forked from OSchip/llvm-project
[mlir] VectorToSCF cleanup
Group functions/structs in namespaces for better code readability. Depends On D102123 Reviewed By: nicolasvasilache Differential Revision: https://reviews.llvm.org/D102124
This commit is contained in:
parent
23a84e1c60
commit
a088bed4e3
|
@ -49,52 +49,6 @@ struct VectorToSCFPattern : public OpRewritePattern<OpTy> {
|
|||
VectorTransferToSCFOptions options;
|
||||
};
|
||||
|
||||
/// Given a MemRefType with VectorType element type, unpack one dimension from
|
||||
/// the VectorType into the MemRefType.
|
||||
///
|
||||
/// E.g.: memref<9xvector<5x6xf32>> --> memref<9x5xvector<6xf32>>
|
||||
static MemRefType unpackOneDim(MemRefType type) {
|
||||
auto vectorType = type.getElementType().dyn_cast<VectorType>();
|
||||
auto memrefShape = type.getShape();
|
||||
SmallVector<int64_t, 8> newMemrefShape;
|
||||
newMemrefShape.append(memrefShape.begin(), memrefShape.end());
|
||||
newMemrefShape.push_back(vectorType.getDimSize(0));
|
||||
return MemRefType::get(newMemrefShape,
|
||||
VectorType::get(vectorType.getShape().drop_front(),
|
||||
vectorType.getElementType()));
|
||||
}
|
||||
|
||||
/// Helper data structure for data and mask buffers.
|
||||
struct BufferAllocs {
|
||||
Value dataBuffer;
|
||||
Value maskBuffer;
|
||||
};
|
||||
|
||||
/// Allocate temporary buffers for data (vector) and mask (if present).
|
||||
/// TODO: Parallelism and threadlocal considerations.
|
||||
template <typename OpTy>
|
||||
static BufferAllocs allocBuffers(OpTy xferOp) {
|
||||
auto &b = ScopedContext::getBuilderRef();
|
||||
OpBuilder::InsertionGuard guard(b);
|
||||
Operation *scope =
|
||||
xferOp->template getParentWithTrait<OpTrait::AutomaticAllocationScope>();
|
||||
assert(scope && "Expected op to be inside automatic allocation scope");
|
||||
b.setInsertionPointToStart(&scope->getRegion(0).front());
|
||||
|
||||
BufferAllocs result;
|
||||
auto bufferType = MemRefType::get({}, xferOp.getVectorType());
|
||||
result.dataBuffer = memref_alloca(bufferType).value;
|
||||
|
||||
if (xferOp.mask()) {
|
||||
auto maskType = MemRefType::get({}, xferOp.mask().getType());
|
||||
Value maskBuffer = memref_alloca(maskType);
|
||||
memref_store(xferOp.mask(), maskBuffer);
|
||||
result.maskBuffer = memref_load(maskBuffer);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Given a vector transfer op, calculate which dimension of the `source`
|
||||
/// memref should be unpacked in the next application of TransferOpConversion.
|
||||
/// A return value of None indicates a broadcast.
|
||||
|
@ -284,6 +238,54 @@ static void maybeApplyPassLabel(OpBuilder &builder, OpTy newXferOp,
|
|||
newXferOp->setAttr(kPassLabel, builder.getUnitAttr());
|
||||
}
|
||||
|
||||
namespace lowering_n_d {
|
||||
|
||||
/// Helper data structure for data and mask buffers.
|
||||
struct BufferAllocs {
|
||||
Value dataBuffer;
|
||||
Value maskBuffer;
|
||||
};
|
||||
|
||||
/// Allocate temporary buffers for data (vector) and mask (if present).
|
||||
/// TODO: Parallelism and threadlocal considerations.
|
||||
template <typename OpTy>
|
||||
static BufferAllocs allocBuffers(OpTy xferOp) {
|
||||
auto &b = ScopedContext::getBuilderRef();
|
||||
OpBuilder::InsertionGuard guard(b);
|
||||
Operation *scope =
|
||||
xferOp->template getParentWithTrait<OpTrait::AutomaticAllocationScope>();
|
||||
assert(scope && "Expected op to be inside automatic allocation scope");
|
||||
b.setInsertionPointToStart(&scope->getRegion(0).front());
|
||||
|
||||
BufferAllocs result;
|
||||
auto bufferType = MemRefType::get({}, xferOp.getVectorType());
|
||||
result.dataBuffer = memref_alloca(bufferType).value;
|
||||
|
||||
if (xferOp.mask()) {
|
||||
auto maskType = MemRefType::get({}, xferOp.mask().getType());
|
||||
auto maskBuffer = memref_alloca(maskType).value;
|
||||
memref_store(xferOp.mask(), maskBuffer);
|
||||
result.maskBuffer = memref_load(maskBuffer);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Given a MemRefType with VectorType element type, unpack one dimension from
|
||||
/// the VectorType into the MemRefType.
|
||||
///
|
||||
/// E.g.: memref<9xvector<5x6xf32>> --> memref<9x5xvector<6xf32>>
|
||||
static MemRefType unpackOneDim(MemRefType type) {
|
||||
auto vectorType = type.getElementType().dyn_cast<VectorType>();
|
||||
auto memrefShape = type.getShape();
|
||||
SmallVector<int64_t, 8> newMemrefShape;
|
||||
newMemrefShape.append(memrefShape.begin(), memrefShape.end());
|
||||
newMemrefShape.push_back(vectorType.getDimSize(0));
|
||||
return MemRefType::get(newMemrefShape,
|
||||
VectorType::get(vectorType.getShape().drop_front(),
|
||||
vectorType.getElementType()));
|
||||
}
|
||||
|
||||
/// Given a transfer op, find the memref from which the mask is loaded. This
|
||||
/// is similar to Strategy<TransferWriteOp>::getBuffer.
|
||||
template <typename OpTy>
|
||||
|
@ -688,6 +690,10 @@ struct TransferOpConversion : public VectorToSCFPattern<OpTy> {
|
|||
}
|
||||
};
|
||||
|
||||
} // namespace lowering_n_d
|
||||
|
||||
namespace lowering_n_d_unrolled {
|
||||
|
||||
/// If the original transfer op has a mask, compute the mask of the new transfer
|
||||
/// op (for the current iteration `i`) and assign it.
|
||||
template <typename OpTy>
|
||||
|
@ -954,6 +960,10 @@ struct UnrollTransferWriteConversion
|
|||
}
|
||||
};
|
||||
|
||||
} // namespace lowering_n_d_unrolled
|
||||
|
||||
namespace lowering_1_d {
|
||||
|
||||
/// Compute the indices into the memref for the LoadOp/StoreOp generated as
|
||||
/// part of TransferOp1dConversion. Return the memref dimension on which
|
||||
/// the transfer is operating. A return value of None indicates a broadcast.
|
||||
|
@ -1114,6 +1124,7 @@ struct TransferOp1dConversion : public VectorToSCFPattern<OpTy> {
|
|||
}
|
||||
};
|
||||
|
||||
} // namespace lowering_1_d
|
||||
} // namespace
|
||||
|
||||
namespace mlir {
|
||||
|
@ -1121,19 +1132,21 @@ namespace mlir {
|
|||
void populateVectorToSCFConversionPatterns(
|
||||
RewritePatternSet &patterns, const VectorTransferToSCFOptions &options) {
|
||||
if (options.unroll) {
|
||||
patterns.add<UnrollTransferReadConversion, UnrollTransferWriteConversion>(
|
||||
patterns.add<lowering_n_d_unrolled::UnrollTransferReadConversion,
|
||||
lowering_n_d_unrolled::UnrollTransferWriteConversion>(
|
||||
patterns.getContext(), options);
|
||||
} else {
|
||||
patterns.add<PrepareTransferReadConversion, PrepareTransferWriteConversion,
|
||||
TransferOpConversion<TransferReadOp>,
|
||||
TransferOpConversion<TransferWriteOp>>(patterns.getContext(),
|
||||
options);
|
||||
patterns.add<lowering_n_d::PrepareTransferReadConversion,
|
||||
lowering_n_d::PrepareTransferWriteConversion,
|
||||
lowering_n_d::TransferOpConversion<TransferReadOp>,
|
||||
lowering_n_d::TransferOpConversion<TransferWriteOp>>(
|
||||
patterns.getContext(), options);
|
||||
}
|
||||
|
||||
if (options.targetRank == 1) {
|
||||
patterns.add<TransferOp1dConversion<TransferReadOp>,
|
||||
TransferOp1dConversion<TransferWriteOp>>(patterns.getContext(),
|
||||
options);
|
||||
patterns.add<lowering_1_d::TransferOp1dConversion<TransferReadOp>,
|
||||
lowering_1_d::TransferOp1dConversion<TransferWriteOp>>(
|
||||
patterns.getContext(), options);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue