[LAA] Improve non-wrapping pointer detection by handling loop-invariant case.

This fixes PR26314. This patch adds new helper “isNoWrap” with detection of
loop-invariant pointer case.

Patch by Roman Shirokiy.

Ref: https://llvm.org/bugs/show_bug.cgi?id=26314

Differential Revision: http://reviews.llvm.org/D17268

llvm-svn: 272014
This commit is contained in:
Andrey Turetskiy 2016-06-07 14:55:27 +00:00
parent 953396536b
commit 9f02c58670
3 changed files with 146 additions and 4 deletions

View File

@ -467,7 +467,7 @@ public:
/// (i.e. the pointers have computable bounds). /// (i.e. the pointers have computable bounds).
bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
Loop *TheLoop, const ValueToValueMap &Strides, Loop *TheLoop, const ValueToValueMap &Strides,
bool ShouldCheckStride = false); bool ShouldCheckWrap = false);
/// \brief Goes over all memory accesses, checks whether a RT check is needed /// \brief Goes over all memory accesses, checks whether a RT check is needed
/// and builds sets of dependent accesses. /// and builds sets of dependent accesses.
@ -551,10 +551,21 @@ static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
return AR->isAffine(); return AR->isAffine();
} }
/// \brief Check whether a pointer address cannot wrap.
static bool isNoWrap(PredicatedScalarEvolution &PSE,
const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
const SCEV *PtrScev = PSE.getSCEV(Ptr);
if (PSE.getSE()->isLoopInvariant(PtrScev, L))
return true;
int Stride = getPtrStride(PSE, Ptr, L, Strides);
return Stride == 1;
}
bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
ScalarEvolution *SE, Loop *TheLoop, ScalarEvolution *SE, Loop *TheLoop,
const ValueToValueMap &StridesMap, const ValueToValueMap &StridesMap,
bool ShouldCheckStride) { bool ShouldCheckWrap) {
// Find pointers with computable bounds. We are going to use this information // Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check. // to place a runtime bound check.
bool CanDoRT = true; bool CanDoRT = true;
@ -589,8 +600,7 @@ bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
// When we run after a failing dependency check we have to make sure // When we run after a failing dependency check we have to make sure
// we don't have wrapping pointers. // we don't have wrapping pointers.
(!ShouldCheckStride || (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
getPtrStride(PSE, Ptr, TheLoop, StridesMap) == 1)) {
// The id of the dependence set. // The id of the dependence set.
unsigned DepId; unsigned DepId;

View File

@ -0,0 +1,67 @@
; RUN: opt -loop-accesses -analyze -S < %s | FileCheck %s
; This is the test case from PR26314.
; When we were retrying dependence checking with memchecks only,
; the loop-invariant access in the inner loop was incorrectly determined to be wrapping
; because it was not strided in the inner loop.
; #define Z 32
; typedef struct s {
; int v1[Z];
; int v2[Z];
; int v3[Z][Z];
; } s;
;
; void slow_function (s* const obj) {
; for (int j=0; j<Z; j++) {
; for (int k=0; k<Z; k++) {
; int x = obj->v1[k] + obj->v2[j];
; obj->v3[j][k] += x;
; }
; }
; }
; CHECK: function 'Test':
; CHECK: .inner:
; CHECK-NEXT: Memory dependences are safe
; CHECK-NEXT: Dependences:
; CHECK-NEXT: Run-time memory checks:
; CHECK: Check 0:
; CHECK: Check 1:
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%struct.s = type { [32 x i32], [32 x i32], [32 x [32 x i32]] }
define void @Test(%struct.s* nocapture %obj) #0 {
br label %.outer.preheader
.outer.preheader:
%i = phi i64 [ 0, %0 ], [ %i.next, %.outer ]
%1 = getelementptr inbounds %struct.s, %struct.s* %obj, i64 0, i32 1, i64 %i
br label %.inner
.exit:
ret void
.outer:
%i.next = add nuw nsw i64 %i, 1
%exitcond.outer = icmp eq i64 %i.next, 32
br i1 %exitcond.outer, label %.exit, label %.outer.preheader
.inner:
%j = phi i64 [ 0, %.outer.preheader ], [ %j.next, %.inner ]
%2 = getelementptr inbounds %struct.s, %struct.s* %obj, i64 0, i32 0, i64 %j
%3 = load i32, i32* %2
%4 = load i32, i32* %1
%5 = add nsw i32 %4, %3
%6 = getelementptr inbounds %struct.s, %struct.s* %obj, i64 0, i32 2, i64 %i, i64 %j
%7 = load i32, i32* %6
%8 = add nsw i32 %5, %7
store i32 %8, i32* %6
%j.next = add nuw nsw i64 %j, 1
%exitcond.inner = icmp eq i64 %j.next, 32
br i1 %exitcond.inner, label %.outer, label %.inner
}

View File

@ -0,0 +1,65 @@
; RUN: opt -loop-vectorize -S < %s | FileCheck %s
; This is the test case from PR26314.
; When we were retrying dependence checking with memchecks only,
; the loop-invariant access in the inner loop was incorrectly determined to be wrapping
; because it was not strided in the inner loop.
; Improved wrapping detection allows vectorization in the following case.
; #define Z 32
; typedef struct s {
; int v1[Z];
; int v2[Z];
; int v3[Z][Z];
; } s;
;
; void slow_function (s* const obj) {
; for (int j=0; j<Z; j++) {
; for (int k=0; k<Z; k++) {
; int x = obj->v1[k] + obj->v2[j];
; obj->v3[j][k] += x;
; }
; }
; }
; CHECK-LABEL: Test
; CHECK: <4 x i64>
; CHECK: <4 x i32>, <4 x i32>
; CHECK: llvm.loop.vectorize.width
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%struct.s = type { [32 x i32], [32 x i32], [32 x [32 x i32]] }
define void @Test(%struct.s* nocapture %obj) #0 {
br label %.outer.preheader
.outer.preheader:
%i = phi i64 [ 0, %0 ], [ %i.next, %.outer ]
%1 = getelementptr inbounds %struct.s, %struct.s* %obj, i64 0, i32 1, i64 %i
br label %.inner
.exit:
ret void
.outer:
%i.next = add nuw nsw i64 %i, 1
%exitcond.outer = icmp eq i64 %i.next, 32
br i1 %exitcond.outer, label %.exit, label %.outer.preheader
.inner:
%j = phi i64 [ 0, %.outer.preheader ], [ %j.next, %.inner ]
%2 = getelementptr inbounds %struct.s, %struct.s* %obj, i64 0, i32 0, i64 %j
%3 = load i32, i32* %2
%4 = load i32, i32* %1
%5 = add nsw i32 %4, %3
%6 = getelementptr inbounds %struct.s, %struct.s* %obj, i64 0, i32 2, i64 %i, i64 %j
%7 = load i32, i32* %6
%8 = add nsw i32 %5, %7
store i32 %8, i32* %6
%j.next = add nuw nsw i64 %j, 1
%exitcond.inner = icmp eq i64 %j.next, 32
br i1 %exitcond.inner, label %.outer, label %.inner
}