Add more methods to gather target specific elf stuff

Support for .text relocations, implementing TargetELFWriter overloaded methods for x86/x86_64.
Use a map to track global values to their symbol table indexes
Code cleanup and small fixes

llvm-svn: 73894
This commit is contained in:
Bruno Cardoso Lopes 2009-06-22 19:16:16 +00:00
parent 3d75d6af57
commit a040566fec
8 changed files with 427 additions and 164 deletions

View File

@ -61,6 +61,11 @@ public:
return Relocations;
}
/// hasRelocations - Return true if 'Relocations' is not empty
bool hasRelocations() const {
return !Relocations.empty();
}
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream.
inline void emitByte(uint8_t B) {
@ -317,6 +322,7 @@ public:
void addRelocation(const MachineRelocation& relocation) {
Relocations.push_back(relocation);
}
};
} // end namespace llvm

View File

@ -78,11 +78,32 @@ namespace llvm {
/// Symbol Table Info
unsigned getSymTabEntrySize() const { return is64Bit ? 24 : 16; }
unsigned getSymTabAlignment() const { return is64Bit ? 8 : 4; }
/// getPrefELFAlignment - Returns the preferred alignment for ELF. This
/// is used to align some sections.
unsigned getPrefELFAlignment() const { return is64Bit ? 8 : 4; }
/// getRelocationEntrySize - Entry size used in the relocation section
unsigned getRelocationEntrySize() const {
return is64Bit ? (hasRelocationAddend() ? 24 : 16)
: (hasRelocationAddend() ? 12 : 8);
}
/// getFunctionAlignment - Returns the alignment for function 'F', targets
/// with different alignment constraints should overload this method
virtual unsigned getFunctionAlignment(const Function *F) const;
/// getRelocationType - Returns the target specific ELF Relocation type.
/// 'MachineRelTy' contains the object code independent relocation type
virtual unsigned getRelocationType(unsigned MachineRelTy) const = 0;
/// hasRelocationAddend - True if the target uses an addend in the
/// ELF relocation entry.
virtual bool hasRelocationAddend() const = 0;
/// getAddendForRelTy - Gets the addend value for an ELF relocation entry
/// based on the target relocation type. If addend is not used returns 0.
virtual long int getAddendForRelTy(unsigned RelTy) const = 0;
};
} // end llvm namespace

View File

@ -128,7 +128,13 @@ namespace llvm {
/// added to logical symbol table for the module. This is eventually
/// turned into a real symbol table in the file.
struct ELFSym {
const GlobalValue *GV; // The global value this corresponds to.
// The global value this corresponds to. Global symbols can be on of the
// 3 types : if this symbol has a zero initializer, it is common or should
// be placed in bss section otherwise it's a constant.
const GlobalValue *GV;
bool IsCommon;
bool IsBss;
bool IsConstant;
// ELF specific fields
unsigned NameIdx; // Index in .strtab of name, once emitted.
@ -159,8 +165,9 @@ namespace llvm {
STV_PROTECTED = 3 // Visible in other components but not preemptable
};
ELFSym(const GlobalValue *gv) : GV(gv), NameIdx(0), Value(0),
Size(0), Info(0), Other(0),
ELFSym(const GlobalValue *gv) : GV(gv), IsCommon(false), IsBss(false),
IsConstant(false), NameIdx(0), Value(0),
Size(0), Info(0), Other(STV_DEFAULT),
SectionIdx(ELFSection::SHN_UNDEF) {
if (!GV)
return;
@ -180,16 +187,47 @@ namespace llvm {
}
}
void SetBind(unsigned X) {
unsigned getBind() {
return (Info >> 4) & 0xf;
}
void setBind(unsigned X) {
assert(X == (X & 0xF) && "Bind value out of range!");
Info = (Info & 0x0F) | (X << 4);
}
void SetType(unsigned X) {
void setType(unsigned X) {
assert(X == (X & 0xF) && "Type value out of range!");
Info = (Info & 0xF0) | X;
}
};
/// ELFRelocation - This class contains all the information necessary to
/// to generate any 32-bit or 64-bit ELF relocation entry.
class ELFRelocation {
uint64_t r_offset; // offset in the section of the object this applies to
uint32_t r_symidx; // symbol table index of the symbol to use
uint32_t r_type; // machine specific relocation type
int64_t r_add; // explicit relocation addend
bool r_rela; // if true then the addend is part of the entry
// otherwise the addend is at the location specified
// by r_offset
public:
uint64_t getInfo(bool is64Bit) const {
if (is64Bit)
return ((uint64_t)r_symidx << 32) + ((uint64_t)r_type & 0xFFFFFFFFL);
else
return (r_symidx << 8) + (r_type & 0xFFL);
}
uint64_t getOffset() const { return r_offset; }
int64_t getAddend() const { return r_add; }
ELFRelocation(uint64_t off, uint32_t sym, uint32_t type,
bool rela = true, int64_t addend = 0) :
r_offset(off), r_symidx(sym), r_type(type),
r_add(addend), r_rela(rela) {}
};
} // end namespace llvm
#endif

View File

@ -71,38 +71,37 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
// Update Section Size
ES->Size = CurBufferPtr - BufferBegin;
// Figure out the binding (linkage) of the symbol.
switch (MF.getFunction()->getLinkage()) {
default:
// appending linkage is illegal for functions.
assert(0 && "Unknown linkage type!");
case GlobalValue::ExternalLinkage:
FnSym.SetBind(ELFSym::STB_GLOBAL);
break;
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
FnSym.SetBind(ELFSym::STB_WEAK);
break;
case GlobalValue::PrivateLinkage:
assert (0 && "PrivateLinkage should not be in the symbol table.");
case GlobalValue::InternalLinkage:
FnSym.SetBind(ELFSym::STB_LOCAL);
break;
}
// Set the symbol type as a function
FnSym.SetType(ELFSym::STT_FUNC);
FnSym.setType(ELFSym::STT_FUNC);
FnSym.SectionIdx = ES->SectionIdx;
FnSym.Size = CurBufferPtr-FnStartPtr;
// Offset from start of Section
FnSym.Value = FnStartPtr-BufferBegin;
// Finally, add it to the symtab.
EW.SymbolList.push_back(FnSym);
// Figure out the binding (linkage) of the symbol.
switch (MF.getFunction()->getLinkage()) {
default:
// appending linkage is illegal for functions.
assert(0 && "Unknown linkage type!");
case GlobalValue::ExternalLinkage:
FnSym.setBind(ELFSym::STB_GLOBAL);
EW.SymbolList.push_back(FnSym);
break;
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
FnSym.setBind(ELFSym::STB_WEAK);
EW.SymbolList.push_back(FnSym);
break;
case GlobalValue::PrivateLinkage:
assert (0 && "PrivateLinkage should not be in the symbol table.");
case GlobalValue::InternalLinkage:
FnSym.setBind(ELFSym::STB_LOCAL);
EW.SymbolList.push_front(FnSym);
break;
}
// Relocations
// -----------
@ -113,7 +112,6 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
MachineRelocation &MR = Relocations[i];
intptr_t Addr;
if (MR.isBasicBlock()) {
Addr = getMachineBasicBlockAddress(MR.getBasicBlock());
MR.setConstantVal(ES->SectionIdx);

View File

@ -136,105 +136,41 @@ bool ELFWriter::doInitialization(Module &M) {
ElfHdr.emitWord16(0); // Placeholder
// Add the null section, which is required to be first in the file.
getSection("", ELFSection::SHT_NULL, 0);
// Start up the symbol table. The first entry in the symtab is the null
// entry.
SymbolList.push_back(ELFSym(0));
getNullSection();
return false;
}
void ELFWriter::EmitGlobal(GlobalVariable *GV) {
unsigned ELFWriter::getGlobalELFLinkage(const GlobalVariable *GV) {
if (GV->hasInternalLinkage())
return ELFSym::STB_LOCAL;
// XXX: put local symbols *before* global ones!
if (GV->hasWeakLinkage())
return ELFSym::STB_WEAK;
return ELFSym::STB_GLOBAL;
}
// For global symbols without a section, return the Null section as a
// placeholder
ELFSection &ELFWriter::getGlobalSymELFSection(const GlobalVariable *GV,
ELFSym &Sym) {
const Section *S = TAI->SectionForGlobal(GV);
DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
// If this is an external global, emit it now. TODO: Note that it would be
// better to ignore the symbol here and only add it to the symbol table if
// referenced.
if (!GV->hasInitializer()) {
ELFSym ExternalSym(GV);
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
ExternalSym.SetType(ELFSym::STT_NOTYPE);
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
SymbolList.push_back(ExternalSym);
return;
}
unsigned Flags = S->getFlags();
unsigned SectionType = ELFSection::SHT_PROGBITS;
unsigned SHdrFlags = ELFSection::SHF_ALLOC;
const TargetData *TD = TM.getTargetData();
unsigned Align = TD->getPreferredAlignment(GV);
Constant *CV = GV->getInitializer();
unsigned Size = TD->getTypeAllocSize(CV->getType());
// If this global has a zero initializer, go to .bss or common section.
if (CV->isNullValue() || isa<UndefValue>(CV)) {
// If this global is part of the common block, add it now. Variables are
// part of the common block if they are zero initialized and allowed to be
// merged with other symbols.
if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
GV->hasCommonLinkage()) {
ELFSym CommonSym(GV);
// Value for common symbols is the alignment required.
CommonSym.Value = Align;
CommonSym.Size = Size;
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
SymbolList.push_back(CommonSym);
getSection(S->getName(), ELFSection::SHT_NOBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
return;
}
DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
// Otherwise, this symbol is part of the .bss section. Emit it now.
// Handle alignment. Ensure section is aligned at least as much as required
// by this symbol.
ELFSection &BSSSection = getBSSSection();
BSSSection.Align = std::max(BSSSection.Align, Align);
// Within the section, emit enough virtual padding to get us to an alignment
// boundary.
if (Align)
BSSSection.Size = (BSSSection.Size + Align - 1) & ~(Align-1);
ELFSym BSSSym(GV);
BSSSym.Value = BSSSection.Size;
BSSSym.Size = Size;
BSSSym.SetType(ELFSym::STT_OBJECT);
switch (GV->getLinkage()) {
default: // weak/linkonce/common handled above
assert(0 && "Unexpected linkage type!");
case GlobalValue::AppendingLinkage: // FIXME: This should be improved!
case GlobalValue::ExternalLinkage:
BSSSym.SetBind(ELFSym::STB_GLOBAL);
break;
case GlobalValue::InternalLinkage:
BSSSym.SetBind(ELFSym::STB_LOCAL);
break;
}
// Set the idx of the .bss section
BSSSym.SectionIdx = BSSSection.SectionIdx;
if (!GV->hasPrivateLinkage())
SymbolList.push_back(BSSSym);
// Reserve space in the .bss section for this symbol.
BSSSection.Size += Size;
return;
// If this is an external global, the symbol does not have a section.
if (!GV->hasInitializer()) {
Sym.SectionIdx = ELFSection::SHN_UNDEF;
return getNullSection();
}
/// Emit the Global symbol to the right ELF section
ELFSym GblSym(GV);
GblSym.Size = Size;
GblSym.SetType(ELFSym::STT_OBJECT);
GblSym.SetBind(ELFSym::STB_GLOBAL);
unsigned Flags = S->getFlags();
unsigned SectType = ELFSection::SHT_PROGBITS;
unsigned SHdrFlags = ELFSection::SHF_ALLOC;
if (Flags & SectionFlags::Code)
SHdrFlags |= ELFSection::SHF_EXECINSTR;
if (Flags & SectionFlags::Writeable)
@ -246,29 +182,78 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
if (Flags & SectionFlags::Strings)
SHdrFlags |= ELFSection::SHF_STRINGS;
// Remove tab from section name prefix
std::string SectionName(S->getName());
size_t Pos = SectionName.find("\t");
if (Pos != std::string::npos)
SectionName.erase(Pos, 1);
// If this global has a zero initializer, go to .bss or common section.
// Variables are part of the common block if they are zero initialized
// and allowed to be merged with other symbols.
if (CV->isNullValue() || isa<UndefValue>(CV)) {
SectionType = ELFSection::SHT_NOBITS;
ELFSection &ElfS = getSection(S->getName(), SectionType, SHdrFlags);
if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
GV->hasCommonLinkage()) {
Sym.SectionIdx = ELFSection::SHN_COMMON;
Sym.IsCommon = true;
return ElfS;
}
Sym.IsBss = true;
Sym.SectionIdx = ElfS.SectionIdx;
if (Align) ElfS.Size = (ElfS.Size + Align-1) & ~(Align-1);
ElfS.Align = std::max(ElfS.Align, Align);
return ElfS;
}
// The section alignment should be bound to the element with
// the largest alignment
ELFSection &ElfS = getSection(SectionName, SectType, SHdrFlags);
GblSym.SectionIdx = ElfS.SectionIdx;
if (Align > ElfS.Align)
ElfS.Align = Align;
Sym.IsConstant = true;
ELFSection &ElfS = getSection(S->getName(), SectionType, SHdrFlags);
Sym.SectionIdx = ElfS.SectionIdx;
ElfS.Align = std::max(ElfS.Align, Align);
return ElfS;
}
// S.Value should contain the symbol index inside the section,
// and all symbols should start on their required alignment boundary
GblSym.Value = (ElfS.size() + (Align-1)) & (-Align);
ElfS.emitAlignment(Align);
// Emit the constant symbol to its section
EmitGlobalConstant(CV, ElfS);
void ELFWriter::EmitFunctionDeclaration(const Function *F) {
ELFSym GblSym(F);
GblSym.setBind(ELFSym::STB_GLOBAL);
GblSym.setType(ELFSym::STT_NOTYPE);
GblSym.SectionIdx = ELFSection::SHN_UNDEF;
SymbolList.push_back(GblSym);
}
void ELFWriter::EmitGlobalVar(const GlobalVariable *GV) {
unsigned SymBind = getGlobalELFLinkage(GV);
ELFSym GblSym(GV);
GblSym.setBind(SymBind);
if (GV->hasInitializer())
GblSym.setType(ELFSym::STT_OBJECT);
else
GblSym.setType(ELFSym::STT_NOTYPE);
ELFSection &GblSection = getGlobalSymELFSection(GV, GblSym);
const TargetData *TD = TM.getTargetData();
unsigned Align = TD->getPreferredAlignment(GV);
unsigned Size = TD->getTypeAllocSize(GV->getInitializer()->getType());
GblSym.Size = Size;
if (GblSym.IsCommon) {
GblSym.Value = Align;
} else if (GblSym.IsBss) {
GblSym.Value = GblSection.Size;
GblSection.Size += Size;
} else if (GblSym.IsConstant){
// GblSym.Value should contain the symbol index inside the section,
// and all symbols should start on their required alignment boundary
GblSym.Value = (GblSection.size() + (Align-1)) & (-Align);
GblSection.emitAlignment(Align);
EmitGlobalConstant(GV->getInitializer(), GblSection);
}
// Local symbols should come first on the symbol table.
if (!GV->hasPrivateLinkage()) {
if (SymBind == ELFSym::STB_LOCAL)
SymbolList.push_front(GblSym);
else
SymbolList.push_back(GblSym);
}
}
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
ELFSection &GblS) {
@ -306,6 +291,7 @@ void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
std::string GblStr = CVA->getAsString();
GblStr.resize(GblStr.size()-1);
GblS.emitString(GblStr);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
@ -370,8 +356,31 @@ bool ELFWriter::doFinalization(Module &M) {
// Build and emit data, bss and "common" sections.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
I != E; ++I) {
EmitGlobalVar(I);
GblSymLookup[I] = 0;
}
// Emit all pending globals
// TODO: this should be done only for referenced symbols
for (SetVector<GlobalValue*>::const_iterator I = PendingGlobals.begin(),
E = PendingGlobals.end(); I != E; ++I) {
// No need to emit the symbol again
if (GblSymLookup.find(*I) != GblSymLookup.end())
continue;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) {
EmitGlobalVar(GV);
} else if (Function *F = dyn_cast<Function>(*I)) {
// If function is not in GblSymLookup, it doesn't have a body,
// so emit the symbol as a function declaration (no section associated)
EmitFunctionDeclaration(F);
} else {
assert("unknown howto handle pending global");
}
GblSymLookup[*I] = 0;
}
// Emit non-executable stack note
if (TAI->getNonexecutableStackDirective())
@ -400,6 +409,67 @@ bool ELFWriter::doFinalization(Module &M) {
/// EmitRelocations - Emit relocations
void ELFWriter::EmitRelocations() {
// Create Relocation sections for each section which needs it.
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
// This section does not have relocations
if (!I->hasRelocations()) continue;
// Get the relocation section for section 'I'
bool HasRelA = TEW->hasRelocationAddend();
ELFSection &RelSec = getRelocSection(I->getName(), HasRelA);
// 'Link' - Section hdr idx of the associated symbol table
// 'Info' - Section hdr idx of the section to which the relocation applies
ELFSection &SymTab = getSymbolTableSection();
RelSec.Link = SymTab.SectionIdx;
RelSec.Info = I->SectionIdx;
RelSec.EntSize = TEW->getRelocationEntrySize();
// Get the relocations from Section
std::vector<MachineRelocation> Relos = I->getRelocations();
for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
MRE = Relos.end(); MRI != MRE; ++MRI) {
MachineRelocation &MR = *MRI;
// Offset from the start of the section containing the symbol
unsigned Offset = MR.getMachineCodeOffset();
// Symbol index in the symbol table
unsigned SymIdx = 0;
// Target specific ELF relocation type
unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
// Constant addend used to compute the value to be stored
// into the relocatable field
int64_t Addend = TEW->getAddendForRelTy(RelType);
// There are several machine relocations types, and each one of
// them needs a different approach to retrieve the symbol table index.
if (MR.isGlobalValue()) {
const GlobalValue *G = MR.getGlobalValue();
SymIdx = GblSymLookup[G];
} else {
assert(0 && "dunno how to handle other relocation types");
}
// Get the relocation entry and emit to the relocation section
ELFRelocation Rel(Offset, SymIdx, RelType, HasRelA, Addend);
EmitRelocation(RelSec, Rel, HasRelA);
}
}
}
/// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
bool HasRelA) {
RelSec.emitWord(Rel.getOffset());
RelSec.emitWord(Rel.getInfo(is64Bit));
if (HasRelA)
RelSec.emitWord(Rel.getAddend());
}
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
@ -451,25 +521,27 @@ void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (SymbolList.size() == 1) return; // Only the null entry.
if (!SymbolList.size()) return; // Empty symbol table.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
ELFSection &StrTab = getStringTableSection();
// Set the zero'th symbol to a null byte, as required.
StrTab.emitByte(0);
// Walk on the symbol list and write symbol names into the
// string table.
unsigned Index = 1;
for (unsigned i = 1, e = SymbolList.size(); i != e; ++i) {
for (std::list<ELFSym>::iterator I = SymbolList.begin(),
E = SymbolList.end(); I != E; ++I) {
// Use the name mangler to uniquify the LLVM symbol.
std::string Name = Mang->getValueName(SymbolList[i].GV);
std::string Name = Mang->getValueName(I->GV);
if (Name.empty()) {
SymbolList[i].NameIdx = 0;
I->NameIdx = 0;
} else {
SymbolList[i].NameIdx = Index;
I->NameIdx = Index;
StrTab.emitString(Name);
// Keep track of the number of bytes emitted to this section.
@ -482,16 +554,33 @@ void ELFWriter::EmitSymbolTable() {
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
ELFSection &SymTab = getSymbolTableSection();
SymTab.Align = TEW->getSymTabAlignment();
SymTab.Align = TEW->getPrefELFAlignment();
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
// Size of each symtab entry.
SymTab.EntSize = TEW->getSymTabEntrySize();
for (unsigned i = 0, e = SymbolList.size(); i != e; ++i)
EmitSymbol(SymTab, SymbolList[i]);
// The first entry in the symtab is the null symbol
ELFSym NullSym = ELFSym(0);
EmitSymbol(SymTab, NullSym);
// Emit all the symbols to the symbol table. Skip the null
// symbol, cause it's emitted already
Index = 1;
for (std::list<ELFSym>::iterator I = SymbolList.begin(),
E = SymbolList.end(); I != E; ++I, ++Index) {
// Keep track of the first non-local symbol
if (I->getBind() == ELFSym::STB_LOCAL)
FirstNonLocalSymbol++;
// Emit symbol to the symbol table
EmitSymbol(SymTab, *I);
// Record the symbol table index for each global value
GblSymLookup[I->GV] = Index;
}
SymTab.Info = FirstNonLocalSymbol;
SymTab.Size = SymTab.size();
}
@ -559,7 +648,7 @@ void ELFWriter::OutputSectionsAndSectionTable() {
}
// Align Section Header.
unsigned TableAlign = is64Bit ? 8 : 4;
unsigned TableAlign = TEW->getPrefELFAlignment();
FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
// Now that we know where all of the sections will be emitted, set the e_shnum

View File

@ -16,7 +16,7 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/OutputBuffer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetELFWriterInfo.h"
#include "ELF.h"
@ -89,7 +89,7 @@ namespace llvm {
bool doFinalization(Module &M);
private:
// Blob containing the Elf header
/// Blob containing the Elf header
BinaryObject ElfHdr;
/// SectionList - This is the list of sections that we have emitted to the
@ -102,14 +102,35 @@ namespace llvm {
/// the SectionList.
std::map<std::string, ELFSection*> SectionLookup;
/// GblSymLookup - This is a mapping from global value to a symbol index
/// in the symbol table. This is useful since relocations symbol references
/// must be quickly mapped to a symbol table index
std::map<const GlobalValue*, uint32_t> GblSymLookup;
/// SymbolList - This is the list of symbols emitted to the symbol table
/// Local symbols go to the front and Globals to the back.
std::list<ELFSym> SymbolList;
/// PendingGlobals - List of externally defined symbols that we have been
/// asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolList.
SetVector<GlobalValue*> PendingGlobals;
/// getSection - Return the section with the specified name, creating a new
/// section if one does not already exist.
ELFSection &getSection(const std::string &Name, unsigned Type,
ELFSection &getSection(const std::string &Name, unsigned Type,
unsigned Flags = 0, unsigned Align = 0) {
ELFSection *&SN = SectionLookup[Name];
if (SN) return *SN;
SectionList.push_back(ELFSection(Name, isLittleEndian, is64Bit));
// Remove tab from section name prefix. This is necessary becase TAI
// sometimes return a section name prefixed with a "\t" char.
std::string SectionName(Name);
size_t Pos = SectionName.find("\t");
if (Pos != std::string::npos)
SectionName.erase(Pos, 1);
SectionList.push_back(ELFSection(SectionName, isLittleEndian, is64Bit));
SN = &SectionList.back();
SN->SectionIdx = NumSections++;
SN->Type = Type;
@ -119,11 +140,25 @@ namespace llvm {
return *SN;
}
/// TODO: support mangled names here to emit the right .text section
/// for c++ object files.
ELFSection &getTextSection() {
return getSection(".text", ELFSection::SHT_PROGBITS,
ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC);
}
/// Return the relocation section of section 'S'. 'RelA' is true
/// if the relocation section contains entries with addends.
ELFSection &getRelocSection(std::string SName, bool RelA) {
std::string RelSName(".rel");
unsigned SHdrTy = RelA ? ELFSection::SHT_RELA : ELFSection::SHT_REL;
if (RelA) RelSName.append("a");
RelSName.append(SName);
return getSection(RelSName, SHdrTy, 0, TEW->getPrefELFAlignment());
}
ELFSection &getNonExecStackSection() {
return getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
}
@ -146,15 +181,9 @@ namespace llvm {
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
}
/// SymbolList - This is the list of symbols we have emitted to the file.
/// This actually gets rearranged before emission to the file (to put the
/// local symbols first in the list).
std::vector<ELFSym> SymbolList;
/// PendingGlobals - List of externally defined symbols that we have been
/// asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolList.
SetVector<GlobalValue*> PendingGlobals;
ELFSection &getNullSection() {
return getSection("", ELFSection::SHT_NULL, 0);
}
// As we complete the ELF file, we need to update fields in the ELF header
// (e.g. the location of the section table). These members keep track of
@ -165,11 +194,15 @@ namespace llvm {
unsigned ELFHdr_e_shnum_Offset; // e_shnum in ELF header.
private:
void EmitGlobal(GlobalVariable *GV);
void EmitFunctionDeclaration(const Function *F);
void EmitGlobalVar(const GlobalVariable *GV);
void EmitGlobalConstant(const Constant *C, ELFSection &GblS);
void EmitGlobalConstantStruct(const ConstantStruct *CVS,
ELFSection &GblS);
unsigned getGlobalELFLinkage(const GlobalVariable *GV);
ELFSection &getGlobalSymELFSection(const GlobalVariable *GV, ELFSym &Sym);
void EmitRelocations();
void EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel, bool HasRelA);
void EmitSectionHeader(BinaryObject &SHdrTab, const ELFSection &SHdr);
void EmitSectionTableStringTable();
void EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym);

View File

@ -12,11 +12,17 @@
//===----------------------------------------------------------------------===//
#include "X86ELFWriterInfo.h"
#include "X86Relocations.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Implementation of the X86ELFWriterInfo class
//===----------------------------------------------------------------------===//
X86ELFWriterInfo::X86ELFWriterInfo(TargetMachine &TM)
: TargetELFWriterInfo(TM) {
bool is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
@ -25,6 +31,34 @@ X86ELFWriterInfo::X86ELFWriterInfo(TargetMachine &TM)
X86ELFWriterInfo::~X86ELFWriterInfo() {}
unsigned X86ELFWriterInfo::getRelocationType(unsigned MachineRelTy) const {
if (is64Bit) {
switch(MachineRelTy) {
case X86::reloc_pcrel_word:
return R_X86_64_PC32;
case X86::reloc_absolute_word:
return R_X86_64_32;
case X86::reloc_absolute_dword:
return R_X86_64_64;
case X86::reloc_picrel_word:
default:
assert(0 && "unknown relocation type");
}
} else {
switch(MachineRelTy) {
case X86::reloc_pcrel_word:
return R_386_PC32;
case X86::reloc_absolute_word:
return R_386_32;
case X86::reloc_absolute_dword:
case X86::reloc_picrel_word:
default:
assert(0 && "unknown relocation type");
}
}
return 0;
}
unsigned X86ELFWriterInfo::getFunctionAlignment(const Function *F) const {
unsigned FnAlign = 4;
@ -36,3 +70,15 @@ unsigned X86ELFWriterInfo::getFunctionAlignment(const Function *F) const {
return (1 << FnAlign);
}
long int X86ELFWriterInfo::getAddendForRelTy(unsigned RelTy) const {
if (is64Bit) {
switch(RelTy) {
case R_X86_64_PC32: return -4;
break;
default:
assert(0 && "unknown x86 relocation type");
}
}
return 0;
}

View File

@ -19,11 +19,43 @@
namespace llvm {
class X86ELFWriterInfo : public TargetELFWriterInfo {
// ELF Relocation types for X86
enum X86RelocationType {
R_386_NONE = 0,
R_386_32 = 1,
R_386_PC32 = 2
};
// ELF Relocation types for X86_64
enum X86_64RelocationType {
R_X86_64_NONE = 0,
R_X86_64_64 = 1,
R_X86_64_PC32 = 2,
R_X86_64_32 = 10,
R_X86_64_32S = 11,
R_X86_64_PC64 = 24
};
public:
X86ELFWriterInfo(TargetMachine &TM);
virtual ~X86ELFWriterInfo();
/// getFunctionAlignment - Returns the alignment for function 'F', targets
/// with different alignment constraints should overload this method
virtual unsigned getFunctionAlignment(const Function *F) const;
/// getRelocationType - Returns the target specific ELF Relocation type.
/// 'MachineRelTy' contains the object code independent relocation type
virtual unsigned getRelocationType(unsigned MachineRelTy) const;
/// hasRelocationAddend - True if the target uses an addend in the
/// ELF relocation entry.
virtual bool hasRelocationAddend() const { return is64Bit ? true : false; }
/// getAddendForRelTy - Gets the addend value for an ELF relocation entry
/// based on the target relocation type
virtual long int getAddendForRelTy(unsigned RelTy) const;
};
} // end llvm namespace