Implement LowerCall_64 for the SPARC v9 64-bit ABI.

There is still no support for byval arguments (which I don't think are
needed) and varargs.

llvm-svn: 178993
This commit is contained in:
Jakob Stoklund Olesen 2013-04-07 19:10:57 +00:00
parent 60689987ef
commit a30f4832c9
3 changed files with 375 additions and 3 deletions

View File

@ -594,6 +594,15 @@ LowerFormalArguments_64(SDValue Chain,
SDValue
SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerCall_64(CLI, InVals);
return LowerCall_32(CLI, InVals);
}
// Lower a call for the 32-bit ABI.
SDValue
SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
DebugLoc &dl = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
@ -887,6 +896,221 @@ SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
return getDataLayout()->getTypeAllocSize(ElementTy);
}
// Lower a call for the 64-bit ABI.
SDValue
SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
DebugLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
DAG.getTarget(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
// Get the size of the outgoing arguments stack space requirement.
// The stack offset computed by CC_Sparc64 includes all arguments.
// We always allocate space for 6 arguments in the prolog.
unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()) - 6*8u;
// Keep stack frames 16-byte aligned.
ArgsSize = RoundUpToAlignment(ArgsSize, 16);
// Adjust the stack pointer to make room for the arguments.
// FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
// with more than 6 arguments.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true));
// Collect the set of registers to pass to the function and their values.
// This will be emitted as a sequence of CopyToReg nodes glued to the call
// instruction.
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
// Collect chains from all the memory opeations that copy arguments to the
// stack. They must follow the stack pointer adjustment above and precede the
// call instruction itself.
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
const CCValAssign &VA = ArgLocs[i];
SDValue Arg = CLI.OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown location info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
// The custom bit on an i32 return value indicates that it should be
// passed in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
DAG.getConstant(32, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
CLI.OutVals[i+1]);
Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
// Skip the next value, it's already done.
++i;
}
}
// The argument registers are described in term of the callee's register
// window, so translate I0-I7 -> O0-O7.
unsigned Reg = VA.getLocReg();
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg - SP::I0 + SP::O0;
RegsToPass.push_back(std::make_pair(Reg, Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy());
// The argument area starts at %fp+BIAS+128 in the callee frame,
// %sp+BIAS+128 in ours.
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
Subtarget->getStackPointerBias() +
128);
PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, DL, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of CopyToReg nodes glued together with token chain and
// glue operands which copy the outgoing args into registers. The InGlue is
// necessary since all emitted instructions must be stuck together in order
// to pass the live physical registers.
SDValue InGlue;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, DL,
RegsToPass[i].first, RegsToPass[i].second, InGlue);
InGlue = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
SDValue Callee = CLI.Callee;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy());
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy());
// Build the operands for the call instruction itself.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Make sure the CopyToReg nodes are glued to the call instruction which
// consumes the registers.
if (InGlue.getNode())
Ops.push_back(InGlue);
// Now the call itself.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
InGlue = Chain.getValue(1);
// Revert the stack pointer immediately after the call.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DAG.getIntPtrConstant(0, true), InGlue);
InGlue = Chain.getValue(1);
// Now extract the return values. This is more or less the same as
// LowerFormalArguments_64.
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
RVInfo.AnalyzeCallResult(CLI.Ins, CC_Sparc64);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
unsigned Reg = VA.getLocReg();
// Remap I0-I7 -> O0-O7.
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg - SP::I0 + SP::O0;
// When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
// reside in the same register in the high and low bits. Reuse the
// CopyFromReg previous node to avoid duplicate copies.
SDValue RV;
if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
RV = Chain.getValue(0);
// But usually we'll create a new CopyFromReg for a different register.
if (!RV.getNode()) {
RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
Chain = RV.getValue(1);
InGlue = Chain.getValue(2);
}
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
DAG.getConstant(32, MVT::i32));
// The callee promoted the return value, so insert an Assert?ext SDNode so
// we won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the return value type.
if (VA.isExtInLoc())
RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
InVals.push_back(RV);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

View File

@ -95,6 +95,10 @@ namespace llvm {
virtual SDValue
LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerReturn(SDValue Chain,

View File

@ -1,4 +1,4 @@
; RUN: llc < %s -march=sparcv9 | FileCheck %s
; RUN: llc < %s -march=sparcv9 -disable-sparc-delay-filler | FileCheck %s
; CHECK: intarg
; CHECK: stb %i0, [%i4]
@ -17,7 +17,7 @@ define void @intarg(i8 %a0, ; %i0
i32 %a3, ; %i3
i8* %a4, ; %i4
i32 %a5, ; %i5
i32 %a6, ; [%fp+BIAS+176]
i32 signext %a6, ; [%fp+BIAS+176]
i8* %a7) { ; [%fp+BIAS+184]
store i8 %a0, i8* %a4
store i8 %a1, i8* %a4
@ -33,6 +33,18 @@ define void @intarg(i8 %a0, ; %i0
ret void
}
; CHECK: call_intarg
; Sign-extend and store the full 64 bits.
; CHECK: sra %i0, 0, [[R:%[gilo][0-7]]]
; CHECK: stx [[R]], [%sp+2223]
; Use %o0-%o5 for outgoing arguments
; CHECK: or %g0, 5, %o5
; CHECK: call intarg
define void @call_intarg(i32 %i0, i8* %i1) {
call void @intarg(i8 0, i8 1, i16 2, i32 3, i8* undef, i32 5, i32 %i0, i8* %i1)
ret void
}
; CHECK: floatarg
; CHECK: fstod %f1,
; CHECK: faddd %f2,
@ -57,7 +69,7 @@ define double @floatarg(float %a0, ; %f1
float %a14, ; %f29
float %a15, ; %f31
float %a16, ; [%fp+BIAS+256] (using 8 bytes)
float %a17) { ; [%fp+BIAS+264] (using 8 bytes)
double %a17) { ; [%fp+BIAS+264] (using 8 bytes)
%d0 = fpext float %a0 to double
%s1 = fadd double %a1, %d0
%s2 = fadd double %a2, %s1
@ -68,6 +80,23 @@ define double @floatarg(float %a0, ; %f1
ret double %s17
}
; CHECK: call_floatarg
; Store 4 bytes, right-aligned in slot.
; CHECK: st %f1, [%sp+2307]
; Store 8 bytes in full slot.
; CHECK: std %f2, [%sp+2311]
; CHECK: fmovd %f2, %f4
; CHECK: call floatarg
define void @call_floatarg(float %f1, double %d2, float %f5, double *%p) {
%r = call double @floatarg(float %f5, double %d2, double %d2, double %d2,
float %f5, float %f5, float %f5, float %f5,
float %f5, float %f5, float %f5, float %f5,
float %f5, float %f5, float %f5, float %f5,
float %f1, double %d2)
store double %r, double* %p
ret void
}
; CHECK: mixedarg
; CHECK: fstod %f3
; CHECK: faddd %f6
@ -92,6 +121,26 @@ define void @mixedarg(i8 %a0, ; %i0
ret void
}
; CHECK: call_mixedarg
; CHECK: stx %i2, [%sp+2247]
; CHECK: stx %i0, [%sp+2223]
; CHECK: fmovd %f2, %f6
; CHECK: fmovd %f2, %f16
; CHECK: call mixedarg
define void @call_mixedarg(i64 %i0, double %f2, i16* %i2) {
call void @mixedarg(i8 undef,
float undef,
i16 undef,
double %f2,
i13 undef,
float undef,
i64 %i0,
double* undef,
double %f2,
i16* %i2)
ret void
}
; The inreg attribute is used to indicate 32-bit sized struct elements that
; share an 8-byte slot.
; CHECK: inreg_fi
@ -105,6 +154,15 @@ define i32 @inreg_fi(i32 inreg %a0, ; high bits of %i0
ret i32 %rv
}
; CHECK: call_inreg_fi
; CHECK: sllx %i1, 32, %o0
; CHECK: fmovs %f5, %f1
; CHECK: call inreg_fi
define void @call_inreg_fi(i32* %p, i32 %i1, float %f5) {
%x = call i32 @inreg_fi(i32 %i1, float %f5)
ret void
}
; CHECK: inreg_ff
; CHECK: fsubs %f0, %f1, %f1
define float @inreg_ff(float inreg %a0, ; %f0
@ -113,6 +171,15 @@ define float @inreg_ff(float inreg %a0, ; %f0
ret float %rv
}
; CHECK: call_inreg_ff
; CHECK: fmovs %f3, %f0
; CHECK: fmovs %f5, %f1
; CHECK: call inreg_ff
define void @call_inreg_ff(i32* %p, float %f3, float %f5) {
%x = call float @inreg_ff(float %f3, float %f5)
ret void
}
; CHECK: inreg_if
; CHECK: fstoi %f0
; CHECK: sub %i0
@ -123,6 +190,15 @@ define i32 @inreg_if(float inreg %a0, ; %f0
ret i32 %rv
}
; CHECK: call_inreg_if
; CHECK: fmovs %f3, %f0
; CHECK: or %g0, %i2, %o0
; CHECK: call inreg_if
define void @call_inreg_if(i32* %p, float %f3, i32 %i2) {
%x = call i32 @inreg_if(float %f3, i32 %i2)
ret void
}
; The frontend shouldn't do this. Just pass i64 instead.
; CHECK: inreg_ii
; CHECK: srlx %i0, 32, [[R:%[gilo][0-7]]]
@ -133,6 +209,16 @@ define i32 @inreg_ii(i32 inreg %a0, ; high bits of %i0
ret i32 %rv
}
; CHECK: call_inreg_ii
; CHECK: srl %i2, 0, [[R2:%[gilo][0-7]]]
; CHECK: sllx %i1, 32, [[R1:%[gilo][0-7]]]
; CHECK: or [[R1]], [[R2]], %o0
; CHECK: call inreg_ii
define void @call_inreg_ii(i32* %p, i32 %i1, i32 %i2) {
%x = call i32 @inreg_ii(i32 %i1, i32 %i2)
ret void
}
; Structs up to 32 bytes in size can be returned in registers.
; CHECK: ret_i64_pair
; CHECK: ldx [%i2], %i0
@ -146,6 +232,20 @@ define { i64, i64 } @ret_i64_pair(i32 %a0, i32 %a1, i64* %p, i64* %q) {
ret { i64, i64 } %rv2
}
; CHECK: call_ret_i64_pair
; CHECK: call ret_i64_pair
; CHECK: stx %o0, [%i0]
; CHECK: stx %o1, [%i0]
define void @call_ret_i64_pair(i64* %i0) {
%rv = call { i64, i64 } @ret_i64_pair(i32 undef, i32 undef,
i64* undef, i64* undef)
%e0 = extractvalue { i64, i64 } %rv, 0
store i64 %e0, i64* %i0
%e1 = extractvalue { i64, i64 } %rv, 1
store i64 %e1, i64* %i0
ret void
}
; This is not a C struct, each member uses 8 bytes.
; CHECK: ret_i32_float_pair
; CHECK: ld [%i2], %i0
@ -160,6 +260,20 @@ define { i32, float } @ret_i32_float_pair(i32 %a0, i32 %a1,
ret { i32, float } %rv2
}
; CHECK: call_ret_i32_float_pair
; CHECK: call ret_i32_float_pair
; CHECK: st %o0, [%i0]
; CHECK: st %f3, [%i1]
define void @call_ret_i32_float_pair(i32* %i0, float* %i1) {
%rv = call { i32, float } @ret_i32_float_pair(i32 undef, i32 undef,
i32* undef, float* undef)
%e0 = extractvalue { i32, float } %rv, 0
store i32 %e0, i32* %i0
%e1 = extractvalue { i32, float } %rv, 1
store float %e1, float* %i1
ret void
}
; This is a C struct, each member uses 4 bytes.
; CHECK: ret_i32_float_packed
; CHECK: ld [%i2], [[R:%[gilo][0-7]]]
@ -175,6 +289,21 @@ define inreg { i32, float } @ret_i32_float_packed(i32 %a0, i32 %a1,
ret { i32, float } %rv2
}
; CHECK: call_ret_i32_float_packed
; CHECK: call ret_i32_float_packed
; CHECK: srlx %o0, 32, [[R:%[gilo][0-7]]]
; CHECK: st [[R]], [%i0]
; CHECK: st %f1, [%i1]
define void @call_ret_i32_float_packed(i32* %i0, float* %i1) {
%rv = call { i32, float } @ret_i32_float_packed(i32 undef, i32 undef,
i32* undef, float* undef)
%e0 = extractvalue { i32, float } %rv, 0
store i32 %e0, i32* %i0
%e1 = extractvalue { i32, float } %rv, 1
store float %e1, float* %i1
ret void
}
; The C frontend should use i64 to return { i32, i32 } structs, but verify that
; we don't miscompile thi case where both struct elements are placed in %i0.
; CHECK: ret_i32_packed
@ -192,6 +321,21 @@ define inreg { i32, i32 } @ret_i32_packed(i32 %a0, i32 %a1,
ret { i32, i32 } %rv2
}
; CHECK: call_ret_i32_packed
; CHECK: call ret_i32_packed
; CHECK: srlx %o0, 32, [[R:%[gilo][0-7]]]
; CHECK: st [[R]], [%i0]
; CHECK: st %o0, [%i1]
define void @call_ret_i32_packed(i32* %i0, i32* %i1) {
%rv = call { i32, i32 } @ret_i32_packed(i32 undef, i32 undef,
i32* undef, i32* undef)
%e0 = extractvalue { i32, i32 } %rv, 0
store i32 %e0, i32* %i0
%e1 = extractvalue { i32, i32 } %rv, 1
store i32 %e1, i32* %i1
ret void
}
; The return value must be sign-extended to 64 bits.
; CHECK: ret_sext
; CHECK: sra %i0, 0, %i0