadUnlock();
}
locked:
// Re-check existence under write lock.
// Embed cells.
b->mtx.Lock();
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &b->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == addr) {
if (h->remove_) {
h->cell_ = c;
return;
}
b->mtx.Unlock();
goto retry;
}
}
// Add cells.
AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
if (add) {
for (uptr i = 0; i < add->size; i++) {
Cell *c = &add->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == addr) {
if (h->remove_) {
h->addidx_ = i;
h->cell_ = c;
return;
}
b->mtx.Unlock();
goto retry;
}
}
}
// The element does not exist, no need to create it if we want to remove.
if (h->remove_) {
b->mtx.Unlock();
return;
// if we are going to remove, we must hold write lock
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (created) {
// denote completion of insertion
atomic_store(&c->addr, addr, memory_order_release);
// unlock the home cell
uptr h0 = hash(addr);
Cell *c0 = &table_[h0];
c0->mtx.Unlock();
} else {
CHECK_EQ(addr, addr1);
if (remove) {
// denote that the cell is empty now
atomic_store(&c->addr, kRemoved, memory_order_release);
}
// Now try to create it under the mutex.
h->created_ = true;
// See if we have a free embed cell.
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &b->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == 0) {
h->cell_ = c;
return;
}
}
// Store in the add cells.
if (add == 0) {
// Allocate a new add array.
const uptr kInitSize = 64;
add = (AddBucket*)InternalAlloc(kInitSize);
add->cap = (kInitSize - sizeof(*add)) / sizeof(add->cells[0]) + 1;
add->size = 0;
atomic_store(&b->add, (uptr)add, memory_order_relaxed);
}
if (add->size == add->cap) {
// Grow existing add array.
uptr oldsize = sizeof(*add) + (add->cap - 1) * sizeof(add->cells[0]);
uptr newsize = oldsize * 2;
AddBucket *add1 = (AddBucket*)InternalAlloc(oldsize * 2);
add1->cap = (newsize - sizeof(*add)) / sizeof(add->cells[0]) + 1;
add1->size = add->size;
internal_memcpy(add1->cells, add->cells, add->size * sizeof(add->cells[0]));
InternalFree(add);
atomic_store(&b->add, (uptr)add1, memory_order_relaxed);
add = add1;
}
// Store.
uptr i = add->size++;
Cell *c = &add->cells[i];
h->addidx_ = i;
h->cell_ = c;
}
template<typename T, uptr kSize>
void AddrHashMap<T, kSize>::release(Handle *h) {
if (h->cell_ == 0)
return;
Bucket *b = h->bucket_;
Cell *c = h->cell_;
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (h->created_) {
// Denote completion of insertion.
CHECK_EQ(addr1, 0);
// After the following store, the element becomes available
// for lock-free reads.
atomic_store(&c->addr, h->addr_, memory_order_release);
b->mtx.Unlock();
} else if (h->remove_) {
// Denote that the cell is empty now.
CHECK_EQ(addr1, h->addr_);
atomic_store(&c->addr, 0, memory_order_release);
// See if we need to compact the bucket.
AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
if (h->addidx_ == -1) {
// Removed from embed array, move an add element into the freed cell.
if (add) {
uptr last = --add->size;
Cell *c1 = &add->cells[last];
c->val = c1->val;
uptr addr1 = atomic_load(&c1->addr, memory_order_relaxed);
atomic_store(&c->addr, addr1, memory_order_release);
}
} else {
// Removed from add array, compact it.
uptr last = --add->size;
Cell *c1 = &add->cells[last];
*c = *c1;
}
if (add && add->size == 0) {
// FIXME(dvyukov): free add?
}
b->mtx.Unlock();
} else {
CHECK_EQ(addr1, h->addr_);
if (h->addidx_ != -1)
b->mtx.ReadUnlock();
}
}
template<typename T, uptr kSize>
uptr AddrHashMap<T, kSize>::hash(uptr addr) {
uptr AddrHashMap<T, kSize>::calcHash(uptr addr) {
addr += addr << 10;
addr ^= addr >> 6;
return addr % kSize;

View File

@ -83,6 +83,88 @@ class BlockingMutex {
uptr owner_; // for debugging
};
// Reader-writer spin mutex.
class RWMutex {
public:
RWMutex() {
atomic_store(&state_, kUnlocked, memory_order_relaxed);
}
~RWMutex() {
CHECK_EQ(atomic_load(&state_, memory_order_relaxed), kUnlocked);
}
void Lock() {
u32 cmp = kUnlocked;
if (atomic_compare_exchange_strong(&state_, &cmp, kWriteLock,
memory_order_acquire))
return;
LockSlow();
}
void Unlock() {
u32 prev = atomic_fetch_sub(&state_, kWriteLock, memory_order_release);
DCHECK_NE(prev & kWriteLock, 0);
(void)prev;
}
void ReadLock() {
u32 prev = atomic_fetch_add(&state_, kReadLock, memory_order_acquire);
if ((prev & kWriteLock) == 0)
return;
ReadLockSlow();
}
void ReadUnlock() {
u32 prev = atomic_fetch_sub(&state_, kReadLock, memory_order_release);
DCHECK_EQ(prev & kWriteLock, 0);
DCHECK_GT(prev & ~kWriteLock, 0);
(void)prev;
}
void CheckLocked() {
CHECK_NE(atomic_load(&state_, memory_order_relaxed), kUnlocked);
}
private:
atomic_uint32_t state_;
enum {
kUnlocked = 0,
kWriteLock = 1,
kReadLock = 2
};
void NOINLINE LockSlow() {
for (int i = 0;; i++) {
if (i < 10)
proc_yield(10);
else
internal_sched_yield();
u32 cmp = atomic_load(&state_, memory_order_relaxed);
if (cmp == kUnlocked &&
atomic_compare_exchange_weak(&state_, &cmp, kWriteLock,
memory_order_acquire))
return;
}
}
void NOINLINE ReadLockSlow() {
for (int i = 0;; i++) {
if (i < 10)
proc_yield(10);
else
internal_sched_yield();
u32 prev = atomic_load(&state_, memory_order_acquire);
if ((prev & kWriteLock) == 0)
return;
}
}
RWMutex(const RWMutex&);
void operator = (const RWMutex&);
};
template<typename MutexType>
class GenericScopedLock {
public:
@ -123,6 +205,8 @@ class GenericScopedReadLock {
typedef GenericScopedLock<StaticSpinMutex> SpinMutexLock;
typedef GenericScopedLock<BlockingMutex> BlockingMutexLock;
typedef GenericScopedLock<RWMutex> RWMutexLock;
typedef GenericScopedReadLock<RWMutex> RWMutexReadLock;
} // namespace __sanitizer