Implement -mno-sse: if SSE is disabled on x86-64, don't store XMM on stack for

var-args, and don't allow FP return values

llvm-svn: 63495
This commit is contained in:
Torok Edwin 2009-02-01 18:15:56 +00:00
parent 3ed768868d
commit a2d1f35e9a
5 changed files with 70 additions and 7 deletions

View File

@ -49,7 +49,7 @@ def RetCC_X86_32_C : CallingConv<[
// weirdly; this is really the sse-regparm calling convention) in which
// case they use XMM0, otherwise it is the same as the common X86 calling
// conv.
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
CCDelegateTo<RetCC_X86Common>
@ -134,7 +134,8 @@ def CC_X86_64_C : CallingConv<[
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
// registers on Darwin.
@ -223,7 +224,8 @@ def CC_X86_64_TailCall : CallingConv<[
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
// registers on Darwin.

View File

@ -1031,6 +1031,7 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool isVarArg = TheCall->isVarArg();
bool Is64Bit = Subtarget->is64Bit();
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
@ -1039,7 +1040,14 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
MVT CopyVT = RVLocs[i].getValVT();
// If this is x86-64, and we disabled SSE, we can't return FP values
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
cerr << "SSE register return with SSE disabled\n";
exit(1);
}
// If this is a call to a function that returns an fp value on the floating
// point stack, but where we prefer to use the value in xmm registers, copy
// it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
@ -1382,6 +1390,13 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
TotalNumXMMRegs);
assert((Subtarget->hasSSE1() || !NumXMMRegs) &&
"SSE register cannot be used when SSE is disabled!");
if (!Subtarget->hasSSE1()) {
// Kernel mode asks for SSE to be disabled, so don't push them
// on the stack.
TotalNumXMMRegs = 0;
}
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so they
// may be loaded by deferencing the result of va_next.
@ -1675,6 +1690,8 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
assert((Subtarget->hasSSE1() || !NumXMMRegs)
&& "SSE registers cannot be used when SSE is disabled");
Chain = DAG.getCopyToReg(Chain, X86::AL,
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);

View File

@ -331,7 +331,7 @@ X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
// are enabled. These are available on all x86-64 CPUs.
if (Is64Bit) {
HasX86_64 = true;
#if 1
#if 0
if (X86SSELevel < SSE2)
X86SSELevel = SSE2;
#endif

View File

@ -1,7 +1,5 @@
; RUN: llvm-as < %s | llc -march=x86-64 -mattr=-sse,-sse2 | not grep xmm
; PR3402
; reverted
; XFAIL: *
target datalayout =
"e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
target triple = "x86_64-unknown-linux-gnu"

View File

@ -0,0 +1,46 @@
; RUN: llvm-as < %s > %t
; RUN: llc -march=x86-64 -mattr=-sse < %t | not grep xmm
; RUN: llc -march=x86-64 < %t | grep xmm
; PR3403
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
target triple = "x86_64-unknown-linux-gnu"
%struct.__va_list_tag = type { i32, i32, i8*, i8* }
define i32 @foo(float %a, i8* nocapture %fmt, ...) nounwind {
entry:
%ap = alloca [1 x %struct.__va_list_tag], align 8 ; <[1 x %struct.__va_list_tag]*> [#uses=4]
%ap12 = bitcast [1 x %struct.__va_list_tag]* %ap to i8* ; <i8*> [#uses=2]
call void @llvm.va_start(i8* %ap12)
%0 = getelementptr [1 x %struct.__va_list_tag]* %ap, i64 0, i64 0, i32 0 ; <i32*> [#uses=2]
%1 = load i32* %0, align 8 ; <i32> [#uses=3]
%2 = icmp ult i32 %1, 48 ; <i1> [#uses=1]
br i1 %2, label %bb, label %bb3
bb: ; preds = %entry
%3 = getelementptr [1 x %struct.__va_list_tag]* %ap, i64 0, i64 0, i32 3 ; <i8**> [#uses=1]
%4 = load i8** %3, align 8 ; <i8*> [#uses=1]
%5 = inttoptr i32 %1 to i8* ; <i8*> [#uses=1]
%6 = ptrtoint i8* %5 to i64 ; <i64> [#uses=1]
%ctg2 = getelementptr i8* %4, i64 %6 ; <i8*> [#uses=1]
%7 = add i32 %1, 8 ; <i32> [#uses=1]
store i32 %7, i32* %0, align 8
br label %bb4
bb3: ; preds = %entry
%8 = getelementptr [1 x %struct.__va_list_tag]* %ap, i64 0, i64 0, i32 2 ; <i8**> [#uses=2]
%9 = load i8** %8, align 8 ; <i8*> [#uses=2]
%10 = getelementptr i8* %9, i64 8 ; <i8*> [#uses=1]
store i8* %10, i8** %8, align 8
br label %bb4
bb4: ; preds = %bb3, %bb
%addr.0.0 = phi i8* [ %ctg2, %bb ], [ %9, %bb3 ] ; <i8*> [#uses=1]
%11 = bitcast i8* %addr.0.0 to i32* ; <i32*> [#uses=1]
%12 = load i32* %11, align 4 ; <i32> [#uses=1]
call void @llvm.va_end(i8* %ap12)
ret i32 %12
}
declare void @llvm.va_start(i8*) nounwind
declare void @llvm.va_end(i8*) nounwind