Speculatively revert r258620 as it is the likely culprid of PR26293.

llvm-svn: 258703
This commit is contained in:
Quentin Colombet 2016-01-25 19:12:49 +00:00
parent d7785e75f3
commit a392810bea
7 changed files with 124 additions and 775 deletions

View File

@ -659,11 +659,6 @@ const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
int isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
const ValueToValueMap &StridesMap);
/// \brief Returns true if the memory operations \p A and \p B are consecutive.
/// This is a simple API that does not depend on the analysis pass.
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
ScalarEvolution &SE, bool CheckType = true);
/// \brief This analysis provides dependence information for the memory accesses
/// of a loop.
///

View File

@ -901,78 +901,6 @@ int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
return Stride;
}
/// Take the pointer operand from the Load/Store instruction.
/// Returns NULL if this is not a valid Load/Store instruction.
static Value *getPointerOperand(Value *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperand();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
return nullptr;
}
/// Take the address space operand from the Load/Store instruction.
/// Returns -1 if this is not a valid Load/Store instruction.
static unsigned getAddressSpaceOperand(Value *I) {
if (LoadInst *L = dyn_cast<LoadInst>(I))
return L->getPointerAddressSpace();
if (StoreInst *S = dyn_cast<StoreInst>(I))
return S->getPointerAddressSpace();
return -1;
}
/// Returns true if the memory operations \p A and \p B are consecutive.
bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
ScalarEvolution &SE, bool CheckType) {
Value *PtrA = getPointerOperand(A);
Value *PtrB = getPointerOperand(B);
unsigned ASA = getAddressSpaceOperand(A);
unsigned ASB = getAddressSpaceOperand(B);
// Check that the address spaces match and that the pointers are valid.
if (!PtrA || !PtrB || (ASA != ASB))
return false;
// Make sure that A and B are different pointers.
if (PtrA == PtrB)
return false;
// Make sure that A and B have the same type if required.
if(CheckType && PtrA->getType() != PtrB->getType())
return false;
unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
// OffsetDelta = OffsetB - OffsetA;
const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
// Check if they are based on the same pointer. That makes the offsets
// sufficient.
if (PtrA == PtrB)
return OffsetDelta == Size;
// Compute the necessary base pointer delta to have the necessary final delta
// equal to the size.
// BaseDelta = Size - OffsetDelta;
const SCEV *SizeSCEV = SE.getConstant(Size);
const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
// Otherwise compute the distance with SCEV between the base pointers.
const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
return X == PtrSCEVB;
}
bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
switch (Type) {
case NoDep:

View File

@ -26,20 +26,22 @@
// i64 and larger types when i64 is legal and the value has few bits set. It
// would be good to enhance isel to emit a loop for ctpop in this case.
//
// We should enhance the memset/memcpy recognition to handle multiple stores in
// the loop. This would handle things like:
// void foo(_Complex float *P)
// for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
//
// This could recognize common matrix multiplies and dot product idioms and
// replace them with calls to BLAS (if linked in??).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
@ -106,9 +108,7 @@ public:
private:
typedef SmallVector<StoreInst *, 8> StoreList;
typedef MapVector<Value *, StoreList> StoreListMap;
StoreListMap StoreRefsForMemset;
StoreListMap StoreRefsForMemsetPattern;
StoreList StoreRefsForMemset;
StoreList StoreRefsForMemcpy;
bool HasMemset;
bool HasMemsetPattern;
@ -122,18 +122,14 @@ private:
SmallVectorImpl<BasicBlock *> &ExitBlocks);
void collectStores(BasicBlock *BB);
bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern,
bool &ForMemcpy);
bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
bool ForMemset);
bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemcpy);
bool processLoopStore(StoreInst *SI, const SCEV *BECount);
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
unsigned StoreAlignment, Value *StoredVal,
Instruction *TheStore,
SmallPtrSetImpl<Instruction *> &Stores,
const SCEVAddRecExpr *Ev, const SCEV *BECount,
bool NegStride);
Instruction *TheStore, const SCEVAddRecExpr *Ev,
const SCEV *BECount, bool NegStride);
bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
/// @}
@ -309,7 +305,7 @@ static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
}
bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
bool &ForMemsetPattern, bool &ForMemcpy) {
bool &ForMemcpy) {
// Don't touch volatile stores.
if (!SI->isSimple())
return false;
@ -357,7 +353,7 @@ bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
StorePtr->getType()->getPointerAddressSpace() == 0 &&
(PatternValue = getMemSetPatternValue(StoredVal, DL))) {
// It looks like we can use PatternValue!
ForMemsetPattern = true;
ForMemset = true;
return true;
}
@ -397,7 +393,6 @@ bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
StoreRefsForMemset.clear();
StoreRefsForMemsetPattern.clear();
StoreRefsForMemcpy.clear();
for (Instruction &I : *BB) {
StoreInst *SI = dyn_cast<StoreInst>(&I);
@ -405,22 +400,15 @@ void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
continue;
bool ForMemset = false;
bool ForMemsetPattern = false;
bool ForMemcpy = false;
// Make sure this is a strided store with a constant stride.
if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy))
if (!isLegalStore(SI, ForMemset, ForMemcpy))
continue;
// Save the store locations.
if (ForMemset) {
// Find the base pointer.
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
StoreRefsForMemset[Ptr].push_back(SI);
} else if (ForMemsetPattern) {
// Find the base pointer.
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
StoreRefsForMemsetPattern[Ptr].push_back(SI);
} else if (ForMemcpy)
if (ForMemset)
StoreRefsForMemset.push_back(SI);
else if (ForMemcpy)
StoreRefsForMemcpy.push_back(SI);
}
}
@ -442,14 +430,9 @@ bool LoopIdiomRecognize::runOnLoopBlock(
// Look for store instructions, which may be optimized to memset/memcpy.
collectStores(BB);
// Look for a single store or sets of stores with a common base, which can be
// optimized into a memset (memset_pattern). The latter most commonly happens
// with structs and handunrolled loops.
for (auto &SL : StoreRefsForMemset)
MadeChange |= processLoopStores(SL.second, BECount, true);
for (auto &SL : StoreRefsForMemsetPattern)
MadeChange |= processLoopStores(SL.second, BECount, false);
// Look for a single store which can be optimized into a memset.
for (auto &SI : StoreRefsForMemset)
MadeChange |= processLoopStore(SI, BECount);
// Optimize the store into a memcpy, if it feeds an similarly strided load.
for (auto &SI : StoreRefsForMemcpy)
@ -475,155 +458,26 @@ bool LoopIdiomRecognize::runOnLoopBlock(
return MadeChange;
}
/// processLoopStores - See if this store(s) can be promoted to a memset.
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
const SCEV *BECount,
bool ForMemset) {
// Try to find consecutive stores that can be transformed into memsets.
SetVector<StoreInst *> Heads, Tails;
SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
/// processLoopStore - See if this store can be promoted to a memset.
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
assert(SI->isSimple() && "Expected only non-volatile stores.");
// Do a quadratic search on all of the given stores and find
// all of the pairs of stores that follow each other.
SmallVector<unsigned, 16> IndexQueue;
for (unsigned i = 0, e = SL.size(); i < e; ++i) {
assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
Value *StoredVal = SI->getValueOperand();
Value *StorePtr = SI->getPointerOperand();
Value *FirstStoredVal = SL[i]->getValueOperand();
Value *FirstStorePtr = SL[i]->getPointerOperand();
const SCEVAddRecExpr *FirstStoreEv =
cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
unsigned FirstStride = getStoreStride(FirstStoreEv);
unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
// Check to see if the stride matches the size of the store. If so, then we
// know that every byte is touched in the loop.
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
unsigned Stride = getStoreStride(StoreEv);
unsigned StoreSize = getStoreSizeInBytes(SI, DL);
if (StoreSize != Stride && StoreSize != -Stride)
return false;
// See if we can optimize just this store in isolation.
if (FirstStride == FirstStoreSize || FirstStride == -FirstStoreSize) {
Heads.insert(SL[i]);
continue;
}
bool NegStride = StoreSize == -Stride;
Value *FirstSplatValue = nullptr;
Constant *FirstPatternValue = nullptr;
if (ForMemset)
FirstSplatValue = isBytewiseValue(FirstStoredVal);
else
FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
assert((FirstSplatValue || FirstPatternValue) &&
"Expected either splat value or pattern value.");
IndexQueue.clear();
// If a store has multiple consecutive store candidates, search Stores
// array according to the sequence: from i+1 to e, then from i-1 to 0.
// This is because usually pairing with immediate succeeding or preceding
// candidate create the best chance to find memset opportunity.
unsigned j = 0;
for (j = i + 1; j < e; ++j)
IndexQueue.push_back(j);
for (j = i; j > 0; --j)
IndexQueue.push_back(j - 1);
for (auto &k : IndexQueue) {
assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
Value *SecondStorePtr = SL[k]->getPointerOperand();
const SCEVAddRecExpr *SecondStoreEv =
cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
unsigned SecondStride = getStoreStride(SecondStoreEv);
if (FirstStride != SecondStride)
continue;
Value *SecondStoredVal = SL[k]->getValueOperand();
Value *SecondSplatValue = nullptr;
Constant *SecondPatternValue = nullptr;
if (ForMemset)
SecondSplatValue = isBytewiseValue(SecondStoredVal);
else
SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
assert((SecondSplatValue || SecondPatternValue) &&
"Expected either splat value or pattern value.");
if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
if (ForMemset) {
ConstantInt *C1 = dyn_cast<ConstantInt>(FirstSplatValue);
ConstantInt *C2 = dyn_cast<ConstantInt>(SecondSplatValue);
if (!C1 || !C2 || C1 != C2)
continue;
} else {
Constant *C1 = FirstPatternValue;
Constant *C2 = SecondPatternValue;
if (ConstantArray *CA1 = dyn_cast<ConstantArray>(C1))
C1 = CA1->getSplatValue();
if (ConstantArray *CA2 = dyn_cast<ConstantArray>(C2))
C2 = CA2->getSplatValue();
if (C1 != C2)
continue;
}
Tails.insert(SL[k]);
Heads.insert(SL[i]);
ConsecutiveChain[SL[i]] = SL[k];
break;
}
}
}
// We may run into multiple chains that merge into a single chain. We mark the
// stores that we transformed so that we don't visit the same store twice.
SmallPtrSet<Value *, 16> TransformedStores;
bool Changed = false;
// For stores that start but don't end a link in the chain:
for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
it != e; ++it) {
if (Tails.count(*it))
continue;
// We found a store instr that starts a chain. Now follow the chain and try
// to transform it.
SmallPtrSet<Instruction *, 8> AdjacentStores;
StoreInst *I = *it;
StoreInst *HeadStore = I;
unsigned StoreSize = 0;
// Collect the chain into a list.
while (Tails.count(I) || Heads.count(I)) {
if (TransformedStores.count(I))
break;
AdjacentStores.insert(I);
StoreSize += getStoreSizeInBytes(I, DL);
// Move to the next value in the chain.
I = ConsecutiveChain[I];
}
Value *StoredVal = HeadStore->getValueOperand();
Value *StorePtr = HeadStore->getPointerOperand();
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
unsigned Stride = getStoreStride(StoreEv);
// Check to see if the stride matches the size of the stores. If so, then
// we know that every byte is touched in the loop.
if (StoreSize != Stride && StoreSize != -Stride)
continue;
bool NegStride = StoreSize == -Stride;
if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
StoredVal, HeadStore, AdjacentStores, StoreEv,
BECount, NegStride)) {
TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
Changed = true;
}
}
return Changed;
// See if we can optimize just this store in isolation.
return processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
StoredVal, SI, StoreEv, BECount, NegStride);
}
/// processLoopMemSet - See if this memset can be promoted to a large memset.
@ -666,21 +520,18 @@ bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
return false;
SmallPtrSet<Instruction *, 1> MSIs;
MSIs.insert(MSI);
return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
MSI->getAlignment(), SplatValue, MSI, Ev,
BECount, /*NegStride=*/false);
}
/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access. The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
const SCEV *BECount, unsigned StoreSize,
AliasAnalysis &AA,
SmallPtrSetImpl<Instruction *> &IgnoredStores) {
static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
const SCEV *BECount, unsigned StoreSize,
AliasAnalysis &AA,
Instruction *IgnoredStore) {
// Get the location that may be stored across the loop. Since the access is
// strided positively through memory, we say that the modified location starts
// at the pointer and has infinite size.
@ -700,8 +551,7 @@ mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
++BI)
for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
if (IgnoredStores.count(&*I) == 0 &&
(AA.getModRefInfo(&*I, StoreLoc) & Access))
if (&*I != IgnoredStore && (AA.getModRefInfo(&*I, StoreLoc) & Access))
return true;
return false;
@ -724,8 +574,7 @@ static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
/// transform this into a memset or memset_pattern in the loop preheader, do so.
bool LoopIdiomRecognize::processLoopStridedStore(
Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
Value *StoredVal, Instruction *TheStore,
SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
Value *StoredVal, Instruction *TheStore, const SCEVAddRecExpr *Ev,
const SCEV *BECount, bool NegStride) {
Value *SplatValue = isBytewiseValue(StoredVal);
Constant *PatternValue = nullptr;
@ -760,7 +609,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
Value *BasePtr =
Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
*AA, Stores)) {
*AA, TheStore)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
@ -813,8 +662,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
// Okay, the memset has been formed. Zap the original store and anything that
// feeds into it.
for (auto *I : Stores)
deleteDeadInstruction(I, TLI);
deleteDeadInstruction(TheStore, TLI);
++NumMemSet;
return true;
}
@ -866,10 +714,8 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
Value *StoreBasePtr = Expander.expandCodeFor(
StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
SmallPtrSet<Instruction *, 1> Stores;
Stores.insert(SI);
if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
StoreSize, *AA, Stores)) {
StoreSize, *AA, SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
@ -889,7 +735,7 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
*AA, Stores)) {
*AA, SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);

View File

@ -26,7 +26,6 @@
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
@ -402,6 +401,9 @@ public:
}
}
/// \returns true if the memory operations A and B are consecutive.
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
/// \brief Perform LICM and CSE on the newly generated gather sequences.
void optimizeGatherSequence();
@ -436,6 +438,14 @@ private:
/// vectorized, or NULL. They may happen in cycles.
Value *alreadyVectorized(ArrayRef<Value *> VL) const;
/// \brief Take the pointer operand from the Load/Store instruction.
/// \returns NULL if this is not a valid Load/Store instruction.
static Value *getPointerOperand(Value *I);
/// \brief Take the address space operand from the Load/Store instruction.
/// \returns -1 if this is not a valid Load/Store instruction.
static unsigned getAddressSpaceOperand(Value *I);
/// \returns the scalarization cost for this type. Scalarization in this
/// context means the creation of vectors from a group of scalars.
int getGatherCost(Type *Ty);
@ -1181,8 +1191,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
return;
}
if (!isConsecutiveAccess(VL[i], VL[i + 1], DL, *SE)) {
if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL, *SE)) {
if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
++NumLoadsWantToChangeOrder;
}
BS.cancelScheduling(VL);
@ -1354,7 +1364,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
const DataLayout &DL = F->getParent()->getDataLayout();
// Check if the stores are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
if (!isConsecutiveAccess(VL[i], VL[i + 1], DL, *SE)) {
if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
@ -1827,6 +1837,63 @@ int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
return getGatherCost(VecTy);
}
Value *BoUpSLP::getPointerOperand(Value *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperand();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
return nullptr;
}
unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
if (LoadInst *L = dyn_cast<LoadInst>(I))
return L->getPointerAddressSpace();
if (StoreInst *S = dyn_cast<StoreInst>(I))
return S->getPointerAddressSpace();
return -1;
}
bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
Value *PtrA = getPointerOperand(A);
Value *PtrB = getPointerOperand(B);
unsigned ASA = getAddressSpaceOperand(A);
unsigned ASB = getAddressSpaceOperand(B);
// Check that the address spaces match and that the pointers are valid.
if (!PtrA || !PtrB || (ASA != ASB))
return false;
// Make sure that A and B are different pointers of the same type.
if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
return false;
unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
APInt OffsetDelta = OffsetB - OffsetA;
// Check if they are based on the same pointer. That makes the offsets
// sufficient.
if (PtrA == PtrB)
return OffsetDelta == Size;
// Compute the necessary base pointer delta to have the necessary final delta
// equal to the size.
APInt BaseDelta = Size - OffsetDelta;
// Otherwise compute the distance with SCEV between the base pointers.
const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
const SCEV *C = SE->getConstant(BaseDelta);
const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
return X == PtrSCEVB;
}
// Reorder commutative operations in alternate shuffle if the resulting vectors
// are consecutive loads. This would allow us to vectorize the tree.
// If we have something like-
@ -1854,10 +1921,10 @@ void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
Instruction *VL1 = cast<Instruction>(VL[j]);
Instruction *VL2 = cast<Instruction>(VL[j + 1]);
if (isConsecutiveAccess(L, L1, DL, *SE) && VL1->isCommutative()) {
if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
std::swap(Left[j], Right[j]);
continue;
} else if (isConsecutiveAccess(L, L1, DL, *SE) && VL2->isCommutative()) {
} else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@ -1868,10 +1935,10 @@ void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
Instruction *VL1 = cast<Instruction>(VL[j]);
Instruction *VL2 = cast<Instruction>(VL[j + 1]);
if (isConsecutiveAccess(L, L1, DL, *SE) && VL1->isCommutative()) {
if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
std::swap(Left[j], Right[j]);
continue;
} else if (isConsecutiveAccess(L, L1, DL, *SE) && VL2->isCommutative()) {
} else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@ -2021,7 +2088,7 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
for (unsigned j = 0; j < VL.size() - 1; ++j) {
if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
if (isConsecutiveAccess(L, L1, DL, *SE)) {
if (isConsecutiveAccess(L, L1, DL)) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@ -2029,7 +2096,7 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
}
if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
if (isConsecutiveAccess(L, L1, DL, *SE)) {
if (isConsecutiveAccess(L, L1, DL)) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@ -3394,7 +3461,7 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
IndexQueue.push_back(j - 1);
for (auto &k : IndexQueue) {
if (isConsecutiveAccess(Stores[i], Stores[k], DL, *SE)) {
if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) {
Tails.insert(Stores[k]);
Heads.insert(Stores[i]);
ConsecutiveChain[Stores[i]] = Stores[k];

View File

@ -1,221 +0,0 @@
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-darwin10.0.0"
%struct.foo = type { i32, i32 }
%struct.foo1 = type { i32, i32, i32 }
%struct.foo2 = type { i32, i16, i16 }
;void bar1(foo_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 0;
; f[i].b = 0;
; }
;}
define void @bar1(%struct.foo* %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 0, i32* %b, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar1(
; CHECK: call void @llvm.memset
; CHECK-NOT: store
}
;void bar2(foo_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].b = 0;
; f[i].a = 0;
; }
;}
define void @bar2(%struct.foo* %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 0, i32* %b, align 4
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar2(
; CHECK: call void @llvm.memset
; CHECK-NOT: store
}
;void bar3(foo_t *f, unsigned n) {
; for (unsigned i = n; i > 0; --i) {
; f[i].a = 0;
; f[i].b = 0;
; }
;}
define void @bar3(%struct.foo* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
%0 = zext i32 %n to i64
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 0, i32* %b, align 4
%1 = trunc i64 %indvars.iv to i32
%dec = add i32 %1, -1
%cmp = icmp eq i32 %dec, 0
%indvars.iv.next = add nsw i64 %indvars.iv, -1
br i1 %cmp, label %for.end.loopexit, label %for.body
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar3(
; CHECK: call void @llvm.memset
; CHECK-NOT: store
}
;void bar4(foo_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 0;
; f[i].b = 1;
; }
;}
define void @bar4(%struct.foo* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 1, i32* %b, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar4(
; CHECK-NOT: call void @llvm.memset
}
;void bar5(foo1_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 0;
; f[i].b = 0;
; }
;}
define void @bar5(%struct.foo1* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo1, %struct.foo1* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%b = getelementptr inbounds %struct.foo1, %struct.foo1* %f, i64 %indvars.iv, i32 1
store i32 0, i32* %b, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar5(
; CHECK-NOT: call void @llvm.memset
}
;void bar6(foo2_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 0;
; f[i].b = 0;
; f[i].c = 0;
; }
;}
define void @bar6(%struct.foo2* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo2, %struct.foo2* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%b = getelementptr inbounds %struct.foo2, %struct.foo2* %f, i64 %indvars.iv, i32 1
store i16 0, i16* %b, align 4
%c = getelementptr inbounds %struct.foo2, %struct.foo2* %f, i64 %indvars.iv, i32 2
store i16 0, i16* %c, align 2
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar6(
; CHECK: call void @llvm.memset
; CHECK-NOT: store
}

View File

@ -1,186 +0,0 @@
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
; CHECK: @.memset_pattern = private unnamed_addr constant [4 x i32] [i32 2, i32 2, i32 2, i32 2], align 16
; CHECK: @.memset_pattern.1 = private unnamed_addr constant [4 x i32] [i32 2, i32 2, i32 2, i32 2], align 16
; CHECK: @.memset_pattern.2 = private unnamed_addr constant [4 x i32] [i32 2, i32 2, i32 2, i32 2], align 16
target triple = "x86_64-apple-darwin10.0.0"
%struct.foo = type { i32, i32 }
%struct.foo1 = type { i32, i32, i32 }
;void bar1(foo_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 2;
; f[i].b = 2;
; }
;}
define void @bar1(%struct.foo* %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 2, i32* %a, align 4
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 2, i32* %b, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar1(
; CHECK: call void @memset_pattern16
; CHECK-NOT: store
}
;void bar2(foo_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].b = 2;
; f[i].a = 2;
; }
;}
define void @bar2(%struct.foo* %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 2, i32* %b, align 4
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 2, i32* %a, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar2(
; CHECK: call void @memset_pattern16
; CHECK-NOT: store
}
;void bar3(foo_t *f, unsigned n) {
; for (unsigned i = n; i > 0; --i) {
; f[i].a = 2;
; f[i].b = 2;
; }
;}
define void @bar3(%struct.foo* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
%0 = zext i32 %n to i64
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 2, i32* %a, align 4
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 2, i32* %b, align 4
%1 = trunc i64 %indvars.iv to i32
%dec = add i32 %1, -1
%cmp = icmp eq i32 %dec, 0
%indvars.iv.next = add nsw i64 %indvars.iv, -1
br i1 %cmp, label %for.end.loopexit, label %for.body
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar3(
; CHECK: call void @memset_pattern16
; CHECK-NOT: store
}
;void bar4(foo_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 0;
; f[i].b = 1;
; }
;}
define void @bar4(%struct.foo* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 0
store i32 0, i32* %a, align 4
%b = getelementptr inbounds %struct.foo, %struct.foo* %f, i64 %indvars.iv, i32 1
store i32 1, i32* %b, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar4(
; CHECK-NOT: call void @memset_pattern16
}
;void bar5(foo1_t *f, unsigned n) {
; for (unsigned i = 0; i < n; ++i) {
; f[i].a = 1;
; f[i].b = 1;
; }
;}
define void @bar5(%struct.foo1* nocapture %f, i32 %n) nounwind ssp {
entry:
%cmp1 = icmp eq i32 %n, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%a = getelementptr inbounds %struct.foo1, %struct.foo1* %f, i64 %indvars.iv, i32 0
store i32 1, i32* %a, align 4
%b = getelementptr inbounds %struct.foo1, %struct.foo1* %f, i64 %indvars.iv, i32 1
store i32 1, i32* %b, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @bar5(
; CHECK-NOT: call void @memset_pattern16
}

View File

@ -1,80 +0,0 @@
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
; CHECK @.memset_pattern = private unnamed_addr constant [4 x i32] [i32 2, i32 2, i32 2, i32 2], align 16
target triple = "x86_64-apple-darwin10.0.0"
;void test(int *f, unsigned n) {
; for (unsigned i = 0; i < 2 * n; i += 2) {
; f[i] = 0;
; f[i+1] = 0;
; }
;}
define void @test(i32* %f, i32 %n) nounwind ssp {
entry:
%mul = shl i32 %n, 1
%cmp1 = icmp eq i32 %mul, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
%0 = zext i32 %mul to i64
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %f, i64 %indvars.iv
store i32 0, i32* %arrayidx, align 4
%1 = or i64 %indvars.iv, 1
%arrayidx2 = getelementptr inbounds i32, i32* %f, i64 %1
store i32 0, i32* %arrayidx2, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 2
%cmp = icmp ult i64 %indvars.iv.next, %0
br i1 %cmp, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @test(
; CHECK: call void @llvm.memset
; CHECK-NOT: store
}
;void test_pattern(int *f, unsigned n) {
; for (unsigned i = 0; i < 2 * n; i += 2) {
; f[i] = 2;
; f[i+1] = 2;
; }
;}
define void @test_pattern(i32* %f, i32 %n) nounwind ssp {
entry:
%mul = shl i32 %n, 1
%cmp1 = icmp eq i32 %mul, 0
br i1 %cmp1, label %for.end, label %for.body.preheader
for.body.preheader: ; preds = %entry
%0 = zext i32 %mul to i64
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %f, i64 %indvars.iv
store i32 2, i32* %arrayidx, align 4
%1 = or i64 %indvars.iv, 1
%arrayidx2 = getelementptr inbounds i32, i32* %f, i64 %1
store i32 2, i32* %arrayidx2, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 2
%cmp = icmp ult i64 %indvars.iv.next, %0
br i1 %cmp, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
; CHECK-LABEL: @test_pattern(
; CHECK: call void @memset_pattern16
; CHECK-NOT: store
}