introduce a new ConvertToScalarInfo struct to simplify

CanConvertToScalar/MergeInType.  Eliminate a pointless
LLVMContext argument to MergeInType.

llvm-svn: 101422
This commit is contained in:
Chris Lattner 2010-04-15 23:50:26 +00:00
parent cdc3df4888
commit 9ef4eae6e6
1 changed files with 82 additions and 61 deletions

View File

@ -49,6 +49,8 @@ STATISTIC(NumConverted, "Number of aggregates converted to scalar");
STATISTIC(NumGlobals, "Number of allocas copied from constant global");
namespace {
struct ConvertToScalarInfo;
struct SROA : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
explicit SROA(signed T = -1) : FunctionPass(&ID) {
@ -130,8 +132,8 @@ namespace {
void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts);
bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
bool &SawVec, uint64_t Offset, unsigned AllocaSize);
bool CanConvertToScalar(Value *V, ConvertToScalarInfo &ConvertInfo,
uint64_t Offset);
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
uint64_t Offset, IRBuilder<> &Builder);
@ -216,6 +218,29 @@ static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
return false;
}
namespace {
struct ConvertToScalarInfo {
/// AllocaSize - The size of the alloca being considered.
unsigned AllocaSize;
bool IsNotTrivial;
const Type *VectorTy;
bool HadAVector;
explicit ConvertToScalarInfo(unsigned Size) : AllocaSize(Size) {
IsNotTrivial = false;
VectorTy = 0;
HadAVector = false;
}
bool shouldConvertToVector() const {
return VectorTy && VectorTy->isVectorTy() && HadAVector;
}
};
} // end anonymous namespace.
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
@ -239,6 +264,7 @@ bool SROA::performScalarRepl(Function &F) {
// with unused elements.
if (AI->use_empty()) {
AI->eraseFromParent();
Changed = true;
continue;
}
@ -290,11 +316,8 @@ bool SROA::performScalarRepl(Function &F) {
// promoted itself. If so, we don't want to transform it needlessly. Note
// that we can't just check based on the type: the alloca may be of an i32
// but that has pointer arithmetic to set byte 3 of it or something.
bool IsNotTrivial = false;
const Type *VectorTy = 0;
bool HadAVector = false;
if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
0, unsigned(AllocaSize)) && IsNotTrivial) {
ConvertToScalarInfo ConvertInfo((unsigned)AllocaSize);
if (CanConvertToScalar(AI, ConvertInfo, 0) && ConvertInfo.IsNotTrivial) {
AllocaInst *NewAI;
// If we were able to find a vector type that can handle this with
// insert/extract elements, and if there was at least one use that had
@ -302,12 +325,13 @@ bool SROA::performScalarRepl(Function &F) {
// random stuff that doesn't use vectors (e.g. <9 x double>) because then
// we just get a lot of insert/extracts. If at least one vector is
// involved, then we probably really do have a union of vector/array.
if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
if (ConvertInfo.shouldConvertToVector()) {
DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
<< *VectorTy << '\n');
<< *ConvertInfo.VectorTy << '\n');
// Create and insert the vector alloca.
NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
NewAI = new AllocaInst(ConvertInfo.VectorTy, 0, "",
AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
} else {
DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
@ -1185,45 +1209,49 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
/// 2) A fully general blob of memory, which we turn into some (potentially
/// large) integer type with extract and insert operations where the loads
/// and stores would mutate the memory.
static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
unsigned AllocaSize, const TargetData &TD,
LLVMContext &Context) {
static void MergeInType(const Type *In, uint64_t Offset,
ConvertToScalarInfo &ConvertInfo, const TargetData &TD){
// Remember if we saw a vector type.
ConvertInfo.HadAVector |= In->isVectorTy();
if (ConvertInfo.VectorTy && ConvertInfo.VectorTy->isVoidTy())
return;
// If this could be contributing to a vector, analyze it.
if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
// If the In type is a vector that is the same size as the alloca, see if it
// matches the existing VecTy.
if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
// If we're storing/loading a vector of the right size, allow it as a
// vector. If this the first vector we see, remember the type so that
// we know the element size.
if (VecTy == 0)
VecTy = VInTy;
return;
}
} else if (In->isFloatTy() || In->isDoubleTy() ||
(In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
// If we're accessing something that could be an element of a vector, see
// if the implied vector agrees with what we already have and if Offset is
// compatible with it.
unsigned EltSize = In->getPrimitiveSizeInBits()/8;
if (Offset % EltSize == 0 &&
AllocaSize % EltSize == 0 &&
(VecTy == 0 ||
cast<VectorType>(VecTy)->getElementType()
->getPrimitiveSizeInBits()/8 == EltSize)) {
if (VecTy == 0)
VecTy = VectorType::get(In, AllocaSize/EltSize);
return;
}
// If the In type is a vector that is the same size as the alloca, see if it
// matches the existing VecTy.
if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
if (VInTy->getBitWidth()/8 == ConvertInfo.AllocaSize && Offset == 0) {
// If we're storing/loading a vector of the right size, allow it as a
// vector. If this the first vector we see, remember the type so that
// we know the element size.
if (ConvertInfo.VectorTy == 0)
ConvertInfo.VectorTy = VInTy;
return;
}
} else if (In->isFloatTy() || In->isDoubleTy() ||
(In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
// If we're accessing something that could be an element of a vector, see
// if the implied vector agrees with what we already have and if Offset is
// compatible with it.
unsigned EltSize = In->getPrimitiveSizeInBits()/8;
if (Offset % EltSize == 0 &&
ConvertInfo.AllocaSize % EltSize == 0 &&
(ConvertInfo.VectorTy == 0 ||
cast<VectorType>(ConvertInfo.VectorTy)->getElementType()
->getPrimitiveSizeInBits()/8 == EltSize)) {
if (ConvertInfo.VectorTy == 0)
ConvertInfo.VectorTy = VectorType::get(In,
ConvertInfo.AllocaSize/EltSize);
return;
}
}
// Otherwise, we have a case that we can't handle with an optimized vector
// form. We can still turn this into a large integer.
VecTy = Type::getVoidTy(Context);
ConvertInfo.VectorTy = Type::getVoidTy(In->getContext());
}
/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
@ -1235,9 +1263,8 @@ static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
///
/// If we see at least one access to the value that is as a vector type, set the
/// SawVec flag.
bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
bool &SawVec, uint64_t Offset,
unsigned AllocaSize) {
bool SROA::CanConvertToScalar(Value *V, ConvertToScalarInfo &ConvertInfo,
uint64_t Offset) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
@ -1245,26 +1272,21 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// Don't break volatile loads.
if (LI->isVolatile())
return false;
MergeInType(LI->getType(), Offset, VecTy,
AllocaSize, *TD, V->getContext());
SawVec |= LI->getType()->isVectorTy();
MergeInType(LI->getType(), Offset, ConvertInfo, *TD);
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Storing the pointer, not into the value?
if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
MergeInType(SI->getOperand(0)->getType(), Offset,
VecTy, AllocaSize, *TD, V->getContext());
SawVec |= SI->getOperand(0)->getType()->isVectorTy();
if (SI->getOperand(0) == V || SI->isVolatile()) return false;
MergeInType(SI->getOperand(0)->getType(), Offset, ConvertInfo, *TD);
continue;
}
if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
AllocaSize))
if (!CanConvertToScalar(BCI, ConvertInfo, Offset))
return false;
IsNotTrivial = true;
ConvertInfo.IsNotTrivial = true;
continue;
}
@ -1278,10 +1300,9 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
&Indices[0], Indices.size());
// See if all uses can be converted.
if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
AllocaSize))
if (!CanConvertToScalar(GEP, ConvertInfo, Offset+GEPOffset))
return false;
IsNotTrivial = true;
ConvertInfo.IsNotTrivial = true;
continue;
}
@ -1291,7 +1312,7 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// Store of constant value and constant size.
if (isa<ConstantInt>(MSI->getValue()) &&
isa<ConstantInt>(MSI->getLength())) {
IsNotTrivial = true;
ConvertInfo.IsNotTrivial = true;
continue;
}
}
@ -1300,8 +1321,8 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// can handle it like a load or store of the scalar type.
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
if (Len->getZExtValue() == AllocaSize && Offset == 0) {
IsNotTrivial = true;
if (Len->getZExtValue() == ConvertInfo.AllocaSize && Offset == 0) {
ConvertInfo.IsNotTrivial = true;
continue;
}
}