tsan: optimize sync clock memory consumption

This change implements 2 optimizations of sync clocks that reduce memory consumption:

Use previously unused first level block space to store clock elements.
Currently a clock for 100 threads consumes 3 512-byte blocks:

2 64-bit second level blocks to store clock elements
+1 32-bit first level block to store indices to second level blocks
Only 8 bytes of the first level block are actually used.
With this change such clock consumes only 2 blocks.

Share similar clocks differing only by a single clock entry for the current thread.
When a thread does several release operations on fresh sync objects without intervening
acquire operations in between (e.g. initialization of several fields in ctor),
the resulting clocks differ only by a single entry for the current thread.
This change reuses a single clock for such release operations. The current thread time
(which is different for different clocks) is stored in dirty entries.

We are experiencing issues with a large program that eats all 64M clock blocks
(32GB of non-flushable memory) and crashes with dense allocator overflow.
Max number of threads in the program is ~170 which is currently quite unfortunate
(consume 4 blocks per clock). Currently it crashes after consuming 60+ GB of memory.
The first optimization brings clock block consumption down to ~40M and
allows the program to work. The second optimization further reduces block consumption
to "modest" 16M blocks (~8GB of RAM) and reduces overall RAM consumption to ~30GB.

Measurements on another real world C++ RPC benchmark show RSS reduction
from 3.491G to 3.186G and a modest speedup of ~5%.

Go parallel client/server HTTP benchmark:
https://github.com/golang/benchmarks/blob/master/http/http.go
shows RSS reduction from 320MB to 240MB and a few percent speedup.

Reviewed in https://reviews.llvm.org/D35323

llvm-svn: 308018
This commit is contained in:
Dmitry Vyukov 2017-07-14 11:30:06 +00:00
parent 0e03935182
commit 9f2c6207d5
4 changed files with 512 additions and 197 deletions

View File

@ -61,20 +61,13 @@
// an exclusive lock; ThreadClock's are private to respective threads and so // an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection. // do not need any protection.
// //
// Description of ThreadClock state:
// clk_ - fixed size vector clock.
// nclk_ - effective size of the vector clock (the rest is zeros).
// tid_ - index of the thread associated with he clock ("current thread").
// last_acquire_ - current thread time when it acquired something from
// other threads.
//
// Description of SyncClock state: // Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp, // clk_ - variable size vector clock, low kClkBits hold timestamp,
// the remaining bits hold "acquired" flag (the actual value is thread's // the remaining bits hold "acquired" flag (the actual value is thread's
// reused counter); // reused counter);
// if acquried == thr->reused_, then the respective thread has already // if acquried == thr->reused_, then the respective thread has already
// acquired this clock (except possibly dirty_tids_). // acquired this clock (except possibly for dirty elements).
// dirty_tids_ - holds up to two indeces in the vector clock that other threads // dirty_ - holds up to two indeces in the vector clock that other threads
// need to acquire regardless of "acquired" flag value; // need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of // release_store_tid_ - denotes that the clock state is a result of
// release-store operation by the thread with release_store_tid_ index. // release-store operation by the thread with release_store_tid_ index.
@ -90,21 +83,51 @@
namespace __tsan { namespace __tsan {
static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
}
// Drop reference to the first level block idx.
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
ClockBlock *cb = ctx->clock_alloc.Map(idx);
atomic_uint32_t *ref = ref_ptr(cb);
u32 v = atomic_load(ref, memory_order_acquire);
for (;;) {
CHECK_GT(v, 0);
if (v == 1)
break;
if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
return;
}
// First level block owns second level blocks, so them as well.
for (uptr i = 0; i < blocks; i++)
ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
ctx->clock_alloc.Free(c, idx);
}
ThreadClock::ThreadClock(unsigned tid, unsigned reused) ThreadClock::ThreadClock(unsigned tid, unsigned reused)
: tid_(tid) : tid_(tid)
, reused_(reused + 1) { // 0 has special meaning , reused_(reused + 1) // 0 has special meaning
, cached_idx_()
, cached_size_()
, cached_blocks_() {
CHECK_LT(tid, kMaxTidInClock); CHECK_LT(tid, kMaxTidInClock);
CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits); CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
nclk_ = tid_ + 1; nclk_ = tid_ + 1;
last_acquire_ = 0; last_acquire_ = 0;
internal_memset(clk_, 0, sizeof(clk_)); internal_memset(clk_, 0, sizeof(clk_));
clk_[tid_].reused = reused_;
} }
void ThreadClock::ResetCached(ClockCache *c) { void ThreadClock::ResetCached(ClockCache *c) {
if (cached_idx_) {
UnrefClockBlock(c, cached_idx_, cached_blocks_);
cached_idx_ = 0;
cached_size_ = 0;
cached_blocks_ = 0;
}
} }
void ThreadClock::acquire(ClockCache *c, const SyncClock *src) { void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
DCHECK_LE(nclk_, kMaxTid); DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(src->size_, kMaxTid); DCHECK_LE(src->size_, kMaxTid);
CPP_STAT_INC(StatClockAcquire); CPP_STAT_INC(StatClockAcquire);
@ -116,50 +139,46 @@ void ThreadClock::acquire(ClockCache *c, const SyncClock *src) {
return; return;
} }
// Check if we've already acquired src after the last release operation on src
bool acquired = false; bool acquired = false;
if (nclk > tid_) {
if (src->elem(tid_).reused == reused_) {
for (unsigned i = 0; i < kDirtyTids; i++) { for (unsigned i = 0; i < kDirtyTids; i++) {
unsigned tid = src->dirty_tids_[i]; SyncClock::Dirty dirty = src->dirty_[i];
unsigned tid = dirty.tid;
if (tid != kInvalidTid) { if (tid != kInvalidTid) {
u64 epoch = src->elem(tid).epoch; if (clk_[tid] < dirty.epoch) {
if (clk_[tid].epoch < epoch) { clk_[tid] = dirty.epoch;
clk_[tid].epoch = epoch;
acquired = true; acquired = true;
} }
} }
} }
if (acquired) {
CPP_STAT_INC(StatClockAcquiredSomething);
last_acquire_ = clk_[tid_].epoch;
}
return;
}
}
// Check if we've already acquired src after the last release operation on src
if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
// O(N) acquire. // O(N) acquire.
CPP_STAT_INC(StatClockAcquireFull); CPP_STAT_INC(StatClockAcquireFull);
nclk_ = max(nclk_, nclk); nclk_ = max(nclk_, nclk);
for (uptr i = 0; i < nclk; i++) { u64 *dst_pos = &clk_[0];
u64 epoch = src->elem(i).epoch; for (ClockElem &src_elem : *src) {
if (clk_[i].epoch < epoch) { u64 epoch = src_elem.epoch;
clk_[i].epoch = epoch; if (*dst_pos < epoch) {
*dst_pos = epoch;
acquired = true; acquired = true;
} }
dst_pos++;
} }
// Remember that this thread has acquired this clock. // Remember that this thread has acquired this clock.
if (nclk > tid_) if (nclk > tid_)
src->elem(tid_).reused = reused_; src->elem(tid_).reused = reused_;
}
if (acquired) { if (acquired) {
CPP_STAT_INC(StatClockAcquiredSomething); CPP_STAT_INC(StatClockAcquiredSomething);
last_acquire_ = clk_[tid_].epoch; last_acquire_ = clk_[tid_];
ResetCached(c);
} }
} }
void ThreadClock::release(ClockCache *c, SyncClock *dst) const { void ThreadClock::release(ClockCache *c, SyncClock *dst) {
DCHECK_LE(nclk_, kMaxTid); DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid); DCHECK_LE(dst->size_, kMaxTid);
@ -179,7 +198,7 @@ void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
// since the last release on dst. If so, we need to update // since the last release on dst. If so, we need to update
// only dst->elem(tid_). // only dst->elem(tid_).
if (dst->elem(tid_).epoch > last_acquire_) { if (dst->elem(tid_).epoch > last_acquire_) {
UpdateCurrentThread(dst); UpdateCurrentThread(c, dst);
if (dst->release_store_tid_ != tid_ || if (dst->release_store_tid_ != tid_ ||
dst->release_store_reused_ != reused_) dst->release_store_reused_ != reused_)
dst->release_store_tid_ = kInvalidTid; dst->release_store_tid_ = kInvalidTid;
@ -188,23 +207,24 @@ void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
// O(N) release. // O(N) release.
CPP_STAT_INC(StatClockReleaseFull); CPP_STAT_INC(StatClockReleaseFull);
dst->Unshare(c);
// First, remember whether we've acquired dst. // First, remember whether we've acquired dst.
bool acquired = IsAlreadyAcquired(dst); bool acquired = IsAlreadyAcquired(dst);
if (acquired) if (acquired)
CPP_STAT_INC(StatClockReleaseAcquired); CPP_STAT_INC(StatClockReleaseAcquired);
// Update dst->clk_. // Update dst->clk_.
for (uptr i = 0; i < nclk_; i++) { dst->FlushDirty();
ClockElem &ce = dst->elem(i); uptr i = 0;
ce.epoch = max(ce.epoch, clk_[i].epoch); for (ClockElem &ce : *dst) {
ce.epoch = max(ce.epoch, clk_[i]);
ce.reused = 0; ce.reused = 0;
i++;
} }
// Clear 'acquired' flag in the remaining elements. // Clear 'acquired' flag in the remaining elements.
if (nclk_ < dst->size_) if (nclk_ < dst->size_)
CPP_STAT_INC(StatClockReleaseClearTail); CPP_STAT_INC(StatClockReleaseClearTail);
for (uptr i = nclk_; i < dst->size_; i++) for (uptr i = nclk_; i < dst->size_; i++)
dst->elem(i).reused = 0; dst->elem(i).reused = 0;
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
dst->release_store_tid_ = kInvalidTid; dst->release_store_tid_ = kInvalidTid;
dst->release_store_reused_ = 0; dst->release_store_reused_ = 0;
// If we've acquired dst, remember this fact, // If we've acquired dst, remember this fact,
@ -213,11 +233,37 @@ void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
dst->elem(tid_).reused = reused_; dst->elem(tid_).reused = reused_;
} }
void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) const { void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
DCHECK_LE(nclk_, kMaxTid); DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid); DCHECK_LE(dst->size_, kMaxTid);
CPP_STAT_INC(StatClockStore); CPP_STAT_INC(StatClockStore);
if (dst->size_ == 0 && cached_idx_ != 0) {
// Reuse the cached clock.
// Note: we could reuse/cache the cached clock in more cases:
// we could update the existing clock and cache it, or replace it with the
// currently cached clock and release the old one. And for a shared
// existing clock, we could replace it with the currently cached;
// or unshare, update and cache. But, for simplicity, we currnetly reuse
// cached clock only when the target clock is empty.
dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
dst->tab_idx_ = cached_idx_;
dst->size_ = cached_size_;
dst->blocks_ = cached_blocks_;
CHECK_EQ(dst->dirty_[0].tid, kInvalidTid);
// The cached clock is shared (immutable),
// so this is where we store the current clock.
dst->dirty_[0].tid = tid_;
dst->dirty_[0].epoch = clk_[tid_];
dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_;
// Rememeber that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_;
// Grab a reference.
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
return;
}
// Check if we need to resize dst. // Check if we need to resize dst.
if (dst->size_ < nclk_) if (dst->size_ < nclk_)
dst->Resize(c, nclk_); dst->Resize(c, nclk_);
@ -226,32 +272,41 @@ void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) const {
dst->release_store_reused_ == reused_ && dst->release_store_reused_ == reused_ &&
dst->elem(tid_).epoch > last_acquire_) { dst->elem(tid_).epoch > last_acquire_) {
CPP_STAT_INC(StatClockStoreFast); CPP_STAT_INC(StatClockStoreFast);
UpdateCurrentThread(dst); UpdateCurrentThread(c, dst);
return; return;
} }
// O(N) release-store. // O(N) release-store.
CPP_STAT_INC(StatClockStoreFull); CPP_STAT_INC(StatClockStoreFull);
for (uptr i = 0; i < nclk_; i++) { dst->Unshare(c);
ClockElem &ce = dst->elem(i); // Note: dst can be larger than this ThreadClock.
ce.epoch = clk_[i].epoch; // This is fine since clk_ beyond size is all zeros.
uptr i = 0;
for (ClockElem &ce : *dst) {
ce.epoch = clk_[i];
ce.reused = 0; ce.reused = 0;
i++;
} }
// Clear the tail of dst->clk_. for (uptr i = 0; i < kDirtyTids; i++)
if (nclk_ < dst->size_) { dst->dirty_[i].tid = kInvalidTid;
for (uptr i = nclk_; i < dst->size_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = 0;
ce.reused = 0;
}
CPP_STAT_INC(StatClockStoreTail);
}
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
dst->release_store_tid_ = tid_; dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_; dst->release_store_reused_ = reused_;
// Rememeber that we don't need to acquire it in future. // Rememeber that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_; dst->elem(tid_).reused = reused_;
// If the resulting clock is cachable, cache it for future release operations.
// The clock is always cachable if we released to an empty sync object.
if (cached_idx_ == 0 && dst->Cachable()) {
// Grab a reference to the ClockBlock.
atomic_uint32_t *ref = ref_ptr(dst->tab_);
if (atomic_load(ref, memory_order_acquire) == 1)
atomic_store_relaxed(ref, 2);
else
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
cached_idx_ = dst->tab_idx_;
cached_size_ = dst->size_;
cached_blocks_ = dst->blocks_;
}
} }
void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) { void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
@ -261,37 +316,36 @@ void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
} }
// Updates only single element related to the current thread in dst->clk_. // Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(SyncClock *dst) const { void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
// Update the threads time, but preserve 'acquired' flag. // Update the threads time, but preserve 'acquired' flag.
dst->elem(tid_).epoch = clk_[tid_].epoch;
for (unsigned i = 0; i < kDirtyTids; i++) { for (unsigned i = 0; i < kDirtyTids; i++) {
if (dst->dirty_tids_[i] == tid_) { SyncClock::Dirty *dirty = &dst->dirty_[i];
const unsigned tid = dirty->tid;
if (tid == tid_ || tid == kInvalidTid) {
CPP_STAT_INC(StatClockReleaseFast); CPP_STAT_INC(StatClockReleaseFast);
return; dirty->tid = tid_;
} dirty->epoch = clk_[tid_];
if (dst->dirty_tids_[i] == kInvalidTid) {
CPP_STAT_INC(StatClockReleaseFast);
dst->dirty_tids_[i] = tid_;
return; return;
} }
} }
// Reset all 'acquired' flags, O(N). // Reset all 'acquired' flags, O(N).
// We are going to touch dst elements, so we need to unshare it.
dst->Unshare(c);
CPP_STAT_INC(StatClockReleaseSlow); CPP_STAT_INC(StatClockReleaseSlow);
dst->elem(tid_).epoch = clk_[tid_];
for (uptr i = 0; i < dst->size_; i++) for (uptr i = 0; i < dst->size_; i++)
dst->elem(i).reused = 0; dst->elem(i).reused = 0;
for (unsigned i = 0; i < kDirtyTids; i++) dst->FlushDirty();
dst->dirty_tids_[i] = kInvalidTid;
} }
// Checks whether the current threads has already acquired src. // Checks whether the current thread has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const { bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
if (src->elem(tid_).reused != reused_) if (src->elem(tid_).reused != reused_)
return false; return false;
for (unsigned i = 0; i < kDirtyTids; i++) { for (unsigned i = 0; i < kDirtyTids; i++) {
unsigned tid = src->dirty_tids_[i]; SyncClock::Dirty dirty = src->dirty_[i];
if (tid != kInvalidTid) { if (dirty.tid != kInvalidTid) {
if (clk_[tid].epoch < src->elem(tid).epoch) if (clk_[dirty.tid] < dirty.epoch)
return false; return false;
} }
} }
@ -302,22 +356,19 @@ bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
// This function is called only from weird places like AcquireGlobal. // This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) { void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
DCHECK_LT(tid, kMaxTid); DCHECK_LT(tid, kMaxTid);
DCHECK_GE(v, clk_[tid].epoch); DCHECK_GE(v, clk_[tid]);
clk_[tid].epoch = v; clk_[tid] = v;
if (nclk_ <= tid) if (nclk_ <= tid)
nclk_ = tid + 1; nclk_ = tid + 1;
last_acquire_ = clk_[tid_].epoch; last_acquire_ = clk_[tid_];
ResetCached(c);
} }
void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) { void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("clock=["); printf("clock=[");
for (uptr i = 0; i < nclk_; i++) for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i].epoch); printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
printf("] reused=["); printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i].reused);
printf("] tid=%u/%u last_acq=%llu",
tid_, reused_, last_acquire_);
} }
SyncClock::SyncClock() { SyncClock::SyncClock() {
@ -327,22 +378,14 @@ SyncClock::SyncClock() {
SyncClock::~SyncClock() { SyncClock::~SyncClock() {
// Reset must be called before dtor. // Reset must be called before dtor.
CHECK_EQ(size_, 0); CHECK_EQ(size_, 0);
CHECK_EQ(blocks_, 0);
CHECK_EQ(tab_, 0); CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0); CHECK_EQ(tab_idx_, 0);
} }
void SyncClock::Reset(ClockCache *c) { void SyncClock::Reset(ClockCache *c) {
if (size_ == 0) { if (size_)
// nothing UnrefClockBlock(c, tab_idx_, blocks_);
} else if (size_ <= ClockBlock::kClockCount) {
// One-level table.
ctx->clock_alloc.Free(c, tab_idx_);
} else {
// Two-level table.
for (uptr i = 0; i < size_; i += ClockBlock::kClockCount)
ctx->clock_alloc.Free(c, tab_->table[i / ClockBlock::kClockCount]);
ctx->clock_alloc.Free(c, tab_idx_);
}
ResetImpl(); ResetImpl();
} }
@ -350,66 +393,171 @@ void SyncClock::ResetImpl() {
tab_ = 0; tab_ = 0;
tab_idx_ = 0; tab_idx_ = 0;
size_ = 0; size_ = 0;
blocks_ = 0;
release_store_tid_ = kInvalidTid; release_store_tid_ = kInvalidTid;
release_store_reused_ = 0; release_store_reused_ = 0;
for (uptr i = 0; i < kDirtyTids; i++) for (uptr i = 0; i < kDirtyTids; i++)
dirty_tids_[i] = kInvalidTid; dirty_[i].tid = kInvalidTid;
} }
void SyncClock::Resize(ClockCache *c, uptr nclk) { void SyncClock::Resize(ClockCache *c, uptr nclk) {
CPP_STAT_INC(StatClockReleaseResize); CPP_STAT_INC(StatClockReleaseResize);
if (RoundUpTo(nclk, ClockBlock::kClockCount) <= Unshare(c);
RoundUpTo(size_, ClockBlock::kClockCount)) { if (nclk <= capacity()) {
// Growing within the same block.
// Memory is already allocated, just increase the size. // Memory is already allocated, just increase the size.
size_ = nclk; size_ = nclk;
return; return;
} }
if (nclk <= ClockBlock::kClockCount) { if (size_ == 0) {
// Grow from 0 to one-level table. // Grow from 0 to one-level table.
CHECK_EQ(size_, 0); CHECK_EQ(size_, 0);
CHECK_EQ(blocks_, 0);
CHECK_EQ(tab_, 0); CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0); CHECK_EQ(tab_idx_, 0);
size_ = nclk;
tab_idx_ = ctx->clock_alloc.Alloc(c); tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_); tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_)); internal_memset(tab_, 0, sizeof(*tab_));
return; atomic_store_relaxed(ref_ptr(tab_), 1);
size_ = 1;
} else if (size_ > blocks_ * ClockBlock::kClockCount) {
u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
uptr top = size_ - blocks_ * ClockBlock::kClockCount;
CHECK_LT(top, ClockBlock::kClockCount);
const uptr move = top * sizeof(tab_->clock[0]);
internal_memcpy(&new_cb->clock[0], tab_->clock, move);
internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
internal_memset(tab_->clock, 0, move);
append_block(idx);
} }
// Growing two-level table. // At this point we have first level table allocated and all clock elements
if (size_ == 0) { // are evacuated from it to a second level block.
// Allocate first level table.
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
} else if (size_ <= ClockBlock::kClockCount) {
// Transform one-level table to two-level table.
u32 old = tab_idx_;
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
tab_->table[0] = old;
}
// At this point we have first level table allocated.
// Add second level tables as necessary. // Add second level tables as necessary.
for (uptr i = RoundUpTo(size_, ClockBlock::kClockCount); while (nclk > capacity()) {
i < nclk; i += ClockBlock::kClockCount) {
u32 idx = ctx->clock_alloc.Alloc(c); u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *cb = ctx->clock_alloc.Map(idx); ClockBlock *cb = ctx->clock_alloc.Map(idx);
internal_memset(cb, 0, sizeof(*cb)); internal_memset(cb, 0, sizeof(*cb));
CHECK_EQ(tab_->table[i/ClockBlock::kClockCount], 0); append_block(idx);
tab_->table[i/ClockBlock::kClockCount] = idx;
} }
size_ = nclk; size_ = nclk;
} }
ClockElem &SyncClock::elem(unsigned tid) const { // Flushes all dirty elements into the main clock array.
void SyncClock::FlushDirty() {
for (unsigned i = 0; i < kDirtyTids; i++) {
Dirty *dirty = &dirty_[i];
if (dirty->tid != kInvalidTid) {
CHECK_LT(dirty->tid, size_);
elem(dirty->tid).epoch = dirty->epoch;
dirty->tid = kInvalidTid;
}
}
}
bool SyncClock::IsShared() const {
if (size_ == 0)
return false;
atomic_uint32_t *ref = ref_ptr(tab_);
u32 v = atomic_load(ref, memory_order_acquire);
CHECK_GT(v, 0);
return v > 1;
}
// Unshares the current clock if it's shared.
// Shared clocks are immutable, so they need to be unshared before any updates.
// Note: this does not apply to dirty entries as they are not shared.
void SyncClock::Unshare(ClockCache *c) {
if (!IsShared())
return;
// First, copy current state into old.
SyncClock old;
old.tab_ = tab_;
old.tab_idx_ = tab_idx_;
old.size_ = size_;
old.blocks_ = blocks_;
old.release_store_tid_ = release_store_tid_;
old.release_store_reused_ = release_store_reused_;
for (unsigned i = 0; i < kDirtyTids; i++)
old.dirty_[i] = dirty_[i];
// Then, clear current object.
ResetImpl();
// Allocate brand new clock in the current object.
Resize(c, old.size_);
// Now copy state back into this object.
Iter old_iter(&old);
for (ClockElem &ce : *this) {
ce = *old_iter;
++old_iter;
}
release_store_tid_ = old.release_store_tid_;
release_store_reused_ = old.release_store_reused_;
for (unsigned i = 0; i < kDirtyTids; i++)
dirty_[i] = old.dirty_[i];
// Drop reference to old and delete if necessary.
old.Reset(c);
}
// Can we cache this clock for future release operations?
ALWAYS_INLINE bool SyncClock::Cachable() const {
if (size_ == 0)
return false;
for (unsigned i = 0; i < kDirtyTids; i++) {
if (dirty_[i].tid != kInvalidTid)
return false;
}
return atomic_load_relaxed(ref_ptr(tab_)) == 1;
}
// elem linearizes the two-level structure into linear array.
// Note: this is used only for one time accesses, vector operations use
// the iterator as it is much faster.
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
DCHECK_LT(tid, size_); DCHECK_LT(tid, size_);
if (size_ <= ClockBlock::kClockCount) const uptr block = tid / ClockBlock::kClockCount;
DCHECK_LE(block, blocks_);
tid %= ClockBlock::kClockCount;
if (block == blocks_)
return tab_->clock[tid]; return tab_->clock[tid];
u32 idx = tab_->table[tid / ClockBlock::kClockCount]; u32 idx = get_block(block);
ClockBlock *cb = ctx->clock_alloc.Map(idx); ClockBlock *cb = ctx->clock_alloc.Map(idx);
return cb->clock[tid % ClockBlock::kClockCount]; return cb->clock[tid];
}
ALWAYS_INLINE uptr SyncClock::capacity() const {
if (size_ == 0)
return 0;
uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
// How many clock elements we can fit into the first level block.
// +1 for ref counter.
uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
return blocks_ * ClockBlock::kClockCount + top;
}
ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
DCHECK(size_);
DCHECK_LT(bi, blocks_);
return tab_->table[ClockBlock::kBlockIdx - bi];
}
ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
uptr bi = blocks_++;
CHECK_EQ(get_block(bi), 0);
tab_->table[ClockBlock::kBlockIdx - bi] = idx;
}
// Used only by tests.
u64 SyncClock::get(unsigned tid) const {
for (unsigned i = 0; i < kDirtyTids; i++) {
Dirty dirty = dirty_[i];
if (dirty.tid == tid)
return dirty.epoch;
}
return elem(tid).epoch;
}
// Used only by Iter test.
u64 SyncClock::get_clean(unsigned tid) const {
return elem(tid).epoch;
} }
void SyncClock::DebugDump(int(*printf)(const char *s, ...)) { void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
@ -419,8 +567,32 @@ void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("] reused=["); printf("] reused=[");
for (uptr i = 0; i < size_; i++) for (uptr i = 0; i < size_; i++)
printf("%s%llu", i == 0 ? "" : ",", elem(i).reused); printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
printf("] release_store_tid=%d/%d dirty_tids=%d/%d", printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
release_store_tid_, release_store_reused_, release_store_tid_, release_store_reused_,
dirty_tids_[0], dirty_tids_[1]); dirty_[0].tid, dirty_[0].epoch,
dirty_[1].tid, dirty_[1].epoch);
}
void SyncClock::Iter::Next() {
// Finished with the current block, move on to the next one.
block_++;
if (block_ < parent_->blocks_) {
// Iterate over the next second level block.
u32 idx = parent_->get_block(block_);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
pos_ = &cb->clock[0];
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
ClockBlock::kClockCount);
return;
}
if (block_ == parent_->blocks_ &&
parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
// Iterate over elements in the first level block.
pos_ = &parent_->tab_->clock[0];
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
ClockBlock::kClockCount);
return;
}
parent_ = nullptr; // denotes end
} }
} // namespace __tsan } // namespace __tsan

View File

@ -18,25 +18,6 @@
namespace __tsan { namespace __tsan {
struct ClockElem {
u64 epoch : kClkBits;
u64 reused : 64 - kClkBits;
};
struct ClockBlock {
static const uptr kSize = 512;
static const uptr kTableSize = kSize / sizeof(u32);
static const uptr kClockCount = kSize / sizeof(ClockElem);
union {
u32 table[kTableSize];
ClockElem clock[kClockCount];
};
ClockBlock() {
}
};
typedef DenseSlabAlloc<ClockBlock, 1<<16, 1<<10> ClockAlloc; typedef DenseSlabAlloc<ClockBlock, 1<<16, 1<<10> ClockAlloc;
typedef DenseSlabAllocCache ClockCache; typedef DenseSlabAllocCache ClockCache;
@ -46,69 +27,117 @@ class SyncClock {
SyncClock(); SyncClock();
~SyncClock(); ~SyncClock();
uptr size() const { uptr size() const;
return size_;
}
u64 get(unsigned tid) const { // These are used only in tests.
return elem(tid).epoch; u64 get(unsigned tid) const;
} u64 get_clean(unsigned tid) const;
void Resize(ClockCache *c, uptr nclk); void Resize(ClockCache *c, uptr nclk);
void Reset(ClockCache *c); void Reset(ClockCache *c);
void DebugDump(int(*printf)(const char *s, ...)); void DebugDump(int(*printf)(const char *s, ...));
// Clock element iterator.
// Note: it iterates only over the table without regard to dirty entries.
class Iter {
public:
explicit Iter(SyncClock* parent);
Iter& operator++();
bool operator!=(const Iter& other);
ClockElem &operator*();
private: private:
friend struct ThreadClock; SyncClock *parent_;
// [pos_, end_) is the current continuous range of clock elements.
ClockElem *pos_;
ClockElem *end_;
int block_; // Current number of second level block.
NOINLINE void Next();
};
Iter begin();
Iter end();
private:
friend class ThreadClock;
friend class Iter;
static const uptr kDirtyTids = 2; static const uptr kDirtyTids = 2;
struct Dirty {
u64 epoch : kClkBits;
u64 tid : 64 - kClkBits; // kInvalidId if not active
};
unsigned release_store_tid_; unsigned release_store_tid_;
unsigned release_store_reused_; unsigned release_store_reused_;
unsigned dirty_tids_[kDirtyTids]; Dirty dirty_[kDirtyTids];
// tab_ contains indirect pointer to a 512b block using DenseSlabAlloc. // If size_ is 0, tab_ is nullptr.
// If size_ <= 64, then tab_ points to an array with 64 ClockElem's. // If size <= 64 (kClockCount), tab_ contains pointer to an array with
// Otherwise, tab_ points to an array with 128 u32 elements, // 64 ClockElem's (ClockBlock::clock).
// Otherwise, tab_ points to an array with up to 127 u32 elements,
// each pointing to the second-level 512b block with 64 ClockElem's. // each pointing to the second-level 512b block with 64 ClockElem's.
// Unused space in the first level ClockBlock is used to store additional
// clock elements.
// The last u32 element in the first level ClockBlock is always used as
// reference counter.
//
// See the following scheme for details.
// All memory blocks are 512 bytes (allocated from ClockAlloc).
// Clock (clk) elements are 64 bits.
// Idx and ref are 32 bits.
//
// tab_
// |
// \/
// +----------------------------------------------------+
// | clk128 | clk129 | ...unused... | idx1 | idx0 | ref |
// +----------------------------------------------------+
// | |
// | \/
// | +----------------+
// | | clk0 ... clk63 |
// | +----------------+
// \/
// +------------------+
// | clk64 ... clk127 |
// +------------------+
//
// Note: dirty entries, if active, always override what's stored in the clock.
ClockBlock *tab_; ClockBlock *tab_;
u32 tab_idx_; u32 tab_idx_;
u32 size_; u16 size_;
u16 blocks_; // Number of second level blocks.
void Unshare(ClockCache *c);
bool IsShared() const;
bool Cachable() const;
void ResetImpl(); void ResetImpl();
void FlushDirty();
uptr capacity() const;
u32 get_block(uptr bi) const;
void append_block(u32 idx);
ClockElem &elem(unsigned tid) const; ClockElem &elem(unsigned tid) const;
}; };
// The clock that lives in threads. // The clock that lives in threads.
struct ThreadClock { class ThreadClock {
public: public:
typedef DenseSlabAllocCache Cache; typedef DenseSlabAllocCache Cache;
explicit ThreadClock(unsigned tid, unsigned reused = 0); explicit ThreadClock(unsigned tid, unsigned reused = 0);
u64 get(unsigned tid) const { u64 get(unsigned tid) const;
DCHECK_LT(tid, kMaxTidInClock);
return clk_[tid].epoch;
}
void set(ClockCache *c, unsigned tid, u64 v); void set(ClockCache *c, unsigned tid, u64 v);
void set(u64 v);
void tick();
uptr size() const;
void set(u64 v) { void acquire(ClockCache *c, SyncClock *src);
DCHECK_GE(v, clk_[tid_].epoch); void release(ClockCache *c, SyncClock *dst);
clk_[tid_].epoch = v;
}
void tick() {
clk_[tid_].epoch++;
}
uptr size() const {
return nclk_;
}
void acquire(ClockCache *c, const SyncClock *src);
void release(ClockCache *c, SyncClock *dst) const;
void acq_rel(ClockCache *c, SyncClock *dst); void acq_rel(ClockCache *c, SyncClock *dst);
void ReleaseStore(ClockCache *c, SyncClock *dst) const; void ReleaseStore(ClockCache *c, SyncClock *dst);
void ResetCached(ClockCache *c); void ResetCached(ClockCache *c);
void DebugReset(); void DebugReset();
@ -116,16 +145,82 @@ struct ThreadClock {
private: private:
static const uptr kDirtyTids = SyncClock::kDirtyTids; static const uptr kDirtyTids = SyncClock::kDirtyTids;
// Index of the thread associated with he clock ("current thread").
const unsigned tid_; const unsigned tid_;
const unsigned reused_; const unsigned reused_; // tid_ reuse count.
// Current thread time when it acquired something from other threads.
u64 last_acquire_; u64 last_acquire_;
// Cached SyncClock (without dirty entries and release_store_tid_).
// We reuse it for subsequent store-release operations without intervening
// acquire operations. Since it is shared (and thus constant), clock value
// for the current thread is then stored in dirty entries in the SyncClock.
// We host a refernece to the table while it is cached here.
u32 cached_idx_;
u16 cached_size_;
u16 cached_blocks_;
// Number of active elements in the clk_ table (the rest is zeros).
uptr nclk_; uptr nclk_;
ClockElem clk_[kMaxTidInClock]; u64 clk_[kMaxTidInClock]; // Fixed size vector clock.
bool IsAlreadyAcquired(const SyncClock *src) const; bool IsAlreadyAcquired(const SyncClock *src) const;
void UpdateCurrentThread(SyncClock *dst) const; void UpdateCurrentThread(ClockCache *c, SyncClock *dst) const;
}; };
ALWAYS_INLINE u64 ThreadClock::get(unsigned tid) const {
DCHECK_LT(tid, kMaxTidInClock);
return clk_[tid];
}
ALWAYS_INLINE void ThreadClock::set(u64 v) {
DCHECK_GE(v, clk_[tid_]);
clk_[tid_] = v;
}
ALWAYS_INLINE void ThreadClock::tick() {
clk_[tid_]++;
}
ALWAYS_INLINE uptr ThreadClock::size() const {
return nclk_;
}
ALWAYS_INLINE SyncClock::Iter SyncClock::begin() {
return Iter(this);
}
ALWAYS_INLINE SyncClock::Iter SyncClock::end() {
return Iter(nullptr);
}
ALWAYS_INLINE uptr SyncClock::size() const {
return size_;
}
ALWAYS_INLINE SyncClock::Iter::Iter(SyncClock* parent)
: parent_(parent)
, pos_(nullptr)
, end_(nullptr)
, block_(-1) {
if (parent)
Next();
}
ALWAYS_INLINE SyncClock::Iter& SyncClock::Iter::operator++() {
pos_++;
if (UNLIKELY(pos_ >= end_))
Next();
return *this;
}
ALWAYS_INLINE bool SyncClock::Iter::operator!=(const SyncClock::Iter& other) {
return parent_ != other.parent_;
}
ALWAYS_INLINE ClockElem &SyncClock::Iter::operator*() {
return *pos_;
}
} // namespace __tsan } // namespace __tsan
#endif // TSAN_CLOCK_H #endif // TSAN_CLOCK_H

View File

@ -38,15 +38,40 @@
namespace __tsan { namespace __tsan {
const int kClkBits = 42;
const unsigned kMaxTidReuse = (1 << (64 - kClkBits)) - 1;
struct ClockElem {
u64 epoch : kClkBits;
u64 reused : 64 - kClkBits; // tid reuse count
};
struct ClockBlock {
static const uptr kSize = 512;
static const uptr kTableSize = kSize / sizeof(u32);
static const uptr kClockCount = kSize / sizeof(ClockElem);
static const uptr kRefIdx = kTableSize - 1;
static const uptr kBlockIdx = kTableSize - 2;
union {
u32 table[kTableSize];
ClockElem clock[kClockCount];
};
ClockBlock() {
}
};
const int kTidBits = 13; const int kTidBits = 13;
const unsigned kMaxTid = 1 << kTidBits; // Reduce kMaxTid by kClockCount because one slot in ClockBlock table is
// occupied by reference counter, so total number of elements we can store
// in SyncClock is kClockCount * (kTableSize - 1).
const unsigned kMaxTid = (1 << kTidBits) - ClockBlock::kClockCount;
#if !SANITIZER_GO #if !SANITIZER_GO
const unsigned kMaxTidInClock = kMaxTid * 2; // This includes msb 'freed' bit. const unsigned kMaxTidInClock = kMaxTid * 2; // This includes msb 'freed' bit.
#else #else
const unsigned kMaxTidInClock = kMaxTid; // Go does not track freed memory. const unsigned kMaxTidInClock = kMaxTid; // Go does not track freed memory.
#endif #endif
const int kClkBits = 42;
const unsigned kMaxTidReuse = (1 << (64 - kClkBits)) - 1;
const uptr kShadowStackSize = 64 * 1024; const uptr kShadowStackSize = 64 * 1024;
// Count of shadow values in a shadow cell. // Count of shadow values in a shadow cell.
@ -74,7 +99,7 @@ const bool kCollectHistory = false;
const bool kCollectHistory = true; const bool kCollectHistory = true;
#endif #endif
const unsigned kInvalidTid = (unsigned)-1; const u16 kInvalidTid = kMaxTid + 1;
// The following "build consistency" machinery ensures that all source files // The following "build consistency" machinery ensures that all source files
// are built in the same configuration. Inconsistent builds lead to // are built in the same configuration. Inconsistent builds lead to

View File

@ -53,6 +53,31 @@ TEST(Clock, ChunkedBasic) {
chunked.Reset(&cache); chunked.Reset(&cache);
} }
static const uptr interesting_sizes[] = {0, 1, 2, 30, 61, 62, 63, 64, 65, 66,
100, 124, 125, 126, 127, 128, 129, 130, 188, 189, 190, 191, 192, 193, 254,
255};
TEST(Clock, Iter) {
const uptr n = ARRAY_SIZE(interesting_sizes);
for (uptr fi = 0; fi < n; fi++) {
const uptr size = interesting_sizes[fi];
SyncClock sync;
ThreadClock vector(0);
for (uptr i = 0; i < size; i++)
vector.set(&cache, i, i + 1);
if (size != 0)
vector.release(&cache, &sync);
uptr i = 0;
for (ClockElem &ce : sync) {
ASSERT_LT(i, size);
ASSERT_EQ(sync.get_clean(i), ce.epoch);
i++;
}
ASSERT_EQ(i, size);
sync.Reset(&cache);
}
}
TEST(Clock, AcquireRelease) { TEST(Clock, AcquireRelease) {
ThreadClock vector1(100); ThreadClock vector1(100);
vector1.tick(); vector1.tick();
@ -216,13 +241,11 @@ TEST(Clock, Growth) {
TEST(Clock, Growth2) { TEST(Clock, Growth2) {
// Test clock growth for every pair of sizes: // Test clock growth for every pair of sizes:
const uptr sizes[] = {0, 1, 2, 30, 61, 62, 63, 64, 65, 66, 100, 124, 125, 126, const uptr n = ARRAY_SIZE(interesting_sizes);
127, 128, 129, 130, 188, 189, 190, 191, 192, 193, 254, 255};
const uptr n = sizeof(sizes) / sizeof(sizes[0]);
for (uptr fi = 0; fi < n; fi++) { for (uptr fi = 0; fi < n; fi++) {
for (uptr ti = fi + 1; ti < n; ti++) { for (uptr ti = fi + 1; ti < n; ti++) {
const uptr from = sizes[fi]; const uptr from = interesting_sizes[fi];
const uptr to = sizes[ti]; const uptr to = interesting_sizes[ti];
SyncClock sync; SyncClock sync;
ThreadClock vector(0); ThreadClock vector(0);
for (uptr i = 0; i < from; i++) for (uptr i = 0; i < from; i++)