[X86] lowerShuffleAsLanePermuteAndRepeatedMask - variable renames. NFCI.

Rename some variables to match lowerShuffleAsRepeatedMaskAndLanePermute - prep work toward adding some equivalent sublane functionality.

llvm-svn: 373832
This commit is contained in:
Simon Pilgrim 2019-10-05 16:08:30 +00:00
parent 68f21b360b
commit 9ecacb0d54
1 changed files with 27 additions and 27 deletions

View File

@ -14907,26 +14907,26 @@ static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
if (is128BitLaneRepeatedShuffleMask(VT, Mask)) if (is128BitLaneRepeatedShuffleMask(VT, Mask))
return SDValue(); return SDValue();
int Size = Mask.size(); int NumElts = Mask.size();
int NumLanes = VT.getSizeInBits() / 128; int NumLanes = VT.getSizeInBits() / 128;
int LaneSize = 128 / VT.getScalarSizeInBits(); int NumLaneElts = 128 / VT.getScalarSizeInBits();
SmallVector<int, 16> RepeatMask(LaneSize, -1); SmallVector<int, 16> RepeatMask(NumLaneElts, -1);
SmallVector<std::array<int, 2>, 2> LaneSrcs(NumLanes, {{-1, -1}}); SmallVector<std::array<int, 2>, 2> LaneSrcs(NumLanes, {{-1, -1}});
// First pass will try to fill in the RepeatMask from lanes that need two // First pass will try to fill in the RepeatMask from lanes that need two
// sources. // sources.
for (int Lane = 0; Lane != NumLanes; ++Lane) { for (int Lane = 0; Lane != NumLanes; ++Lane) {
int Srcs[2] = { -1, -1 }; int Srcs[2] = {-1, -1};
SmallVector<int, 16> InLaneMask(LaneSize, -1); SmallVector<int, 16> InLaneMask(NumLaneElts, -1);
for (int i = 0; i != LaneSize; ++i) { for (int i = 0; i != NumLaneElts; ++i) {
int M = Mask[(Lane * LaneSize) + i]; int M = Mask[(Lane * NumLaneElts) + i];
if (M < 0) if (M < 0)
continue; continue;
// Determine which of the possible input lanes (NumLanes from each source) // Determine which of the possible input lanes (NumLanes from each source)
// this element comes from. Assign that as one of the sources for this // this element comes from. Assign that as one of the sources for this
// lane. We can assign up to 2 sources for this lane. If we run out // lane. We can assign up to 2 sources for this lane. If we run out
// sources we can't do anything. // sources we can't do anything.
int LaneSrc = M / LaneSize; int LaneSrc = M / NumLaneElts;
int Src; int Src;
if (Srcs[0] < 0 || Srcs[0] == LaneSrc) if (Srcs[0] < 0 || Srcs[0] == LaneSrc)
Src = 0; Src = 0;
@ -14936,7 +14936,7 @@ static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
return SDValue(); return SDValue();
Srcs[Src] = LaneSrc; Srcs[Src] = LaneSrc;
InLaneMask[i] = (M % LaneSize) + Src * Size; InLaneMask[i] = (M % NumLaneElts) + Src * NumElts;
} }
// If this lane has two sources, see if it fits with the repeat mask so far. // If this lane has two sources, see if it fits with the repeat mask so far.
@ -14992,23 +14992,23 @@ static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
if (LaneSrcs[Lane][0] >= 0) if (LaneSrcs[Lane][0] >= 0)
continue; continue;
for (int i = 0; i != LaneSize; ++i) { for (int i = 0; i != NumLaneElts; ++i) {
int M = Mask[(Lane * LaneSize) + i]; int M = Mask[(Lane * NumLaneElts) + i];
if (M < 0) if (M < 0)
continue; continue;
// If RepeatMask isn't defined yet we can define it ourself. // If RepeatMask isn't defined yet we can define it ourself.
if (RepeatMask[i] < 0) if (RepeatMask[i] < 0)
RepeatMask[i] = M % LaneSize; RepeatMask[i] = M % NumLaneElts;
if (RepeatMask[i] < Size) { if (RepeatMask[i] < NumElts) {
if (RepeatMask[i] != M % LaneSize) if (RepeatMask[i] != M % NumLaneElts)
return SDValue(); return SDValue();
LaneSrcs[Lane][0] = M / LaneSize; LaneSrcs[Lane][0] = M / NumLaneElts;
} else { } else {
if (RepeatMask[i] != ((M % LaneSize) + Size)) if (RepeatMask[i] != ((M % NumLaneElts) + NumElts))
return SDValue(); return SDValue();
LaneSrcs[Lane][1] = M / LaneSize; LaneSrcs[Lane][1] = M / NumLaneElts;
} }
} }
@ -15016,14 +15016,14 @@ static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
return SDValue(); return SDValue();
} }
SmallVector<int, 16> NewMask(Size, -1); SmallVector<int, 16> NewMask(NumElts, -1);
for (int Lane = 0; Lane != NumLanes; ++Lane) { for (int Lane = 0; Lane != NumLanes; ++Lane) {
int Src = LaneSrcs[Lane][0]; int Src = LaneSrcs[Lane][0];
for (int i = 0; i != LaneSize; ++i) { for (int i = 0; i != NumLaneElts; ++i) {
int M = -1; int M = -1;
if (Src >= 0) if (Src >= 0)
M = Src * LaneSize + i; M = Src * NumLaneElts + i;
NewMask[Lane * LaneSize + i] = M; NewMask[Lane * NumLaneElts + i] = M;
} }
} }
SDValue NewV1 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask); SDValue NewV1 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
@ -15036,11 +15036,11 @@ static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
for (int Lane = 0; Lane != NumLanes; ++Lane) { for (int Lane = 0; Lane != NumLanes; ++Lane) {
int Src = LaneSrcs[Lane][1]; int Src = LaneSrcs[Lane][1];
for (int i = 0; i != LaneSize; ++i) { for (int i = 0; i != NumLaneElts; ++i) {
int M = -1; int M = -1;
if (Src >= 0) if (Src >= 0)
M = Src * LaneSize + i; M = Src * NumLaneElts + i;
NewMask[Lane * LaneSize + i] = M; NewMask[Lane * NumLaneElts + i] = M;
} }
} }
SDValue NewV2 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask); SDValue NewV2 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
@ -15051,12 +15051,12 @@ static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
cast<ShuffleVectorSDNode>(NewV2)->getMask() == Mask) cast<ShuffleVectorSDNode>(NewV2)->getMask() == Mask)
return SDValue(); return SDValue();
for (int i = 0; i != Size; ++i) { for (int i = 0; i != NumElts; ++i) {
NewMask[i] = RepeatMask[i % LaneSize]; NewMask[i] = RepeatMask[i % NumLaneElts];
if (NewMask[i] < 0) if (NewMask[i] < 0)
continue; continue;
NewMask[i] += (i / LaneSize) * LaneSize; NewMask[i] += (i / NumLaneElts) * NumLaneElts;
} }
return DAG.getVectorShuffle(VT, DL, NewV1, NewV2, NewMask); return DAG.getVectorShuffle(VT, DL, NewV1, NewV2, NewMask);
} }