Revert "[X86] Improvement in CodeGen instruction selection for LEAs."

This reverts r319543, due to ASan bot breakage.

llvm-svn: 319591
This commit is contained in:
Matt Morehouse 2017-12-01 22:20:26 +00:00
parent de9bafb162
commit 9e658c974b
18 changed files with 163 additions and 692 deletions

View File

@ -1320,13 +1320,12 @@ public:
/// Add all implicit def and use operands to this instruction.
void addImplicitDefUseOperands(MachineFunction &MF);
private:
/// If this instruction is embedded into a MachineFunction, return the
/// MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *getRegInfo();
private:
/// Unlink all of the register operands in this instruction from their
/// respective use lists. This requires that the operands already be on their
/// use lists.

View File

@ -300,9 +300,6 @@ public:
/// type legalization.
bool NewNodesMustHaveLegalTypes = false;
/// Set to true for DAG of BasicBlock contained inside a loop.
bool IsDAGPartOfLoop = false;
private:
/// DAGUpdateListener is a friend so it can manipulate the listener stack.
friend struct DAGUpdateListener;

View File

@ -27,7 +27,6 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/FastISel.h"
@ -326,8 +325,6 @@ void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
if (OptLevel != CodeGenOpt::None)
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<GCModuleInfo>();
if (OptLevel != CodeGenOpt::None)
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<StackProtector>();
AU.addPreserved<StackProtector>();
AU.addPreserved<GCModuleInfo>();
@ -1418,7 +1415,6 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
// Iterate over all basic blocks in the function.
for (const BasicBlock *LLVMBB : RPOT) {
CurDAG->IsDAGPartOfLoop = false;
if (OptLevel != CodeGenOpt::None) {
bool AllPredsVisited = true;
for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
@ -1596,13 +1592,6 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
FunctionBasedInstrumentation);
}
if (OptLevel != CodeGenOpt::None) {
auto &LIWP = getAnalysis<LoopInfoWrapperPass>();
LoopInfo &LI = LIWP.getLoopInfo();
if (LI.getLoopFor(LLVMBB))
CurDAG->IsDAGPartOfLoop = true;
}
if (Begin != BI)
++NumDAGBlocks;
else

View File

@ -88,11 +88,6 @@ namespace {
IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
}
bool hasComplexAddressingMode() const {
return Disp && IndexReg.getNode() != nullptr &&
Base_Reg.getNode() != nullptr;
}
/// Return true if this addressing mode is already RIP-relative.
bool isRIPRelative() const {
if (BaseType != RegBase) return false;
@ -102,10 +97,6 @@ namespace {
return false;
}
bool isLegalScale() const {
return (Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8);
}
void setBaseReg(SDValue Reg) {
BaseType = RegBase;
Base_Reg = Reg;
@ -171,13 +162,10 @@ namespace {
/// If true, selector should try to optimize for minimum code size.
bool OptForMinSize;
/// If true, selector should try to aggresively fold operands into AM.
bool OptForAggressingFolding;
public:
explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), OptForSize(false),
OptForMinSize(false), OptForAggressingFolding(false) {}
OptForMinSize(false) {}
StringRef getPassName() const override {
return "X86 DAG->DAG Instruction Selection";
@ -196,12 +184,6 @@ namespace {
void PreprocessISelDAG() override;
void setAggressiveOperandFolding(bool val) {
OptForAggressingFolding = val;
}
bool getAggressiveOperandFolding() { return OptForAggressingFolding; }
// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"
@ -216,7 +198,6 @@ namespace {
bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth);
bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth);
bool matchAddressLEA(SDValue N, X86ISelAddressMode &AM);
bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
@ -466,20 +447,6 @@ namespace {
bool isMaskZeroExtended(SDNode *N) const;
};
class X86AggressiveOperandFolding {
public:
explicit X86AggressiveOperandFolding(X86DAGToDAGISel &ISel, bool val)
: Selector(&ISel) {
Selector->setAggressiveOperandFolding(val);
}
~X86AggressiveOperandFolding() {
Selector->setAggressiveOperandFolding(false);
}
private:
X86DAGToDAGISel *Selector;
};
}
@ -1235,14 +1202,8 @@ bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
dbgs() << "MatchAddress: ";
AM.dump();
});
// Limit recursion. For aggressive operand folding recurse
// till depth 8 which is the maximum legal scale value.
auto getMaxOperandFoldingDepth = [&] () -> unsigned int {
return getAggressiveOperandFolding() ? 8 : 5;
};
if (Depth > getMaxOperandFoldingDepth())
// Limit recursion.
if (Depth > 5)
return matchAddressBase(N, AM);
// If this is already a %rip relative address, we can only merge immediates
@ -1533,20 +1494,6 @@ bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
return false;
}
if (OptLevel != CodeGenOpt::None && getAggressiveOperandFolding() &&
AM.BaseType == X86ISelAddressMode::RegBase) {
if (AM.Base_Reg == N) {
SDValue Base_Reg = AM.Base_Reg;
AM.Base_Reg = AM.IndexReg;
AM.IndexReg = Base_Reg;
AM.Scale++;
return false;
} else if (AM.IndexReg == N) {
AM.Scale++;
return false;
}
}
// Otherwise, we cannot select it.
return true;
}
@ -1817,29 +1764,6 @@ bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
return true;
}
bool X86DAGToDAGISel::matchAddressLEA(SDValue N, X86ISelAddressMode &AM) {
// Avoid enabling aggressive operand folding when node N is a part of loop.
X86AggressiveOperandFolding Enable(*this, !CurDAG->IsDAGPartOfLoop);
bool matchRes = matchAddress(N, AM);
// Check for legality of scale when recursion unwinds back to the top.
if (!matchRes) {
if (!AM.isLegalScale())
return true;
// Avoid creating costly complex LEAs having scale less than 2
// within loop.
if(CurDAG->IsDAGPartOfLoop && Subtarget->slow3OpsLEA() &&
AM.Scale <= 2 && AM.hasComplexAddressingMode() &&
(!AM.hasSymbolicDisplacement() && N.getOpcode() < ISD::BUILTIN_OP_END))
return true;
}
return matchRes;
}
/// Calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
@ -1857,7 +1781,7 @@ bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
SDValue Copy = AM.Segment;
SDValue T = CurDAG->getRegister(0, MVT::i32);
AM.Segment = T;
if (matchAddressLEA(N, AM))
if (matchAddress(N, AM))
return false;
assert (T == AM.Segment);
AM.Segment = Copy;

View File

@ -27,7 +27,6 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
@ -59,7 +58,6 @@ static cl::opt<bool>
cl::init(false));
STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
STATISTIC(NumFactoredLEAs, "Number of LEAs factorized");
STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
/// \brief Returns true if two machine operands are identical and they are not
@ -67,10 +65,6 @@ STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
static inline bool isIdenticalOp(const MachineOperand &MO1,
const MachineOperand &MO2);
/// \brief Returns true if two machine instructions have identical operands.
static bool isIdenticalMI(MachineRegisterInfo *MRI, const MachineOperand &MO1,
const MachineOperand &MO2);
/// \brief Returns true if two address displacement operands are of the same
/// type and use the same symbol/index/address regardless of the offset.
static bool isSimilarDispOp(const MachineOperand &MO1,
@ -79,9 +73,6 @@ static bool isSimilarDispOp(const MachineOperand &MO1,
/// \brief Returns true if the instruction is LEA.
static inline bool isLEA(const MachineInstr &MI);
/// \brief Returns true if Definition of Operand is a copylike instruction.
static bool isDefCopyLike(MachineRegisterInfo *MRI, const MachineOperand &Opr);
namespace {
/// A key based on instruction's memory operands.
@ -89,35 +80,15 @@ class MemOpKey {
public:
MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
const MachineOperand *Index, const MachineOperand *Segment,
const MachineOperand *Disp, bool DispCheck = false)
: Disp(Disp), DeepCheck(DispCheck) {
const MachineOperand *Disp)
: Disp(Disp) {
Operands[0] = Base;
Operands[1] = Scale;
Operands[2] = Index;
Operands[3] = Segment;
}
/// Checks operands of MemOpKey are identical, if Base or Index
/// operand definitions are of kind SUBREG_TO_REG then compare
/// operands of defining MI.
bool performDeepCheck(const MemOpKey &Other) const {
MachineInstr *MI = const_cast<MachineInstr *>(Operands[0]->getParent());
MachineRegisterInfo *MRI = MI->getRegInfo();
for (int i = 0; i < 4; i++) {
bool CopyLike = isDefCopyLike(MRI, *Operands[i]);
if (CopyLike && !isIdenticalMI(MRI, *Operands[i], *Other.Operands[i]))
return false;
else if (!CopyLike && !isIdenticalOp(*Operands[i], *Other.Operands[i]))
return false;
}
return isIdenticalOp(*Disp, *Other.Disp);
}
bool operator==(const MemOpKey &Other) const {
if (DeepCheck)
return performDeepCheck(Other);
// Addresses' bases, scales, indices and segments must be identical.
for (int i = 0; i < 4; ++i)
if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
@ -135,12 +106,6 @@ public:
// Address' displacement operand.
const MachineOperand *Disp;
// If true checks Address' base, index, segment and
// displacement are identical, in additions if base/index
// are defined by copylike instruction then futher
// compare the operands of the defining instruction.
bool DeepCheck;
};
} // end anonymous namespace
@ -166,34 +131,12 @@ template <> struct DenseMapInfo<MemOpKey> {
static unsigned getHashValue(const MemOpKey &Val) {
// Checking any field of MemOpKey is enough to determine if the key is
// empty or tombstone.
hash_code Hash(0);
assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
assert(Val.Disp != PtrInfo::getTombstoneKey() &&
"Cannot hash the tombstone key");
auto getMIHash = [](MachineInstr *MI) -> hash_code {
hash_code h(0);
for (unsigned i = 1, e = MI->getNumOperands(); i < e; i++)
h = hash_combine(h, MI->getOperand(i));
return h;
};
const MachineOperand &Base = *Val.Operands[0];
const MachineOperand &Index = *Val.Operands[2];
MachineInstr *MI = const_cast<MachineInstr *>(Base.getParent());
MachineRegisterInfo *MRI = MI->getRegInfo();
if (isDefCopyLike(MRI, Base))
Hash = getMIHash(MRI->getVRegDef(Base.getReg()));
else
Hash = hash_combine(Hash, Base);
if (isDefCopyLike(MRI, Index))
Hash = getMIHash(MRI->getVRegDef(Index.getReg()));
else
Hash = hash_combine(Hash, Index);
Hash = hash_combine(Hash, *Val.Operands[1], *Val.Operands[3]);
hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
*Val.Operands[2], *Val.Operands[3]);
// If the address displacement is an immediate, it should not affect the
// hash so that memory operands which differ only be immediate displacement
@ -253,16 +196,6 @@ static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
&MI.getOperand(N + X86::AddrDisp));
}
static inline MemOpKey getMemOpCSEKey(const MachineInstr &MI, unsigned N) {
static MachineOperand DummyScale = MachineOperand::CreateImm(1);
assert((isLEA(MI) || MI.mayLoadOrStore()) &&
"The instruction must be a LEA, a load or a store");
return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), &DummyScale,
&MI.getOperand(N + X86::AddrIndexReg),
&MI.getOperand(N + X86::AddrSegmentReg),
&MI.getOperand(N + X86::AddrDisp), true);
}
static inline bool isIdenticalOp(const MachineOperand &MO1,
const MachineOperand &MO2) {
return MO1.isIdenticalTo(MO2) &&
@ -270,27 +203,6 @@ static inline bool isIdenticalOp(const MachineOperand &MO1,
!TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
}
static bool isIdenticalMI(MachineRegisterInfo *MRI, const MachineOperand &MO1,
const MachineOperand &MO2) {
MachineInstr *MI1 = nullptr;
MachineInstr *MI2 = nullptr;
if (!MO1.isReg() || !MO2.isReg())
return false;
MI1 = MRI->getVRegDef(MO1.getReg());
MI2 = MRI->getVRegDef(MO2.getReg());
if (!MI1 || !MI2)
return false;
if (MI1->getOpcode() != MI2->getOpcode())
return false;
if (MI1->getNumOperands() != MI2->getNumOperands())
return false;
for (unsigned i = 1, e = MI1->getNumOperands(); i < e; ++i)
if (!isIdenticalOp(MI1->getOperand(i), MI2->getOperand(i)))
return false;
return true;
}
#ifndef NDEBUG
static bool isValidDispOp(const MachineOperand &MO) {
return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
@ -322,150 +234,8 @@ static inline bool isLEA(const MachineInstr &MI) {
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
}
static bool isDefCopyLike(MachineRegisterInfo *MRI, const MachineOperand &Opr) {
bool isInstrErased = !(Opr.isReg() && Opr.getParent()->getParent());
if (!Opr.isReg() || isInstrErased ||
TargetRegisterInfo::isPhysicalRegister(Opr.getReg()))
return false;
MachineInstr *MI = MRI->getVRegDef(Opr.getReg());
return MI && MI->isCopyLike();
}
namespace {
/// This class captures the functions and attributes
/// needed to factorize LEA within and across basic
/// blocks.LEA instruction with same BASE,OFFSET and
/// INDEX are the candidates for factorization.
class FactorizeLEAOpt {
public:
using LEAListT = std::list<MachineInstr *>;
using LEAMapT = DenseMap<MemOpKey, LEAListT>;
using ValueT = DenseMap<MemOpKey, unsigned>;
using ScopeEntryT = std::pair<MachineBasicBlock *, ValueT>;
using ScopeStackT = std::vector<ScopeEntryT>;
FactorizeLEAOpt() = default;
FactorizeLEAOpt(const FactorizeLEAOpt &) = delete;
FactorizeLEAOpt &operator=(const FactorizeLEAOpt &) = delete;
void performCleanup() {
for (auto LEA : removedLEAs)
LEA->eraseFromParent();
LEAs.clear();
Stack.clear();
removedLEAs.clear();
}
LEAMapT &getLEAMap() { return LEAs; }
ScopeEntryT *getTopScope() { return &Stack.back(); }
void addForLazyRemoval(MachineInstr *Instr) { removedLEAs.insert(Instr); }
bool checkIfScheduledForRemoval(MachineInstr *Instr) {
return removedLEAs.find(Instr) != removedLEAs.end();
}
/// Push the ScopeEntry for the BasicBlock over Stack.
/// Also traverses over list of instruction and update
/// LEAs Map and ScopeEntry for each LEA instruction
/// found using insertLEA().
void collectDataForBasicBlock(MachineBasicBlock *MBB);
/// Stores the size of MachineInstr list corrosponding
/// to key K from LEAs MAP into the ScopeEntry of
/// the basic block, then insert the LEA at the beginning
/// of the list.
void insertLEA(MachineInstr *MI);
/// Pops out ScopeEntry of top most BasicBlock from the stack
/// and remove the LEA instructions contained in the scope
/// from the LEAs Map.
void removeDataForBasicBlock();
/// If LEA contains Physical Registers then its not a candidate
/// for factorizations since physical registers may violate SSA
/// semantics of MI.
bool containsPhyReg(MachineInstr *MI, unsigned RecLevel);
private:
ScopeStackT Stack;
LEAMapT LEAs;
std::set<MachineInstr *> removedLEAs;
};
void FactorizeLEAOpt::collectDataForBasicBlock(MachineBasicBlock *MBB) {
ValueT EmptyMap;
ScopeEntryT SE = std::make_pair(MBB, EmptyMap);
Stack.push_back(SE);
for (auto &MI : *MBB) {
if (isLEA(MI))
insertLEA(&MI);
}
}
void FactorizeLEAOpt::removeDataForBasicBlock() {
ScopeEntryT &SE = Stack.back();
for (auto MapEntry : SE.second) {
LEAMapT::iterator Itr = LEAs.find(MapEntry.first);
assert((Itr != LEAs.end()) &&
"LEAs map must have a node corresponding to ScopeEntry's Key.");
while (((*Itr).second.size() > MapEntry.second))
(*Itr).second.pop_front();
// If list goes empty remove entry from LEAs Map.
if ((*Itr).second.empty())
LEAs.erase(Itr);
}
Stack.pop_back();
}
bool FactorizeLEAOpt::containsPhyReg(MachineInstr *MI, unsigned RecLevel) {
if (!MI || !RecLevel)
return false;
MachineRegisterInfo *MRI = MI->getRegInfo();
for (auto Operand : MI->operands()) {
if (!Operand.isReg())
continue;
if (TargetRegisterInfo::isPhysicalRegister(Operand.getReg()))
return true;
MachineInstr *OperDefMI = MRI->getVRegDef(Operand.getReg());
if (OperDefMI && (MI != OperDefMI) && OperDefMI->isCopyLike() &&
containsPhyReg(OperDefMI, RecLevel - 1))
return true;
}
return false;
}
void FactorizeLEAOpt::insertLEA(MachineInstr *MI) {
unsigned lsize;
if (containsPhyReg(MI, 2))
return;
// Factorization is beneficial only for complex LEAs.
MachineOperand &Base = MI->getOperand(1);
MachineOperand &Index = MI->getOperand(3);
MachineOperand &Offset = MI->getOperand(4);
if ((Offset.isImm() && !Offset.getImm()) ||
(!Base.isReg() || !Base.getReg()) || (!Index.isReg() || !Index.getReg()))
return;
MemOpKey Key = getMemOpCSEKey(*MI, 1);
ScopeEntryT *TopScope = getTopScope();
LEAMapT::iterator Itr = LEAs.find(Key);
if (Itr == LEAs.end()) {
lsize = 0;
LEAs[Key].push_front(MI);
} else {
lsize = (*Itr).second.size();
(*Itr).second.push_front(MI);
}
if (TopScope->second.find(Key) == TopScope->second.end())
TopScope->second[Key] = lsize;
}
class OptimizeLEAPass : public MachineFunctionPass {
public:
OptimizeLEAPass() : MachineFunctionPass(ID) {}
@ -477,12 +247,6 @@ public:
/// been calculated by LEA. Also, remove redundant LEAs.
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTree>();
}
private:
using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
@ -528,24 +292,8 @@ private:
/// \brief Removes LEAs which calculate similar addresses.
bool removeRedundantLEAs(MemOpMap &LEAs);
/// \brief Visit over basic blocks, collect LEAs in a scoped
/// hash map (FactorizeLEAOpt::LEAs) and try to factor them out.
bool FactorizeLEAsAllBasicBlocks(MachineFunction &MF);
bool FactorizeLEAsBasicBlock(MachineDomTreeNode *DN);
/// \brief Factor out LEAs which share Base,Index,Offset and Segment.
bool processBasicBlock(const MachineBasicBlock &MBB);
/// \brief Try to replace LEA with a lower strength instruction
/// to improves latency and throughput.
bool strengthReduceLEAs(MemOpMap &LEAs, const MachineBasicBlock &MBB);
DenseMap<const MachineInstr *, unsigned> InstrPos;
FactorizeLEAOpt FactorOpt;
MachineDominatorTree *DT;
MachineRegisterInfo *MRI;
const X86InstrInfo *TII;
const X86RegisterInfo *TRI;
@ -741,9 +489,7 @@ void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
bool Changed = false;
if (LEAs.empty())
return Changed;
assert(!LEAs.empty());
MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
// Process all instructions in basic block.
@ -913,10 +659,6 @@ bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
// Erase removed LEA from the list.
I2 = List.erase(I2);
// If List becomes empty remove it from LEAs map.
if (List.empty())
LEAs.erase(E.first);
Changed = true;
}
++I1;
@ -926,217 +668,6 @@ bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
return Changed;
}
static inline int getADDrrFromLEA(int LEAOpcode) {
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
return X86::ADD16rr;
case X86::LEA32r:
return X86::ADD32rr;
case X86::LEA64_32r:
case X86::LEA64r:
return X86::ADD64rr;
}
}
bool OptimizeLEAPass::strengthReduceLEAs(MemOpMap &LEAs,
const MachineBasicBlock &BB) {
bool Changed = false;
// Loop over all entries in the table.
for (auto &E : LEAs) {
auto &List = E.second;
// Loop over all LEA pairs.
auto I1 = List.begin();
while (I1 != List.end()) {
MachineInstrBuilder NewMI;
MachineInstr &First = **I1;
MachineOperand &Res = First.getOperand(0);
MachineOperand &Base = First.getOperand(1);
MachineOperand &Scale = First.getOperand(2);
MachineOperand &Index = First.getOperand(3);
MachineOperand &Offset = First.getOperand(4);
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(First.getOpcode()));
const DebugLoc DL = First.getDebugLoc();
if (!Base.isReg() || !Index.isReg() || !Index.getReg()) {
I1++;
continue;
}
if (TargetRegisterInfo::isPhysicalRegister(Res.getReg()) ||
TargetRegisterInfo::isPhysicalRegister(Base.getReg()) ||
TargetRegisterInfo::isPhysicalRegister(Index.getReg())) {
I1++;
continue;
}
// Check for register class compatibility between Result and
// Index operands.
const TargetRegisterClass *ResRC = MRI->getRegClass(Res.getReg());
const TargetRegisterClass *IndexRC = MRI->getRegClass(Index.getReg());
if (TRI->getRegSizeInBits(*ResRC) != TRI->getRegSizeInBits(*IndexRC)) {
I1++;
continue;
}
MachineBasicBlock &MBB = *(const_cast<MachineBasicBlock *>(&BB));
// R = B + I
if (Scale.isImm() && Scale.getImm() == 1 && Offset.isImm() &&
!Offset.getImm()) {
NewMI = BuildMI(MBB, &First, DL, ADDrr)
.addDef(Res.getReg())
.addUse(Base.getReg())
.addUse(Index.getReg());
Changed = NewMI.getInstr() != nullptr;
First.eraseFromParent();
I1 = List.erase(I1);
// If List becomes empty remove it from LEAs map.
if (List.empty())
LEAs.erase(E.first);
} else
I1++;
}
}
return Changed;
}
bool OptimizeLEAPass::processBasicBlock(const MachineBasicBlock &MBB) {
bool cseDone = false;
// Legal scale value (1,2,4 & 8) vector.
auto LegalScale = [](int scale) {
return scale == 1 || scale == 2 || scale == 4 || scale == 8;
};
auto CompareFn = [](const MachineInstr *Arg1,
const MachineInstr *Arg2) -> bool {
return Arg1->getOperand(2).getImm() >= Arg2->getOperand(2).getImm();
};
// Loop over all entries in the table.
for (auto &E : FactorOpt.getLEAMap()) {
auto &List = E.second;
if (List.size() > 1)
List.sort(CompareFn);
// Loop over all LEA pairs.
for (auto Iter1 = List.begin(); Iter1 != List.end(); Iter1++) {
for (auto Iter2 = std::next(Iter1); Iter2 != List.end(); Iter2++) {
MachineInstr &LI1 = **Iter1;
MachineInstr &LI2 = **Iter2;
if (!DT->dominates(&LI2, &LI1))
continue;
int Scale1 = LI1.getOperand(2).getImm();
int Scale2 = LI2.getOperand(2).getImm();
assert(LI2.getOperand(0).isReg() && "Result is a VirtualReg");
DebugLoc DL = LI1.getDebugLoc();
// Continue if instruction has already been factorized.
if (FactorOpt.checkIfScheduledForRemoval(&LI1))
continue;
int Factor = Scale1 - Scale2;
if (Factor > 0 && LegalScale(Factor)) {
MachineOperand NewBase = LI2.getOperand(0);
MachineOperand NewIndex = LI1.getOperand(3);
const TargetRegisterClass *LI2ResRC =
MRI->getRegClass(LI2.getOperand(0).getReg());
const TargetRegisterClass *LI1BaseRC =
MRI->getRegClass(LI1.getOperand(1).getReg());
if (TRI->getRegSizeInBits(*LI1BaseRC) >
TRI->getRegSizeInBits(*LI2ResRC)) {
MachineInstr *LI1IndexDef =
MRI->getVRegDef(LI1.getOperand(3).getReg());
if (LI1IndexDef->getOpcode() != TargetOpcode::SUBREG_TO_REG)
continue;
MachineOperand &SubReg = LI1IndexDef->getOperand(2);
const TargetRegisterClass *SubRegRC =
MRI->getRegClass(SubReg.getReg());
if (TRI->getRegSizeInBits(*SubRegRC) !=
TRI->getRegSizeInBits(*LI2ResRC))
continue;
NewIndex = SubReg;
}
DEBUG(dbgs() << "CSE LEAs: Candidate to replace: "; LI1.dump(););
MachineInstrBuilder NewMI =
BuildMI(*(const_cast<MachineBasicBlock *>(&MBB)), &LI1, DL,
TII->get(LI1.getOpcode()))
.addDef(LI1.getOperand(0).getReg()) // Dst = Dst of LI1.
.addUse(NewBase.getReg()) // Base = Dst to LI2.
.addImm(Factor) // Scale = Diff b/w scales.
.addUse(NewIndex.getReg()) // Index = Index of LI1.
.addImm(0) // Disp = 0
.addUse(
LI1.getOperand(5).getReg()); // Segment = Segmant of LI1.
cseDone = NewMI.getInstr() != nullptr;
/// To preserve the SSA nature we need to remove Def flag
/// from old result.
LI1.getOperand(0).setIsDef(false);
/// Lazy removal shall ensure that replaced LEA remains
/// till we finish processing all the basic block. This shall
/// provide opportunity for further factorization based on
/// the replaced LEA which will be legal since it has same
/// destination as newly formed LEA.
FactorOpt.addForLazyRemoval(&LI1);
NumFactoredLEAs++;
DEBUG(dbgs() << "CSE LEAs: Replaced by: "; NewMI->dump(););
}
}
}
}
return cseDone;
}
bool OptimizeLEAPass::FactorizeLEAsBasicBlock(MachineDomTreeNode *DN) {
bool Changed = false;
using StackT = SmallVector<MachineDomTreeNode *, 16>;
using VisitedNodeMapT = SmallSet<MachineDomTreeNode *, 16>;
StackT WorkList;
VisitedNodeMapT DomNodeMap;
WorkList.push_back(DN);
while (!WorkList.empty()) {
MachineDomTreeNode *MDN = WorkList.back();
FactorOpt.collectDataForBasicBlock(MDN->getBlock());
Changed |= processBasicBlock(*MDN->getBlock());
if (DomNodeMap.find(MDN) == DomNodeMap.end()) {
DomNodeMap.insert(MDN);
for (auto Child : MDN->getChildren())
WorkList.push_back(Child);
}
MachineDomTreeNode *TDM = WorkList.back();
if (MDN->getLevel() == TDM->getLevel()) {
FactorOpt.removeDataForBasicBlock();
DomNodeMap.erase(MDN);
WorkList.pop_back();
}
}
return Changed;
}
bool OptimizeLEAPass::FactorizeLEAsAllBasicBlocks(MachineFunction &MF) {
bool Changed = FactorizeLEAsBasicBlock(DT->getRootNode());
FactorOpt.performCleanup();
return Changed;
}
bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
@ -1146,10 +677,6 @@ bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
MRI = &MF.getRegInfo();
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
DT = &getAnalysis<MachineDominatorTree>();
// Attempt factorizing LEAs.
Changed |= FactorizeLEAsAllBasicBlocks(MF);
// Process all basic blocks.
for (auto &MBB : MF) {
@ -1166,9 +693,6 @@ bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
// Remove redundant LEA instructions.
Changed |= removeRedundantLEAs(LEAs);
// Strength reduce LEA instructions.
Changed |= strengthReduceLEAs(LEAs, MBB);
// Remove redundant address calculations. Do it only for -Os/-Oz since only
// a code size gain is expected from this part of the pass.
if (MF.getFunction()->optForSize())

View File

@ -388,7 +388,7 @@ define void @test_variadic_call_2(i8** %addr_ptr, double* %val_ptr) {
; X32-NEXT: movl 4(%ecx), %ecx
; X32-NEXT: movl %eax, (%esp)
; X32-NEXT: movl $4, %eax
; X32-NEXT: addl %esp, %eax
; X32-NEXT: leal (%esp,%eax), %eax
; X32-NEXT: movl %edx, 4(%esp)
; X32-NEXT: movl %ecx, 4(%eax)
; X32-NEXT: calll variadic_callee

View File

@ -5,10 +5,10 @@
define i32* @test_gep_i8(i32 *%arr, i8 %ind) {
; X64_GISEL-LABEL: test_gep_i8:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $4, %rcx
; X64_GISEL-NEXT: movsbq %sil, %rax
; X64_GISEL-NEXT: imulq %rcx, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: movq $4, %rax
; X64_GISEL-NEXT: movsbq %sil, %rcx
; X64_GISEL-NEXT: imulq %rax, %rcx
; X64_GISEL-NEXT: leaq (%rdi,%rcx), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i8:
@ -25,7 +25,7 @@ define i32* @test_gep_i8_const(i32 *%arr) {
; X64_GISEL-LABEL: test_gep_i8_const:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $80, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: leaq (%rdi,%rax), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i8_const:
@ -39,10 +39,10 @@ define i32* @test_gep_i8_const(i32 *%arr) {
define i32* @test_gep_i16(i32 *%arr, i16 %ind) {
; X64_GISEL-LABEL: test_gep_i16:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $4, %rcx
; X64_GISEL-NEXT: movswq %si, %rax
; X64_GISEL-NEXT: imulq %rcx, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: movq $4, %rax
; X64_GISEL-NEXT: movswq %si, %rcx
; X64_GISEL-NEXT: imulq %rax, %rcx
; X64_GISEL-NEXT: leaq (%rdi,%rcx), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i16:
@ -59,7 +59,7 @@ define i32* @test_gep_i16_const(i32 *%arr) {
; X64_GISEL-LABEL: test_gep_i16_const:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $80, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: leaq (%rdi,%rax), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i16_const:
@ -73,10 +73,10 @@ define i32* @test_gep_i16_const(i32 *%arr) {
define i32* @test_gep_i32(i32 *%arr, i32 %ind) {
; X64_GISEL-LABEL: test_gep_i32:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $4, %rcx
; X64_GISEL-NEXT: movslq %esi, %rax
; X64_GISEL-NEXT: imulq %rcx, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: movq $4, %rax
; X64_GISEL-NEXT: movslq %esi, %rcx
; X64_GISEL-NEXT: imulq %rax, %rcx
; X64_GISEL-NEXT: leaq (%rdi,%rcx), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i32:
@ -92,7 +92,7 @@ define i32* @test_gep_i32_const(i32 *%arr) {
; X64_GISEL-LABEL: test_gep_i32_const:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $20, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: leaq (%rdi,%rax), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i32_const:
@ -108,7 +108,7 @@ define i32* @test_gep_i64(i32 *%arr, i64 %ind) {
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $4, %rax
; X64_GISEL-NEXT: imulq %rsi, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: leaq (%rdi,%rax), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i64:
@ -123,7 +123,7 @@ define i32* @test_gep_i64_const(i32 *%arr) {
; X64_GISEL-LABEL: test_gep_i64_const:
; X64_GISEL: # BB#0:
; X64_GISEL-NEXT: movq $20, %rax
; X64_GISEL-NEXT: addq %rdi, %rax
; X64_GISEL-NEXT: leaq (%rdi,%rax), %rax
; X64_GISEL-NEXT: retq
;
; X64-LABEL: test_gep_i64_const:

View File

@ -181,7 +181,7 @@ define i32 @test_gep_folding_largeGepIndex(i32* %arr, i32 %val) {
; ALL-LABEL: test_gep_folding_largeGepIndex:
; ALL: # BB#0:
; ALL-NEXT: movabsq $228719476720, %rax # imm = 0x3540BE3FF0
; ALL-NEXT: addq %rdi, %rax
; ALL-NEXT: leaq (%rdi,%rax), %rax
; ALL-NEXT: movl %esi, (%rax)
; ALL-NEXT: movl (%rax), %eax
; ALL-NEXT: retq

View File

@ -9,21 +9,27 @@ define void @test_func(%struct.SA* nocapture %ctx, i32 %n) local_unnamed_addr {
; X64: # BB#0: # %entry
; X64-NEXT: movl (%rdi), %eax
; X64-NEXT: movl 16(%rdi), %ecx
; X64-NEXT: leal (%rax,%rcx), %edx
; X64-NEXT: leal 1(%rax,%rcx), %eax
; X64-NEXT: movl %eax, 12(%rdi)
; X64-NEXT: addq %ecx, %eax
; X64-NEXT: leal 1(%rcx,%rdx), %eax
; X64-NEXT: movl %eax, 16(%rdi)
; X64-NEXT: retq
;
; X86-LABEL: test_func:
; X86: # BB#0: # %entry
; X86-NEXT: pushl %esi
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: .cfi_offset %esi, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: movl (%eax), %ecx
; X86-NEXT: movl 16(%eax), %edx
; X86-NEXT: leal 1(%ecx,%edx), %ecx
; X86-NEXT: movl %ecx, 12(%eax)
; X86-NEXT: leal 1(%ecx,%edx), %esi
; X86-NEXT: addl %edx, %ecx
; X86-NEXT: movl %esi, 12(%eax)
; X86-NEXT: leal 1(%edx,%ecx), %ecx
; X86-NEXT: movl %ecx, 16(%eax)
; X86-NEXT: popl %esi
; X86-NEXT: retl
entry:
%h0 = getelementptr inbounds %struct.SA, %struct.SA* %ctx, i64 0, i32 0

View File

@ -1,6 +1,6 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+slow-3ops-lea | FileCheck %s -check-prefix=X64
; RUN: llc < %s -mtriple=i686-unknown -mattr=+slow-3ops-lea | FileCheck %s -check-prefix=X86
; RUN: llc < %s -mtriple=x86_64-unknown | FileCheck %s -check-prefix=X64
; RUN: llc < %s -mtriple=i686-unknown | FileCheck %s -check-prefix=X86
%struct.SA = type { i32 , i32 , i32 , i32 , i32};
@ -10,39 +10,43 @@ define void @foo(%struct.SA* nocapture %ctx, i32 %n) local_unnamed_addr #0 {
; X64-NEXT: .p2align 4, 0x90
; X64-NEXT: .LBB0_1: # %loop
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movl 16(%rdi), %eax
; X64-NEXT: movl (%rdi), %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: incl %ecx
; X64-NEXT: movl %ecx, 12(%rdi)
; X64-NEXT: movl (%rdi), %eax
; X64-NEXT: movl 16(%rdi), %ecx
; X64-NEXT: leal 1(%rax,%rcx), %edx
; X64-NEXT: movl %edx, 12(%rdi)
; X64-NEXT: decl %esi
; X64-NEXT: jne .LBB0_1
; X64-NEXT: # BB#2: # %exit
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: movl %ecx, 16(%rdi)
; X64-NEXT: addl %ecx, %eax
; X64-NEXT: leal 1(%rcx,%rax), %eax
; X64-NEXT: movl %eax, 16(%rdi)
; X64-NEXT: retq
;
; X86-LABEL: foo:
; X86: # BB#0: # %entry
; X86-NEXT: pushl %esi
; X86-NEXT: pushl %edi
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: .cfi_offset %esi, -8
; X86-NEXT: pushl %esi
; X86-NEXT: .cfi_def_cfa_offset 12
; X86-NEXT: .cfi_offset %esi, -12
; X86-NEXT: .cfi_offset %edi, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: .p2align 4, 0x90
; X86-NEXT: .LBB0_1: # %loop
; X86-NEXT: # =>This Inner Loop Header: Depth=1
; X86-NEXT: movl 16(%eax), %edx
; X86-NEXT: movl (%eax), %esi
; X86-NEXT: addl %edx, %esi
; X86-NEXT: incl %esi
; X86-NEXT: movl %esi, 12(%eax)
; X86-NEXT: movl (%eax), %edx
; X86-NEXT: movl 16(%eax), %esi
; X86-NEXT: leal 1(%edx,%esi), %edi
; X86-NEXT: movl %edi, 12(%eax)
; X86-NEXT: decl %ecx
; X86-NEXT: jne .LBB0_1
; X86-NEXT: # BB#2: # %exit
; X86-NEXT: addl %edx, %esi
; X86-NEXT: movl %esi, 16(%eax)
; X86-NEXT: addl %esi, %edx
; X86-NEXT: leal 1(%esi,%edx), %ecx
; X86-NEXT: movl %ecx, 16(%eax)
; X86-NEXT: popl %esi
; X86-NEXT: popl %edi
; X86-NEXT: retl
entry:
br label %loop

View File

@ -8,7 +8,7 @@ define i32 @foo(i32 %a, i32 %b) local_unnamed_addr #0 {
; X64-NEXT: # kill: %esi<def> %esi<kill> %rsi<def>
; X64-NEXT: # kill: %edi<def> %edi<kill> %rdi<def>
; X64-NEXT: leal 4(%rdi,%rsi,2), %ecx
; X64-NEXT: leal (%ecx,%esi,2), %eax
; X64-NEXT: leal 4(%rdi,%rsi,4), %eax
; X64-NEXT: imull %ecx, %eax
; X64-NEXT: retq
;
@ -16,9 +16,9 @@ define i32 @foo(i32 %a, i32 %b) local_unnamed_addr #0 {
; X86: # BB#0: # %entry
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: leal 4(%ecx,%eax,2), %ecx
; X86-NEXT: leal (%ecx,%eax,2), %eax
; X86-NEXT: imull %ecx, %eax
; X86-NEXT: leal 4(%ecx,%eax,2), %edx
; X86-NEXT: leal 4(%ecx,%eax,4), %eax
; X86-NEXT: imull %edx, %eax
; X86-NEXT: retl
entry:
%mul = shl i32 %b, 1
@ -36,7 +36,7 @@ define i32 @foo1(i32 %a, i32 %b) local_unnamed_addr #0 {
; X64-NEXT: # kill: %esi<def> %esi<kill> %rsi<def>
; X64-NEXT: # kill: %edi<def> %edi<kill> %rdi<def>
; X64-NEXT: leal 4(%rdi,%rsi,4), %ecx
; X64-NEXT: leal (%ecx,%esi,4), %eax
; X64-NEXT: leal 4(%rdi,%rsi,8), %eax
; X64-NEXT: imull %ecx, %eax
; X64-NEXT: retq
;
@ -44,9 +44,9 @@ define i32 @foo1(i32 %a, i32 %b) local_unnamed_addr #0 {
; X86: # BB#0: # %entry
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: leal 4(%ecx,%eax,4), %ecx
; X86-NEXT: leal (%ecx,%eax,4), %eax
; X86-NEXT: imull %ecx, %eax
; X86-NEXT: leal 4(%ecx,%eax,4), %edx
; X86-NEXT: leal 4(%ecx,%eax,8), %eax
; X86-NEXT: imull %edx, %eax
; X86-NEXT: retl
entry:
%mul = shl i32 %b, 2
@ -68,23 +68,29 @@ define i32 @foo1_mult_basic_blocks(i32 %a, i32 %b) local_unnamed_addr #0 {
; X64-NEXT: cmpl $10, %ecx
; X64-NEXT: je .LBB2_2
; X64-NEXT: # BB#1: # %mid
; X64-NEXT: leal (%ecx,%esi,4), %eax
; X64-NEXT: imull %ecx, %eax
; X64-NEXT: leal 4(%rdi,%rsi,8), %eax
; X64-NEXT: imull %eax, %ecx
; X64-NEXT: movl %ecx, %eax
; X64-NEXT: .LBB2_2: # %exit
; X64-NEXT: retq
;
; X86-LABEL: foo1_mult_basic_blocks:
; X86: # BB#0: # %entry
; X86-NEXT: pushl %esi
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: .cfi_offset %esi, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %edx
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: leal 4(%eax,%edx,4), %ecx
; X86-NEXT: movl {{[0-9]+}}(%esp), %esi
; X86-NEXT: leal 4(%esi,%edx,4), %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $10, %ecx
; X86-NEXT: je .LBB2_2
; X86-NEXT: # BB#1: # %mid
; X86-NEXT: leal (%ecx,%edx,4), %eax
; X86-NEXT: imull %ecx, %eax
; X86-NEXT: leal 4(%esi,%edx,8), %eax
; X86-NEXT: imull %eax, %ecx
; X86-NEXT: movl %ecx, %eax
; X86-NEXT: .LBB2_2: # %exit
; X86-NEXT: popl %esi
; X86-NEXT: retl
entry:
%mul = shl i32 %b, 2

View File

@ -1,31 +1,41 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+slow-3ops-lea | FileCheck %s -check-prefix=X64
; RUN: llc < %s -mtriple=i686-unknown -mattr=+slow-3ops-lea | FileCheck %s -check-prefix=X86
; RUN: llc < %s -mtriple=x86_64-unknown | FileCheck %s -check-prefix=X64
; RUN: llc < %s -mtriple=i686-unknown | FileCheck %s -check-prefix=X86
%struct.SA = type { i32 , i32 , i32 , i32 , i32};
define void @foo(%struct.SA* nocapture %ctx, i32 %n) local_unnamed_addr #0 {
; X64-LABEL: foo:
; X64: # BB#0: # %entry
; X64-NEXT: movl (%rdi), %eax
; X64-NEXT: movl 16(%rdi), %ecx
; X64-NEXT: leal (%rax,%rcx,4), %eax
; X64-NEXT: addl $1, %eax
; X64-NEXT: movl %eax, 12(%rdi)
; X64-NEXT: addl %ecx, %eax
; X64-NEXT: movl 16(%rdi), %eax
; X64-NEXT: movl (%rdi), %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: leal (%rcx,%rax), %edx
; X64-NEXT: leal 1(%rax,%rcx), %ecx
; X64-NEXT: movl %ecx, 12(%rdi)
; X64-NEXT: leal 1(%rax,%rdx), %eax
; X64-NEXT: movl %eax, 16(%rdi)
; X64-NEXT: retq
;
; X86-LABEL: foo:
; X86: # BB#0: # %entry
; X86-NEXT: pushl %esi
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: .cfi_offset %esi, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: movl (%eax), %ecx
; X86-NEXT: movl 16(%eax), %edx
; X86-NEXT: leal (%ecx,%edx,4), %ecx
; X86-NEXT: addl $1, %ecx
; X86-NEXT: movl %ecx, 12(%eax)
; X86-NEXT: addl %edx, %ecx
; X86-NEXT: movl 16(%eax), %ecx
; X86-NEXT: movl (%eax), %edx
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: leal 1(%ecx,%edx), %esi
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: movl %esi, 12(%eax)
; X86-NEXT: leal 1(%ecx,%edx), %ecx
; X86-NEXT: movl %ecx, 16(%eax)
; X86-NEXT: popl %esi
; X86-NEXT: retl
entry:
%h0 = getelementptr inbounds %struct.SA, %struct.SA* %ctx, i64 0, i32 0
@ -52,15 +62,15 @@ define void @foo_loop(%struct.SA* nocapture %ctx, i32 %n) local_unnamed_addr #0
; X64-NEXT: .p2align 4, 0x90
; X64-NEXT: .LBB1_1: # %loop
; X64-NEXT: # =>This Inner Loop Header: Depth=1
; X64-NEXT: movl 16(%rdi), %eax
; X64-NEXT: movl (%rdi), %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: incl %ecx
; X64-NEXT: movl %ecx, 12(%rdi)
; X64-NEXT: movl 16(%rdi), %eax
; X64-NEXT: leal 1(%rcx,%rax), %edx
; X64-NEXT: movl %edx, 12(%rdi)
; X64-NEXT: decl %esi
; X64-NEXT: jne .LBB1_1
; X64-NEXT: # BB#2: # %exit
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: leal 1(%rax,%rcx), %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: addl %eax, %ecx
; X64-NEXT: addl %eax, %ecx
@ -72,23 +82,26 @@ define void @foo_loop(%struct.SA* nocapture %ctx, i32 %n) local_unnamed_addr #0
;
; X86-LABEL: foo_loop:
; X86: # BB#0: # %entry
; X86-NEXT: pushl %esi
; X86-NEXT: pushl %edi
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: .cfi_offset %esi, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %esi
; X86-NEXT: pushl %esi
; X86-NEXT: .cfi_def_cfa_offset 12
; X86-NEXT: .cfi_offset %esi, -12
; X86-NEXT: .cfi_offset %edi, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %edx
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: .p2align 4, 0x90
; X86-NEXT: .LBB1_1: # %loop
; X86-NEXT: # =>This Inner Loop Header: Depth=1
; X86-NEXT: movl (%eax), %esi
; X86-NEXT: movl 16(%eax), %ecx
; X86-NEXT: movl (%eax), %edx
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: incl %edx
; X86-NEXT: movl %edx, 12(%eax)
; X86-NEXT: decl %esi
; X86-NEXT: leal 1(%esi,%ecx), %edi
; X86-NEXT: movl %edi, 12(%eax)
; X86-NEXT: decl %edx
; X86-NEXT: jne .LBB1_1
; X86-NEXT: # BB#2: # %exit
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: addl %ecx, %esi
; X86-NEXT: leal 1(%ecx,%esi), %edx
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: addl %ecx, %edx
@ -97,6 +110,7 @@ define void @foo_loop(%struct.SA* nocapture %ctx, i32 %n) local_unnamed_addr #0
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: movl %edx, 16(%eax)
; X86-NEXT: popl %esi
; X86-NEXT: popl %edi
; X86-NEXT: retl
entry:
br label %loop

View File

@ -558,10 +558,11 @@ define i16 @test_mul_by_28(i16 %x) {
define i16 @test_mul_by_29(i16 %x) {
; X86-LABEL: test_mul_by_29:
; X86: # BB#0:
; X86-NEXT: movzwl {{[0-9]+}}(%esp), %eax
; X86-NEXT: leal (%eax,%eax,8), %ecx
; X86-NEXT: leal (%ecx,%ecx,2), %ecx
; X86-NEXT: leal (%ecx,%eax,2), %eax
; X86-NEXT: movzwl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: leal (%ecx,%ecx,8), %eax
; X86-NEXT: leal (%eax,%eax,2), %eax
; X86-NEXT: addl %ecx, %eax
; X86-NEXT: addl %ecx, %eax
; X86-NEXT: # kill: %ax<def> %ax<kill> %eax<kill>
; X86-NEXT: retl
;
@ -570,7 +571,8 @@ define i16 @test_mul_by_29(i16 %x) {
; X64-NEXT: # kill: %edi<def> %edi<kill> %rdi<def>
; X64-NEXT: leal (%rdi,%rdi,8), %eax
; X64-NEXT: leal (%rax,%rax,2), %eax
; X64-NEXT: leal (%rax,%rdi,2), %eax
; X64-NEXT: addl %edi, %eax
; X64-NEXT: addl %edi, %eax
; X64-NEXT: # kill: %ax<def> %ax<kill> %eax<kill>
; X64-NEXT: retq
%mul = mul nsw i16 %x, 29

View File

@ -1457,10 +1457,11 @@ define i32 @test_mul_by_28(i32 %x) {
define i32 @test_mul_by_29(i32 %x) {
; X86-LABEL: test_mul_by_29:
; X86: # BB#0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: leal (%eax,%eax,8), %ecx
; X86-NEXT: leal (%ecx,%ecx,2), %ecx
; X86-NEXT: leal (%ecx,%eax,2), %eax
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: leal (%ecx,%ecx,8), %eax
; X86-NEXT: leal (%eax,%eax,2), %eax
; X86-NEXT: addl %ecx, %eax
; X86-NEXT: addl %ecx, %eax
; X86-NEXT: retl
;
; X64-HSW-LABEL: test_mul_by_29:
@ -1468,7 +1469,8 @@ define i32 @test_mul_by_29(i32 %x) {
; X64-HSW-NEXT: # kill: %edi<def> %edi<kill> %rdi<def>
; X64-HSW-NEXT: leal (%rdi,%rdi,8), %eax # sched: [1:0.50]
; X64-HSW-NEXT: leal (%rax,%rax,2), %eax # sched: [1:0.50]
; X64-HSW-NEXT: leal (%rax,%rdi,2), %eax # sched: [1:0.50]
; X64-HSW-NEXT: addl %edi, %eax # sched: [1:0.25]
; X64-HSW-NEXT: addl %edi, %eax # sched: [1:0.25]
; X64-HSW-NEXT: retq # sched: [2:1.00]
;
; X64-JAG-LABEL: test_mul_by_29:
@ -1476,7 +1478,8 @@ define i32 @test_mul_by_29(i32 %x) {
; X64-JAG-NEXT: # kill: %edi<def> %edi<kill> %rdi<def>
; X64-JAG-NEXT: leal (%rdi,%rdi,8), %eax # sched: [1:0.50]
; X64-JAG-NEXT: leal (%rax,%rax,2), %eax # sched: [1:0.50]
; X64-JAG-NEXT: leal (%rax,%rdi,2), %eax # sched: [1:0.50]
; X64-JAG-NEXT: addl %edi, %eax # sched: [1:0.50]
; X64-JAG-NEXT: addl %edi, %eax # sched: [1:0.50]
; X64-JAG-NEXT: retq # sched: [4:1.00]
;
; X86-NOOPT-LABEL: test_mul_by_29:

View File

@ -1523,7 +1523,8 @@ define i64 @test_mul_by_29(i64 %x) {
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: leal (%eax,%eax,8), %ecx
; X86-NEXT: leal (%ecx,%ecx,2), %ecx
; X86-NEXT: leal (%ecx,%eax,2), %ecx
; X86-NEXT: addl %eax, %ecx
; X86-NEXT: addl %eax, %ecx
; X86-NEXT: movl $29, %eax
; X86-NEXT: mull {{[0-9]+}}(%esp)
; X86-NEXT: addl %ecx, %edx
@ -1533,14 +1534,16 @@ define i64 @test_mul_by_29(i64 %x) {
; X64-HSW: # BB#0:
; X64-HSW-NEXT: leaq (%rdi,%rdi,8), %rax # sched: [1:0.50]
; X64-HSW-NEXT: leaq (%rax,%rax,2), %rax # sched: [1:0.50]
; X64-HSW-NEXT: leaq (%rax,%rdi,2), %rax # sched: [1:0.50]
; X64-HSW-NEXT: addq %rdi, %rax # sched: [1:0.25]
; X64-HSW-NEXT: addq %rdi, %rax # sched: [1:0.25]
; X64-HSW-NEXT: retq # sched: [2:1.00]
;
; X64-JAG-LABEL: test_mul_by_29:
; X64-JAG: # BB#0:
; X64-JAG-NEXT: leaq (%rdi,%rdi,8), %rax # sched: [1:0.50]
; X64-JAG-NEXT: leaq (%rax,%rax,2), %rax # sched: [1:0.50]
; X64-JAG-NEXT: leaq (%rax,%rdi,2), %rax # sched: [1:0.50]
; X64-JAG-NEXT: addq %rdi, %rax # sched: [1:0.50]
; X64-JAG-NEXT: addq %rdi, %rax # sched: [1:0.50]
; X64-JAG-NEXT: retq # sched: [4:1.00]
;
; X86-NOOPT-LABEL: test_mul_by_29:

View File

@ -164,7 +164,8 @@ define i32 @mult(i32, i32) local_unnamed_addr #0 {
; X86-NEXT: .LBB0_35:
; X86-NEXT: leal (%eax,%eax,8), %ecx
; X86-NEXT: leal (%ecx,%ecx,2), %ecx
; X86-NEXT: leal (%ecx,%eax,2), %eax
; X86-NEXT: addl %eax, %ecx
; X86-NEXT: addl %ecx, %eax
; X86-NEXT: popl %esi
; X86-NEXT: retl
; X86-NEXT: .LBB0_36:
@ -322,15 +323,14 @@ define i32 @mult(i32, i32) local_unnamed_addr #0 {
; X64-HSW-NEXT: .LBB0_31:
; X64-HSW-NEXT: leal (%rax,%rax,8), %ecx
; X64-HSW-NEXT: leal (%rcx,%rcx,2), %ecx
; X64-HSW-NEXT: .LBB0_17:
; X64-HSW-NEXT: addl %eax, %ecx
; X64-HSW-NEXT: movl %ecx, %eax
; X64-HSW-NEXT: # kill: %eax<def> %eax<kill> %rax<kill>
; X64-HSW-NEXT: retq
; X64-HSW-NEXT: jmp .LBB0_17
; X64-HSW-NEXT: .LBB0_32:
; X64-HSW-NEXT: leal (%rax,%rax,8), %ecx
; X64-HSW-NEXT: leal (%rcx,%rcx,2), %ecx
; X64-HSW-NEXT: leal (%rcx,%rax,2), %eax
; X64-HSW-NEXT: addl %eax, %ecx
; X64-HSW-NEXT: .LBB0_17:
; X64-HSW-NEXT: addl %eax, %ecx
; X64-HSW-NEXT: movl %ecx, %eax
; X64-HSW-NEXT: # kill: %eax<def> %eax<kill> %rax<kill>
; X64-HSW-NEXT: retq
; X64-HSW-NEXT: .LBB0_33:

View File

@ -13,14 +13,14 @@
; X64-NEXT: .p2align
; X64: %loop
; no complex address modes
; X64-NOT: [1-9]+(%{{[^)]+}},%{{[^)]+}},
; X64-NOT: (%{{[^)]+}},%{{[^)]+}},
;
; X32: @simple
; no expensive address computation in the preheader
; X32-NOT: imul
; X32: %loop
; no complex address modes
; X32-NOT: [1-9]+(%{{[^)]+}},%{{[^)]+}},
; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
entry:
br label %loop
@ -103,7 +103,7 @@ exit:
; X32-NOT: mov{{.*}}(%esp){{$}}
; X32: %for.body{{$}}
; no complex address modes
; X32-NOT: [1-9]+(%{{[^)]+}},%{{[^)]+}},
; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
; no reloads
; X32-NOT: (%esp)
define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {