[AArch64] Implement Vector Funtion ABI name mangling.

Summary:
The name mangling scheme is defined in section 3.5 of the "Vector function application binary interface specification for AArch64" [1].

[1] https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi

Reviewers: rengolin, ABataev

Reviewed By: ABataev

Subscribers: sdesmalen, javed.absar, kristof.beyls, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D60583

llvm-svn: 358490
This commit is contained in:
Alexey Bataev 2019-04-16 13:56:21 +00:00
parent aa18ae862d
commit a0a2264ef7
9 changed files with 687 additions and 3 deletions

View File

@ -9648,6 +9648,307 @@ emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
}
}
// This are the Functions that are needed to mangle the name of the
// vector functions generated by the compiler, according to the rules
// defined in the "Vector Function ABI specifications for AArch64",
// available at
// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
///
/// TODO: Need to implement the behavior for reference marked with a
/// var or no linear modifiers (1.b in the section). For this, we
/// need to extend ParamKindTy to support the linear modifiers.
static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
QT = QT.getCanonicalType();
if (QT->isVoidType())
return false;
if (Kind == ParamKindTy::Uniform)
return false;
if (Kind == ParamKindTy::Linear)
return false;
// TODO: Handle linear references with modifiers
if (Kind == ParamKindTy::LinearWithVarStride)
return false;
return true;
}
/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
static bool getAArch64PBV(QualType QT, ASTContext &C) {
QT = QT.getCanonicalType();
unsigned Size = C.getTypeSize(QT);
// Only scalars and complex within 16 bytes wide set PVB to true.
if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
return false;
if (QT->isFloatingType())
return true;
if (QT->isIntegerType())
return true;
if (QT->isPointerType())
return true;
// TODO: Add support for complex types (section 3.1.2, item 2).
return false;
}
/// Computes the lane size (LS) of a return type or of an input parameter,
/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
/// TODO: Add support for references, section 3.2.1, item 1.
static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
QualType PTy = QT.getCanonicalType()->getPointeeType();
if (getAArch64PBV(PTy, C))
return C.getTypeSize(PTy);
}
if (getAArch64PBV(QT, C))
return C.getTypeSize(QT);
return C.getTypeSize(C.getUIntPtrType());
}
// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
// signature of the scalar function, as defined in 3.2.2 of the
// AAVFABI.
static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
QualType RetType = FD->getReturnType().getCanonicalType();
ASTContext &C = FD->getASTContext();
bool OutputBecomesInput = false;
llvm::SmallVector<unsigned, 8> Sizes;
if (!RetType->isVoidType()) {
Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
OutputBecomesInput = true;
}
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
}
assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
// The LS of a function parameter / return value can only be a power
// of 2, starting from 8 bits, up to 128.
assert(std::all_of(Sizes.begin(), Sizes.end(),
[](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 ||
Size == 64 || Size == 128;
}) &&
"Invalid size");
return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
*std::max_element(std::begin(Sizes), std::end(Sizes)),
OutputBecomesInput);
}
/// Mangle the parameter part of the vector function name according to
/// their OpenMP classification. The mangling function is defined in
/// section 3.5 of the AAVFABI.
static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
for (const auto &ParamAttr : ParamAttrs) {
switch (ParamAttr.Kind) {
case LinearWithVarStride:
Out << "ls" << ParamAttr.StrideOrArg;
break;
case Linear:
Out << 'l';
// Don't print the step value if it is not present or if it is
// equal to 1.
if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
Out << ParamAttr.StrideOrArg;
break;
case Uniform:
Out << 'u';
break;
case Vector:
Out << 'v';
break;
}
if (!!ParamAttr.Alignment)
Out << 'a' << ParamAttr.Alignment;
}
return Out.str();
}
// Function used to add the attribute. The parameter `VLEN` is
// templated to allow the use of "x" when targeting scalable functions
// for SVE.
template <typename T>
static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
char ISA, StringRef ParSeq,
StringRef MangledName, bool OutputBecomesInput,
llvm::Function *Fn) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << Prefix << ISA << LMask << VLEN;
if (OutputBecomesInput)
Out << "v";
Out << ParSeq << "_" << MangledName;
Fn->addFnAttr(Out.str());
}
// Helper function to generate the Advanced SIMD names depending on
// the value of the NDS when simdlen is not present.
static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
StringRef Prefix, char ISA,
StringRef ParSeq, StringRef MangledName,
bool OutputBecomesInput,
llvm::Function *Fn) {
switch (NDS) {
case 8:
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 16:
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 32:
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 64:
case 128:
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
default:
llvm_unreachable("Scalar type is too wide.");
}
}
/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
static void emitAArch64DeclareSimdFunction(
CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
ArrayRef<ParamAttrTy> ParamAttrs,
OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
// Get basic data for building the vector signature.
const auto Data = getNDSWDS(FD, ParamAttrs);
const unsigned NDS = std::get<0>(Data);
const unsigned WDS = std::get<1>(Data);
const bool OutputBecomesInput = std::get<2>(Data);
// Check the values provided via `simdlen` by the user.
// 1. A `simdlen(1)` doesn't produce vector signatures,
if (UserVLEN == 1) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning,
"The clause simdlen(1) has no effect when targeting aarch64.");
CGM.getDiags().Report(SLoc, DiagID);
return;
}
// 2. Section 3.3.1, item 1: user input must be a power of 2 for
// Advanced SIMD output.
if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
"power of 2 when targeting Advanced SIMD.");
CGM.getDiags().Report(SLoc, DiagID);
return;
}
// 3. Section 3.4.1. SVE fixed lengh must obey the architectural
// limits.
if (ISA == 's' && UserVLEN != 0) {
if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
"lanes in the architectural constraints "
"for SVE (min is 128-bit, max is "
"2048-bit, by steps of 128-bit)");
CGM.getDiags().Report(SLoc, DiagID) << WDS;
return;
}
}
// Sort out parameter sequence.
const std::string ParSeq = mangleVectorParameters(ParamAttrs);
StringRef Prefix = "_ZGV";
// Generate simdlen from user input (if any).
if (UserVLEN) {
if (ISA == 's') {
// SVE generates only a masked function.
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
} else {
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
// Advanced SIMD generates one or two functions, depending on
// the `[not]inbranch` clause.
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
}
}
} else {
// If no user simdlen is provided, follow the AAVFABI rules for
// generating the vector length.
if (ISA == 's') {
// SVE, section 3.4.1, item 1.
addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
} else {
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
// Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
// two vector names depending on the use of the clause
// `[not]inbranch`.
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
}
}
}
}
void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
llvm::Function *Fn) {
ASTContext &C = CGM.getContext();
@ -9734,12 +10035,26 @@ void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
++MI;
}
llvm::APSInt VLENVal;
if (const Expr *VLEN = Attr->getSimdlen())
VLENVal = VLEN->EvaluateKnownConstInt(C);
SourceLocation ExprLoc;
const Expr *VLENExpr = Attr->getSimdlen();
if (VLENExpr) {
VLENVal = VLENExpr->EvaluateKnownConstInt(C);
ExprLoc = VLENExpr->getExprLoc();
}
OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
CGM.getTriple().getArch() == llvm::Triple::x86_64)
CGM.getTriple().getArch() == llvm::Triple::x86_64) {
emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
} else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
unsigned VLEN = VLENVal.getExtValue();
StringRef MangledName = Fn->getName();
if (CGM.getTarget().hasFeature("sve"))
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
MangledName, 's', 128, Fn, ExprLoc);
if (CGM.getTarget().hasFeature("neon"))
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
MangledName, 'n', 128, Fn, ExprLoc);
}
}
FD = FD->getPreviousDecl();
}

View File

@ -0,0 +1,8 @@
#ifndef LLVM_CLANG_TEST_OPENMP_INPUTS_DECLARE_SIMD_FIX_H
#define LLVM_CLANG_TEST_OPENMP_INPUTS_DECLARE_SIMD_FIX_H
#pragma omp declare simd
float foo(float a, float b, int c);
float bar(float a, float b, int c);
#endif

View File

@ -0,0 +1,190 @@
// -fopemp and -fopenmp-simd behavior are expected to be the same.
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +neon -fopenmp -x c -emit-llvm %s -o - -femit-all-decls | FileCheck %s --check-prefix=AARCH64
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +neon -fopenmp-simd -x c -emit-llvm %s -o - -femit-all-decls | FileCheck %s --check-prefix=AARCH64
#pragma omp declare simd
#pragma omp declare simd simdlen(2)
#pragma omp declare simd simdlen(6)
#pragma omp declare simd simdlen(8)
double foo(float x);
// AARCH64: "_ZGVnM2v_foo" "_ZGVnM4v_foo" "_ZGVnM8v_foo" "_ZGVnN2v_foo" "_ZGVnN4v_foo" "_ZGVnN8v_foo"
// AARCH64-NOT: _ZGVnN6v_foo
void foo_loop(double *x, float *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = foo(y[i]);
}
}
// make sure that the following two function by default gets generated
// with 4 and 2 lanes, as descrived in the vector ABI
#pragma omp declare simd notinbranch
float bar(double x);
#pragma omp declare simd notinbranch
double baz(float x);
// AARCH64: "_ZGVnN2v_baz" "_ZGVnN4v_baz"
// AARCH64-NOT: baz
// AARCH64: "_ZGVnN2v_bar" "_ZGVnN4v_bar"
// AARCH64-NOT: bar
void baz_bar_loop(double *x, float *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = baz(y[i]);
y[i] = bar(x[i]);
}
}
/***************************/
/* 32-bit integer tests */
/***************************/
#pragma omp declare simd
#pragma omp declare simd simdlen(2)
#pragma omp declare simd simdlen(6)
#pragma omp declare simd simdlen(8)
long foo_int(int x);
// AARCH64: "_ZGVnN2v_foo_int" "_ZGVnN4v_foo_int" "_ZGVnN8v_foo_int"
// No non power of two
// AARCH64-NOT: _ZGVnN6v_foo_int
void foo_int_loop(long *x, int *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = foo_int(y[i]);
}
}
#pragma omp declare simd
char simple_8bit(char);
// AARCH64: "_ZGVnM16v_simple_8bit" "_ZGVnM8v_simple_8bit" "_ZGVnN16v_simple_8bit" "_ZGVnN8v_simple_8bit"
#pragma omp declare simd
short simple_16bit(short);
// AARCH64: "_ZGVnM4v_simple_16bit" "_ZGVnM8v_simple_16bit" "_ZGVnN4v_simple_16bit" "_ZGVnN8v_simple_16bit"
#pragma omp declare simd
int simple_32bit(int);
// AARCH64: "_ZGVnM2v_simple_32bit" "_ZGVnM4v_simple_32bit" "_ZGVnN2v_simple_32bit" "_ZGVnN4v_simple_32bit"
#pragma omp declare simd
long simple_64bit(long);
// AARCH64: "_ZGVnM2v_simple_64bit" "_ZGVnN2v_simple_64bit"
#pragma omp declare simd
#pragma omp declare simd simdlen(32)
char a01(int x);
// AARCH64: "_ZGVnN16v_a01" "_ZGVnN32v_a01" "_ZGVnN8v_a01"
// AARCH64-NOT: a01
#pragma omp declare simd
#pragma omp declare simd simdlen(2)
long a02(short x);
// AARCH64: "_ZGVnN2v_a02" "_ZGVnN4v_a02" "_ZGVnN8v_a02"
// AARCH64-NOT: a02
/************/
/* pointers */
/************/
#pragma omp declare simd
int b01(int *x);
// AARCH64: "_ZGVnN4v_b01"
// AARCH64-NOT: b01
#pragma omp declare simd
char b02(char *);
// AARCH64: "_ZGVnN16v_b02" "_ZGVnN8v_b02"
// AARCH64-NOT: b02
#pragma omp declare simd
double *b03(double *);
// AARCH64: "_ZGVnN2v_b03"
// AARCH64-NOT: b03
/***********/
/* masking */
/***********/
#pragma omp declare simd inbranch
int c01(double *x, short y);
// AARCH64: "_ZGVnM8vv_c01"
// AARCH64-NOT: c01
#pragma omp declare simd inbranch uniform(x)
double c02(double *x, char y);
// AARCH64: "_ZGVnM16uv_c02" "_ZGVnM8uv_c02"
// AARCH64-NOT: c02
/*************************/
/* sincos-like signature */
/*************************/
#pragma omp declare simd linear(sin) linear(cos)
void sincos(double in, double *sin, double *cos);
// AARCH64: "_ZGVnN2vll_sincos"
// AARCH64-NOT: sincos
#pragma omp declare simd linear(sin : 1) linear(cos : 2)
void SinCos(double in, double *sin, double *cos);
// AARCH64: "_ZGVnN2vll2_SinCos"
// AARCH64-NOT: SinCos
// Selection of tests based on the examples provided in chapter 5 of
// the Vector Function ABI specifications for AArch64, at
// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
// Listing 2, p. 18
#pragma omp declare simd inbranch uniform(x) linear(val(i) : 4)
int foo2(int *x, int i);
// AARCH64: "_ZGVnM2ul4_foo2" "_ZGVnM4ul4_foo2"
// AARCH64-NOT: foo2
// Listing 3, p. 18
#pragma omp declare simd inbranch uniform(x, c) linear(i \
: c)
int foo3(int *x, int i, unsigned char c);
// AARCH64: "_ZGVnM16uls2u_foo3" "_ZGVnM8uls2u_foo3"
// AARCH64-NOT: foo3
// Listing 6, p. 19
#pragma omp declare simd linear(x) aligned(x : 16) simdlen(4)
int foo4(int *x, float y);
// AARCH64: "_ZGVnM4la16v_foo4" "_ZGVnN4la16v_foo4"
// AARCH64-NOT: foo4
static int *I;
static char *C;
static short *S;
static long *L;
static float *F;
static double *D;
void do_something() {
simple_8bit(*C);
simple_16bit(*S);
simple_32bit(*I);
simple_64bit(*L);
*C = a01(*I);
*L = a02(*S);
*I = b01(I);
*C = b02(C);
D = b03(D);
*I = c01(D, *S);
*D = c02(D, *S);
sincos(*D, D, D);
SinCos(*D, D, D);
foo2(I, *I);
foo3(I, *I, *C);
foo4(I, *F);
}
typedef struct S {
char R, G, B;
} STy;
#pragma omp declare simd notinbranch
STy DoRGB(STy x);
// AARCH64: "_ZGVnN2v_DoRGB"
static STy *RGBData;
void do_rgb_stuff() {
DoRGB(*RGBData);
}

View File

@ -0,0 +1,37 @@
// -fopemp and -fopenmp-simd behavior are expected to be the same.
// RUN: %clang_cc1 -verify -triple aarch64-linux-gnu -target-feature +neon -fopenmp -x c++ -emit-llvm %s -o - -femit-all-decls -verify| FileCheck %s --check-prefix=ADVSIMD
// RUN: %clang_cc1 -verify -triple aarch64-linux-gnu -target-feature +sve -fopenmp -x c++ -emit-llvm %s -o - -femit-all-decls -verify| FileCheck %s --check-prefix=SVE
// RUN: %clang_cc1 -verify -triple aarch64-linux-gnu -target-feature +neon -fopenmp-simd -x c++ -emit-llvm %s -o - -femit-all-decls -verify| FileCheck %s --check-prefix=ADVSIMD
// RUN: %clang_cc1 -verify -triple aarch64-linux-gnu -target-feature +sve -fopenmp-simd -x c++ -emit-llvm %s -o - -femit-all-decls -verify| FileCheck %s --check-prefix=SVE
// expected-no-diagnostics
#pragma omp declare simd
double f(double x);
#pragma omp declare simd
float f(float x);
void aaa(double *x, double *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = f(y[i]);
}
}
void aaa(float *x, float *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = f(y[i]);
}
}
// ADVSIMD: "_ZGVnN2v__Z1fd"
// ADVSIMD-NOT: _Z1fd
// ADVSIMD: "_ZGVnN4v__Z1ff"
// ADVSIMD-NOT: _Z1fF
// SVE: "_ZGVsMxv__Z1fd"
// SVE-NOT: _Z1fd
// SVE: "_ZGVsMxv__Z1ff"
// SVE-NOT: _Z1ff

View File

@ -0,0 +1,26 @@
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +neon -fopenmp -x c -std=c11 -emit-llvm %s -o - -femit-all-decls | FileCheck %s
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +sve -fopenmp -x c -std=c11 -emit-llvm %s -o - -femit-all-decls | FileCheck %s --check-prefix=SVE
#pragma omp declare simd
#pragma omp declare simd simdlen(4) notinbranch
double _Complex double_complex(double _Complex);
// CHECK: "_ZGVnM2v_double_complex" "_ZGVnN2v_double_complex" "_ZGVnN4v_double_complex"
// CHECK-NOT: double_complex
// SVE: "_ZGVsM4v_double_complex" "_ZGVsMxv_double_complex"
// SVE-NOT: double_complex
#pragma omp declare simd
#pragma omp declare simd simdlen(8) notinbranch
float _Complex float_complex(float _Complex);
// CHECK: "_ZGVnM2v_float_complex" "_ZGVnN2v_float_complex" "_ZGVnN8v_float_complex"
// CHECK-NOT: float_complex
// SVE: "_ZGVsM8v_float_complex" "_ZGVsMxv_float_complex"
// SVE-NOT: float_complex
static double _Complex *DC;
static float _Complex *DF;
void call_the_complex_functions() {
double_complex(*DC);
float_complex(*DF);
}

View File

@ -0,0 +1,37 @@
// This test is making sure that no crash happens.
// RUN: %clang -o - -fno-fast-math -S -target aarch64-linux-gnu \
// RUN: -fopenmp -O3 -march=armv8-a -c %s | FileCheck %s
// RUN: %clang -o - -fno-fast-math -S -target aarch64-linux-gnu \
// RUN: -fopenmp-simd -O3 -march=armv8-a -c %s | FileCheck %s
// RUN: %clang -o - -fno-fast-math -S -target aarch64-linux-gnu \
// RUN: -fopenmp -O3 -march=armv8-a+sve -c %s | FileCheck %s
// RUN: %clang -o - -fno-fast-math -S -target aarch64-linux-gnu \
// RUN: -fopenmp-simd -O3 -march=armv8-a+sve -c %s | FileCheck %s
// loop in the user code, in user_code.c
#include "Inputs/declare-simd-fix.h"
// CHECK-LABEL: do_something:
void do_something(int *a, double *b, unsigned N) {
for (unsigned i = 0; i < N; ++i) {
a[i] = foo(b[0], b[0], 1);
}
}
// CHECK-LABEL: do_something_else:
void do_something_else(int *a, double *b, unsigned N) {
for (unsigned i = 0; i < N; ++i) {
a[i] = foo(1.1, 1.2, 1);
}
}
// CHECK-LABEL: do_something_more:
void do_something_more(int *a, double *b, unsigned N) {
for (unsigned i = 0; i < N; ++i) {
a[i] = foo(b[i], b[i], a[1]);
}
}

View File

@ -0,0 +1,43 @@
// -fopemp and -fopenmp-simd behavior are expected to be the same
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +sve \
// RUN: -fopenmp -x c -emit-llvm %s -o - -femit-all-decls | FileCheck %s
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +sve \
// RUN: -fopenmp-simd -x c -emit-llvm %s -o - -femit-all-decls | FileCheck %s
#pragma omp declare simd
#pragma omp declare simd notinbranch
#pragma omp declare simd simdlen(2)
#pragma omp declare simd simdlen(4)
#pragma omp declare simd simdlen(5) // not a multiple of 128-bits
#pragma omp declare simd simdlen(6)
#pragma omp declare simd simdlen(8)
#pragma omp declare simd simdlen(32)
#pragma omp declare simd simdlen(34) // requires more than 2048 bits
double foo(float x);
// CHECK-DAG: "_ZGVsM2v_foo" "_ZGVsM32v_foo" "_ZGVsM4v_foo" "_ZGVsM6v_foo" "_ZGVsM8v_foo" "_ZGVsMxv_foo"
// CHECK-NOT: _ZGVsN
// CHECK-NOT: _ZGVsM5v_foo
// CHECK-NOT: _ZGVsM34v_foo
// CHECK-NOT: foo
void foo_loop(double *x, float *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = foo(y[i]);
}
}
// test integers
#pragma omp declare simd notinbranch
char a01(int x);
// CHECK-DAG: _ZGVsMxv_a01
// CHECK-NOT: a01
static int *in;
static char *out;
void do_something() {
*out = a01(*in);
}

View File

@ -0,0 +1,16 @@
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +neon -fopenmp %s -S -o %t -verify
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +neon -fopenmp-simd %s -S -o %t -verify
#pragma omp declare simd simdlen(6)
double foo(float x);
// expected-warning@-2{{The value specified in simdlen must be a power of 2 when targeting Advanced SIMD.}}
#pragma omp declare simd simdlen(1)
float bar(double x);
// expected-warning@-2{{The clause simdlen(1) has no effect when targeting aarch64.}}
void foo_loop(double *x, float *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = foo(y[i]);
y[i] = bar(x[i]);
}
}

View File

@ -0,0 +1,12 @@
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +sve -fopenmp %s -S -o %t -verify
// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +sve -fopenmp-simd %s -S -o %t -verify
#pragma omp declare simd simdlen(66)
double foo(float x);
//expected-warning@-2{{The clause simdlen must fit the 64-bit lanes in the architectural constraints for SVE (min is 128-bit, max is 2048-bit, by steps of 128-bit)}}
void foo_loop(double *x, float *y, int N) {
for (int i = 0; i < N; ++i) {
x[i] = foo(y[i]);
}
}