SCC: Un-inline long functions

These are long functions that really shouldn't be inlined.  Otherwise,
no functionality change.

<rdar://problem/14292693>

llvm-svn: 207249
This commit is contained in:
Duncan P. N. Exon Smith 2014-04-25 18:15:50 +00:00
parent 5547afed78
commit a16a629ef6
1 changed files with 85 additions and 75 deletions

View File

@ -81,75 +81,13 @@ class scc_iterator
std::vector<StackElement> VisitStack;
// A single "visit" within the non-recursive DFS traversal.
void DFSVisitOne(NodeType *N) {
++visitNum;
nodeVisitNumbers[N] = visitNum;
SCCNodeStack.push_back(N);
VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
#if 0 // Enable if needed when debugging.
dbgs() << "TarjanSCC: Node " << N <<
" : visitNum = " << visitNum << "\n";
#endif
}
void DFSVisitOne(NodeType *N);
// The stack-based DFS traversal; defined below.
void DFSVisitChildren() {
assert(!VisitStack.empty());
while (VisitStack.back().NextChild !=
GT::child_end(VisitStack.back().Node)) {
// TOS has at least one more child so continue DFS
NodeType *childN = *VisitStack.back().NextChild++;
typename DenseMap<NodeType *, unsigned>::iterator Visited =
nodeVisitNumbers.find(childN);
if (Visited == nodeVisitNumbers.end()) {
// this node has never been seen.
DFSVisitOne(childN);
continue;
}
unsigned childNum = Visited->second;
if (VisitStack.back().MinVisited > childNum)
VisitStack.back().MinVisited = childNum;
}
}
void DFSVisitChildren();
// Compute the next SCC using the DFS traversal.
void GetNextSCC() {
CurrentSCC.clear(); // Prepare to compute the next SCC
while (!VisitStack.empty()) {
DFSVisitChildren();
// Pop the leaf on top of the VisitStack.
NodeType *visitingN = VisitStack.back().Node;
unsigned minVisitNum = VisitStack.back().MinVisited;
assert(VisitStack.back().NextChild == GT::child_end(visitingN));
VisitStack.pop_back();
// Propagate MinVisitNum to parent so we can detect the SCC starting node.
if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
VisitStack.back().MinVisited = minVisitNum;
#if 0 // Enable if needed when debugging.
dbgs() << "TarjanSCC: Popped node " << visitingN <<
" : minVisitNum = " << minVisitNum << "; Node visit num = " <<
nodeVisitNumbers[visitingN] << "\n";
#endif
if (minVisitNum != nodeVisitNumbers[visitingN])
continue;
// A full SCC is on the SCCNodeStack! It includes all nodes below
// visitingN on the stack. Copy those nodes to CurrentSCC,
// reset their minVisit values, and return (this suspends
// the DFS traversal till the next ++).
do {
CurrentSCC.push_back(SCCNodeStack.back());
SCCNodeStack.pop_back();
nodeVisitNumbers[CurrentSCC.back()] = ~0U;
} while (CurrentSCC.back() != visitingN);
return;
}
}
void GetNextSCC();
scc_iterator(NodeType *entryN) : visitNum(0) {
DFSVisitOne(entryN);
@ -200,7 +138,88 @@ public:
///
/// If the SCC has more than one node, this is trivially true. If not, it may
/// still contain a loop if the node has an edge back to itself.
bool hasLoop() const {
bool hasLoop() const;
/// This informs the \c scc_iterator that the specified \c Old node
/// has been deleted, and \c New is to be used in its place.
void ReplaceNode(NodeType *Old, NodeType *New) {
assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
nodeVisitNumbers[New] = nodeVisitNumbers[Old];
nodeVisitNumbers.erase(Old);
}
};
template <class GraphT, class GT>
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeType *N) {
++visitNum;
nodeVisitNumbers[N] = visitNum;
SCCNodeStack.push_back(N);
VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
#if 0 // Enable if needed when debugging.
dbgs() << "TarjanSCC: Node " << N <<
" : visitNum = " << visitNum << "\n";
#endif
}
template <class GraphT, class GT>
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
assert(!VisitStack.empty());
while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
// TOS has at least one more child so continue DFS
NodeType *childN = *VisitStack.back().NextChild++;
typename DenseMap<NodeType *, unsigned>::iterator Visited =
nodeVisitNumbers.find(childN);
if (Visited == nodeVisitNumbers.end()) {
// this node has never been seen.
DFSVisitOne(childN);
continue;
}
unsigned childNum = Visited->second;
if (VisitStack.back().MinVisited > childNum)
VisitStack.back().MinVisited = childNum;
}
}
template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
CurrentSCC.clear(); // Prepare to compute the next SCC
while (!VisitStack.empty()) {
DFSVisitChildren();
// Pop the leaf on top of the VisitStack.
NodeType *visitingN = VisitStack.back().Node;
unsigned minVisitNum = VisitStack.back().MinVisited;
assert(VisitStack.back().NextChild == GT::child_end(visitingN));
VisitStack.pop_back();
// Propagate MinVisitNum to parent so we can detect the SCC starting node.
if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
VisitStack.back().MinVisited = minVisitNum;
#if 0 // Enable if needed when debugging.
dbgs() << "TarjanSCC: Popped node " << visitingN <<
" : minVisitNum = " << minVisitNum << "; Node visit num = " <<
nodeVisitNumbers[visitingN] << "\n";
#endif
if (minVisitNum != nodeVisitNumbers[visitingN])
continue;
// A full SCC is on the SCCNodeStack! It includes all nodes below
// visitingN on the stack. Copy those nodes to CurrentSCC,
// reset their minVisit values, and return (this suspends
// the DFS traversal till the next ++).
do {
CurrentSCC.push_back(SCCNodeStack.back());
SCCNodeStack.pop_back();
nodeVisitNumbers[CurrentSCC.back()] = ~0U;
} while (CurrentSCC.back() != visitingN);
return;
}
}
template <class GraphT, class GT>
bool scc_iterator<GraphT, GT>::hasLoop() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
if (CurrentSCC.size() > 1)
return true;
@ -212,15 +231,6 @@ public:
return false;
}
/// This informs the \c scc_iterator that the specified \c Old node
/// has been deleted, and \c New is to be used in its place.
void ReplaceNode(NodeType *Old, NodeType *New) {
assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
nodeVisitNumbers[New] = nodeVisitNumbers[Old];
nodeVisitNumbers.erase(Old);
}
};
/// \brief Construct the begin iterator for a deduced graph type T.
template <class T> scc_iterator<T> scc_begin(const T &G) {
return scc_iterator<T>::begin(G);