[mlir][NFC] Remove usernames and google bug numbers from TODO comments.

These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
This commit is contained in:
River Riddle 2020-07-07 01:35:23 -07:00
parent 9a1a7d888b
commit 9db53a1827
148 changed files with 491 additions and 498 deletions

View File

@ -148,7 +148,7 @@ integer-literal ::= decimal-literal | hexadecimal-literal
decimal-literal ::= digit+
hexadecimal-literal ::= `0x` hex_digit+
float-literal ::= [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
string-literal ::= `"` [^"\n\f\v\r]* `"` TODO define escaping rules
string-literal ::= `"` [^"\n\f\v\r]* `"` TODO: define escaping rules
```
Not listed here, but MLIR does support comments. They use standard BCPL syntax,

View File

@ -964,9 +964,9 @@ is used. They serve as "hooks" to the enclosing environment. This includes
replaced by the operand/result's type. E.g., for `F32` in `F32:$operand`, its
`$_self` will be expanded as `getOperand(...).getType()`.
TODO(b/130663252): Reconsider the leading symbol for special placeholders.
Eventually we want to allow referencing operand/result $-names; such $-names
can start with underscore.
TODO: Reconsider the leading symbol for special placeholders. Eventually we want
to allow referencing operand/result $-names; such $-names can start with
underscore.
For example, to write an attribute `attr` is an `IntegerAttr`, in C++ you can
just call `attr.isa<IntegerAttr>()`. The code can be wrapped in a `CPred` as

View File

@ -196,7 +196,7 @@ operations for type conversion and expression of the supporting math.
### Quantized type
TODO : Flesh this section out.
TODO: Flesh this section out.
* QuantizedType base class
* UniformQuantizedType
@ -247,7 +247,7 @@ in floating point with appropriate conversions at the boundaries.
## TFLite native quantization
TODO : Flesh this out
TODO: Flesh this out
### General algorithm

View File

@ -765,7 +765,7 @@ func @conv2d(%input: memref<16x1024x1024x3xf32, #lm0, /*scratchpad=*/1>,
}
```
TODO (Add more examples showing the IR for a variety of interesting cases)
TODO: (Add more examples showing the IR for a variety of interesting cases)
## Design alternatives and extensions

View File

@ -96,7 +96,7 @@ unsigned getFunctionArity(mlir_func_t function);
/// Returns the rank of the `function` argument at position `pos`.
/// If the argument is of MemRefType, this returns the rank of the MemRef.
/// Otherwise returns `0`.
/// TODO(ntv): support more than MemRefType and scalar Type.
/// TODO: support more than MemRefType and scalar Type.
unsigned getRankOfFunctionArgument(mlir_func_t function, unsigned pos);
/// Returns an opaque mlir::Type of the `function` argument at position `pos`.

View File

@ -38,7 +38,7 @@ void getReachableAffineApplyOps(ArrayRef<Value> operands,
/// used to add appropriate inequalities. Any symbols founds in the bound
/// operands are added as symbols in the system. Returns failure for the yet
/// unimplemented cases.
// TODO(bondhugula): handle non-unit strides.
// TODO: handle non-unit strides.
LogicalResult getIndexSet(MutableArrayRef<AffineForOp> forOps,
FlatAffineConstraints *domain);
@ -49,8 +49,8 @@ struct MemRefAccess {
SmallVector<Value, 4> indices;
/// Constructs a MemRefAccess from a load or store operation.
// TODO(b/119949820): add accessors to standard op's load, store, DMA op's to
// return MemRefAccess, i.e., loadOp->getAccess(), dmaOp->getRead/WriteAccess.
// TODO: add accessors to standard op's load, store, DMA op's to return
// MemRefAccess, i.e., loadOp->getAccess(), dmaOp->getRead/WriteAccess.
explicit MemRefAccess(Operation *opInst);
// Returns the rank of the memref associated with this access.
@ -95,9 +95,9 @@ struct DependenceComponent {
/// access the same memref element. If 'allowRAR' is true, will consider
/// read-after-read dependences (typically used by applications trying to
/// optimize input reuse).
// TODO(andydavis) Wrap 'dependenceConstraints' and 'dependenceComponents' into
// a single struct.
// TODO(andydavis) Make 'dependenceConstraints' optional arg.
// TODO: Wrap 'dependenceConstraints' and 'dependenceComponents' into a single
// struct.
// TODO: Make 'dependenceConstraints' optional arg.
struct DependenceResult {
enum ResultEnum {
HasDependence, // A dependence exists between 'srcAccess' and 'dstAccess'.

View File

@ -98,7 +98,6 @@ public:
/// Create a flat affine constraint system from an AffineValueMap or a list of
/// these. The constructed system will only include equalities.
// TODO(bondhugula)
explicit FlatAffineConstraints(const AffineValueMap &avm);
explicit FlatAffineConstraints(ArrayRef<const AffineValueMap *> avmRef);
@ -213,7 +212,7 @@ public:
/// 'affine.for' operation are added as trailing identifiers (either
/// dimensional or symbolic depending on whether the operand is a valid
/// symbol).
// TODO(bondhugula): add support for non-unit strides.
// TODO: add support for non-unit strides.
LogicalResult addAffineForOpDomain(AffineForOp forOp);
/// Adds a lower or an upper bound for the identifier at the specified
@ -335,8 +334,8 @@ public:
/// Projects out (aka eliminates) 'num' identifiers starting at position
/// 'pos'. The resulting constraint system is the shadow along the dimensions
/// that still exist. This method may not always be integer exact.
// TODO(bondhugula): deal with integer exactness when necessary - can return a
// value to mark exactness for example.
// TODO: deal with integer exactness when necessary - can return a value to
// mark exactness for example.
void projectOut(unsigned pos, unsigned num);
inline void projectOut(unsigned pos) { return projectOut(pos, 1); }

View File

@ -33,8 +33,8 @@ class Value;
/// multi-result map. The trip count expression is simplified before returning.
/// This method only utilizes map composition to construct lower and upper
/// bounds before computing the trip count expressions
// TODO(mlir-team): this should be moved into 'Transforms/' and be replaced by a
// pure analysis method relying on FlatAffineConstraints
// TODO: this should be moved into 'Transforms/' and be replaced by a pure
// analysis method relying on FlatAffineConstraints
void buildTripCountMapAndOperands(AffineForOp forOp, AffineMap *map,
SmallVectorImpl<Value> *operands);
@ -65,7 +65,7 @@ using VectorizableLoopFun = std::function<bool(AffineForOp)>;
/// Checks whether the loop is structurally vectorizable; i.e.:
/// 1. no conditionals are nested under the loop;
/// 2. all nested load/stores are to scalar MemRefs.
/// TODO(ntv): relax the no-conditionals restriction
/// TODO: relax the no-conditionals restriction
bool isVectorizableLoopBody(AffineForOp loop,
NestedPattern &vectorTransferMatcher);
@ -80,8 +80,8 @@ bool isVectorizableLoopBody(AffineForOp loop, int *memRefDim,
/// Checks where SSA dominance would be violated if a for op's body
/// operations are shifted by the specified shifts. This method checks if a
/// 'def' and all its uses have the same shift factor.
// TODO(mlir-team): extend this to check for memory-based dependence
// violation when we have the support.
// TODO: extend this to check for memory-based dependence violation when we have
// the support.
bool isOpwiseShiftValid(AffineForOp forOp, ArrayRef<uint64_t> shifts);
} // end namespace mlir

View File

@ -73,7 +73,7 @@ private:
/// 1. recursively matches a substructure in the tree;
/// 2. uses a filter function to refine matches with extra semantic
/// constraints (passed via a lambda of type FilterFunctionType);
/// 3. TODO(ntv) optionally applies actions (lambda).
/// 3. TODO: optionally applies actions (lambda).
///
/// Nested patterns are meant to capture imperfectly nested loops while matching
/// properties over the whole loop nest. For instance, in vectorization we are

View File

@ -36,7 +36,7 @@ class Value;
/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
/// the outermost 'affine.for' operation to the innermost one.
// TODO(bondhugula): handle 'affine.if' ops.
// TODO: handle 'affine.if' ops.
void getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops);
/// Returns the nesting depth of this operation, i.e., the number of loops
@ -135,7 +135,7 @@ void getComputationSliceState(Operation *depSourceOp, Operation *depSinkOp,
/// surrounding ops in 'opsB', as a function of IVs and symbols of loop nest
/// surrounding ops in 'opsA' at 'loopDepth'.
/// Returns 'success' if union was computed, 'failure' otherwise.
// TODO(andydavis) Change this API to take 'forOpA'/'forOpB'.
// TODO: Change this API to take 'forOpA'/'forOpB'.
LogicalResult computeSliceUnion(ArrayRef<Operation *> opsA,
ArrayRef<Operation *> opsB, unsigned loopDepth,
unsigned numCommonLoops, bool isBackwardSlice,
@ -150,7 +150,7 @@ LogicalResult computeSliceUnion(ArrayRef<Operation *> opsA,
// Loop depth is a crucial optimization choice that determines where to
// materialize the results of the backward slice - presenting a trade-off b/w
// storage and redundant computation in several cases.
// TODO(andydavis) Support computation slices with common surrounding loops.
// TODO: Support computation slices with common surrounding loops.
AffineForOp insertBackwardComputationSlice(Operation *srcOpInst,
Operation *dstOpInst,
unsigned dstLoopDepth,
@ -271,7 +271,7 @@ struct MemRefRegion {
/// identifiers since getMemRefRegion() is called with a specific loop depth,
/// and thus the region is symbolic in the outer surrounding loops at that
/// depth.
// TODO(bondhugula): Replace this to exploit HyperRectangularSet.
// TODO: Replace this to exploit HyperRectangularSet.
FlatAffineConstraints cst;
};

View File

@ -55,7 +55,7 @@ def MaskRndScaleOp : AVX512_Op<"mask.rndscale", [NoSideEffect,
I32:$k,
VectorOfLengthAndType<[16, 8], [F32, F64]>:$a,
AnyTypeOf<[I16, I8]>:$imm,
// TODO(ntv): figure rounding out (optional operand?).
// TODO: figure rounding out (optional operand?).
I32:$rounding
);
let results = (outs VectorOfLengthAndType<[16, 8], [F32, F64]>:$dst);
@ -87,7 +87,7 @@ def MaskScaleFOp : AVX512_Op<"mask.scalef", [NoSideEffect,
VectorOfLengthAndType<[16, 8], [F32, F64]>:$a,
VectorOfLengthAndType<[16, 8], [F32, F64]>:$b,
AnyTypeOf<[I16, I8]>:$k,
// TODO(ntv): figure rounding out (optional operand?).
// TODO: figure rounding out (optional operand?).
I32:$rounding
);
let results = (outs VectorOfLengthAndType<[16, 8], [F32, F64]>:$dst);

View File

@ -75,10 +75,10 @@ bool isTopLevelValue(Value value);
// affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%idx], %num_elements,
// %stride, %num_elt_per_stride : ...
//
// TODO(mlir-team): add additional operands to allow source and destination
// striding, and multiple stride levels (possibly using AffineMaps to specify
// multiple levels of striding).
// TODO(andydavis) Consider replacing src/dst memref indices with view memrefs.
// TODO: add additional operands to allow source and destination striding, and
// multiple stride levels (possibly using AffineMaps to specify multiple levels
// of striding).
// TODO: Consider replacing src/dst memref indices with view memrefs.
class AffineDmaStartOp : public Op<AffineDmaStartOp, OpTrait::VariadicOperands,
OpTrait::ZeroResult> {
public:

View File

@ -39,7 +39,7 @@ def GPU_Dialect : Dialect {
/// Returns the number of workgroup (thread, block) dimensions supported in
/// the GPU dialect.
// TODO(zinenko,herhut): consider generalizing this.
// TODO: consider generalizing this.
static unsigned getNumWorkgroupDimensions() { return 3; }
/// Returns the numeric value used to identify the workgroup memory address

View File

@ -224,8 +224,7 @@ def GPU_GPUFuncOp : GPU_Op<"func", [HasParent<"GPUModuleOp">,
/// - the argument/result attributes may need an update: if the new type
/// has less parameters we drop the extra attributes, if there are more
/// parameters they won't have any attributes.
// TODO(b/146349912): consider removing this function thanks to rewrite
// patterns.
// TODO: consider removing this function thanks to rewrite patterns.
void setType(FunctionType newType);
/// Returns the number of buffers located in the workgroup memory.

View File

@ -44,7 +44,7 @@ inline Processor getProcessor(ParallelLoopDimMapping attr) {
}
/// Helper function to create a ParallelDimMapperAttr.
/// TODO(ravishankarm/antiagainst): Replace its uses with an auto-gened method.
/// TODO: Replace its uses with an auto-gened method.
ParallelLoopDimMapping getParallelLoopDimMappingAttr(Processor processor,
AffineMap map,
AffineMap bound);

View File

@ -67,7 +67,7 @@ void mulRegionBuilder(ValueRange args);
/// the current ScopedContext, at the current insert point.
void macRegionBuilder(ValueRange args);
/// TODO(ntv): In the future we should tie these implementations to something in
/// TODO: In the future we should tie these implementations to something in
/// Tablegen that generates the proper interfaces and the proper sugared named
/// ops.
@ -119,7 +119,7 @@ Operation *linalg_generic_pointwise_max(StructuredIndexed I1,
StructuredIndexed I2,
StructuredIndexed O);
// TODO(ntv): Implement more useful pointwise operations on a per-need basis.
// TODO: Implement more useful pointwise operations on a per-need basis.
using MatmulRegionBuilder = function_ref<void(ValueRange args)>;
@ -187,7 +187,7 @@ linalg_generic_matmul(Container values,
///
/// For now `...` must be empty (i.e. only 2-D convolutions are supported).
///
// TODO(ntv) Extend convolution rank with some template magic.
// TODO: Extend convolution rank with some template magic.
Operation *linalg_generic_conv_nhwc(Value vI, Value vW, Value vO,
ArrayRef<int> strides = {},
ArrayRef<int> dilations = {});
@ -222,7 +222,7 @@ Operation *linalg_generic_conv_nhwc(Container values,
///
/// For now `...` must be empty (i.e. only 2-D convolutions are supported).
///
// TODO(ntv) Extend convolution rank with some template magic.
// TODO: Extend convolution rank with some template magic.
Operation *linalg_generic_dilated_conv_nhwc(Value vI, Value vW, Value vO,
int depth_multiplier = 1,
ArrayRef<int> strides = {},

View File

@ -119,8 +119,8 @@ def CopyOp : LinalgStructured_Op<"copy", [
OptionalAttr<AffineMapAttr>:$inputPermutation,
OptionalAttr<AffineMapAttr>:$outputPermutation);
// TODO(ntv) this should go away once the usage of OptionalAttr triggers
// emission of builders with default arguments left unspecified.
// TODO: this should go away once the usage of OptionalAttr triggers emission
// of builders with default arguments left unspecified.
let builders = [OpBuilder<
"OpBuilder &builder, OperationState &result, Value input, Value output", [{
return build(
@ -305,8 +305,8 @@ def ConvOp : PoolingBase_Op<"conv", [NInputs<2>, NOutputs<1>]> {
OptionalAttr<I64ElementsAttr>:$padding);
let extraClassDeclaration = commonUtils # [{
// TODO(ntv) extend to support more than 1 dimensions and potentially
// grouping too.
// TODO: extend to support more than 1 dimensions and potentially grouping
// too.
unsigned getNumBatchDimensions() { return 1; }
unsigned getNumInputFeatureDimensions() { return 1; }

View File

@ -246,8 +246,8 @@ public:
cast<ConcreteType>(this->getOperation()).referenceIterators();
// If there is no reference, this must be a generic op.
// TODO(ntv): Traits are used to define ops. Split into cpp to avoid
// cyclic dependency.
// TODO: Traits are used to define ops. Split into cpp to avoid cyclic
// dependency.
auto name = this->getOperation()->getName().getStringRef();
if (!maybeReferenceIteratorTypes && name != "generic" &&
name != "indexed_generic") {
@ -263,8 +263,8 @@ public:
return StringAttr::get(str, ctx);
});
auto attr = ArrayAttr::get(llvm::to_vector<4>(attrRange), ctx);
// TODO(ntv): Need to memoize this. Can't just store as an attribute atm as
// it will impact parser, printer and tests.
// TODO: Need to memoize this. Can't just store as an attribute atm as it
// will impact parser, printer and tests.
// this->getOperation()->setAttr("iterator_types", attr);
return attr;
}
@ -301,8 +301,8 @@ public:
});
SmallVector<Attribute, 4> attrs{attrRange.begin(), attrRange.end()};
auto attr = ArrayAttr::get(attrs, ctx);
// TODO(ntv): Need to memoize this. Can't just store as an attribute atm as
// it will impact parser, printer and tests.
// TODO: Need to memoize this. Can't just store as an attribute atm as it
// will impact parser, printer and tests.
// this->getOperation()->setAttr("indexing_maps", attr);
return attr;
}

View File

@ -162,7 +162,7 @@ class Extension<list<StrEnumAttrCase> extensions> : Availability {
AND (`Extension::C`) AND (`Extension::D` OR `Extension::E`) is enabled.
}];
// TODO(antiagainst): Returning SmallVector<ArrayRef<...>> is not recommended.
// TODO: Returning SmallVector<ArrayRef<...>> is not recommended.
// Find a better way for this.
let queryFnRetType = "::llvm::SmallVector<::llvm::ArrayRef<"
"::mlir::spirv::Extension>, 1>";
@ -226,9 +226,8 @@ class Capability<list<I32EnumAttrCase> capabilities> : Availability {
let instance = "ref";
}
// TODO(antiagainst): the following interfaces definitions are duplicating with
// the above. Remove them once we are able to support dialect-specific contents
// in ODS.
// TODO: the following interfaces definitions are duplicating with the above.
// Remove them once we are able to support dialect-specific contents in ODS.
def QueryMinVersionInterface : OpInterface<"QueryMinVersionInterface"> {
let methods = [InterfaceMethod<"", "::mlir::spirv::Version", "getMinVersion">];
}
@ -3061,7 +3060,7 @@ def SPV_IntVec4 : SPV_Vec4<SPV_Integer>;
def SPV_IOrUIVec4 : SPV_Vec4<SPV_SignlessOrUnsignedInt>;
def SPV_Int32Vec4 : SPV_Vec4<AnyI32>;
// TODO(ravishankarm): From 1.4, this should also include Composite type.
// TODO: From 1.4, this should also include Composite type.
def SPV_SelectType : AnyTypeOf<[SPV_Scalar, SPV_Vector, SPV_AnyPtr]>;
//===----------------------------------------------------------------------===//
@ -3317,9 +3316,9 @@ def SPV_OpcodeAttr :
// Base class for all SPIR-V ops.
class SPV_Op<string mnemonic, list<OpTrait> traits = []> :
Op<SPIRV_Dialect, mnemonic, !listconcat(traits, [
// TODO(antiagainst): We don't need all of the following traits for
// every op; only the suitable ones should be added automatically
// after ODS supports dialect-specific contents.
// TODO: We don't need all of the following traits for every op; only
// the suitable ones should be added automatically after ODS supports
// dialect-specific contents.
DeclareOpInterfaceMethods<QueryMinVersionInterface>,
DeclareOpInterfaceMethods<QueryMaxVersionInterface>,
DeclareOpInterfaceMethods<QueryExtensionInterface>,

View File

@ -35,8 +35,8 @@ namespace mlir {
/// satisfy shader interface requirements: shader interface types must be
/// pointers to structs.
///
/// TODO(antiagainst): We might want to introduce a way to control how
/// unsupported bitwidth are handled and explicitly fail if wanted.
/// TODO: We might want to introduce a way to control how unsupported bitwidth
/// are handled and explicitly fail if wanted.
class SPIRVTypeConverter : public TypeConverter {
public:
explicit SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr);
@ -120,8 +120,8 @@ Value getBuiltinVariableValue(Operation *op, BuiltIn builtin,
/// Performs the index computation to get to the element at `indices` of the
/// memory pointed to by `basePtr`, using the layout map of `baseType`.
// TODO(ravishankarm) : This method assumes that the `baseType` is a MemRefType
// with AffineMap that has static strides. Extend to handle dynamic strides.
// TODO: This method assumes that the `baseType` is a MemRefType with AffineMap
// that has static strides. Extend to handle dynamic strides.
spirv::AccessChainOp getElementPtr(SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,

View File

@ -61,8 +61,8 @@ def SPV_MatrixTimesScalarOp : SPV_Op<"MatrixTimesScalar", []> {
SPV_AnyMatrix:$result
);
// TODO (Hazem): we need just one matrix type given that the input and result
// are the same and the scalar's type can be deduced from it.
// TODO: we need just one matrix type given that the input and result are the
// same and the scalar's type can be deduced from it.
let assemblyFormat = [{
operands attr-dict `:` type($matrix) `,` type($scalar) `->` type($result)
}];
@ -133,4 +133,4 @@ def SPV_TransposeOp : SPV_Op<"Transpose", []> {
// -----
#endif // SPIRV_MATRIX_OPS
#endif // SPIRV_MATRIX_OPS

View File

@ -102,7 +102,7 @@ def SPV_ConstantOp : SPV_Op<"constant", [ConstantLike, NoSideEffect]> {
%2 = spv.constant [dense<3.0> : vector<2xf32>] : !spv.array<1xvector<2xf32>>
```
TODO(antiagainst): support constant structs
TODO: support constant structs
}];
let arguments = (ins
@ -541,7 +541,7 @@ def SPV_SpecConstantOp : SPV_Op<"specConstant", [InModuleScope, Symbol]> {
spv.specConstant @spec_const2 spec_id(5) = 42 : i32
```
TODO(antiagainst): support composite spec constants with another op
TODO: support composite spec constants with another op
}];
let arguments = (ins

View File

@ -216,7 +216,7 @@ public:
ImageSamplingInfo getSamplingInfo() const;
ImageSamplerUseInfo getSamplerUseInfo() const;
ImageFormat getImageFormat() const;
// TODO(ravishankarm): Add support for Access qualifier
// TODO: Add support for Access qualifier
void getExtensions(SPIRVType::ExtensionArrayRefVector &extensions,
Optional<spirv::StorageClass> storage = llvm::None);

View File

@ -479,7 +479,7 @@ def Shape_ConcatOp : Shape_Op<"concat", []> {
// Shape constraint related ops.
//===----------------------------------------------------------------------===//
//TODO(tpopp): Move the code below and witnesses to a different file.
// TODO: Move the code below and witnesses to a different file.
def Shape_AnyOp : Shape_Op<"any", [Commutative, NoSideEffect]> {
let summary = "Return any combination of the input shapes";
let description = [{

View File

@ -48,7 +48,7 @@ protected:
/// MemRef. It has placeholders for non-contiguous tensors that fit within the
/// Fortran subarray model.
/// At the moment it can only capture a MemRef with an identity layout map.
// TODO(ntv): Support MemRefs with layoutMaps.
// TODO: Support MemRefs with layoutMaps.
class MemRefBoundsCapture : public BoundsCapture {
public:
explicit MemRefBoundsCapture(Value v);

View File

@ -129,9 +129,9 @@ public:
// dma_start %src[%i, %j], %dst[%k, %l], %num_elements, %tag[%idx], %stride,
// %num_elt_per_stride :
//
// TODO(mlir-team): add additional operands to allow source and destination
// striding, and multiple stride levels.
// TODO(andydavis) Consider replacing src/dst memref indices with view memrefs.
// TODO: add additional operands to allow source and destination striding, and
// multiple stride levels.
// TODO: Consider replacing src/dst memref indices with view memrefs.
class DmaStartOp
: public Op<DmaStartOp, OpTrait::VariadicOperands, OpTrait::ZeroResult> {
public:

View File

@ -37,8 +37,8 @@ class Vector_Op<string mnemonic, list<OpTrait> traits = []> :
let parser = [{ return ::parse$cppClass(parser, result); }];
}
// TODO(andydavis, ntv) Add an attribute to specify a different algebra
// with operators other than the current set: {*, +}.
// TODO: Add an attribute to specify a different algebra with operators other
// than the current set: {*, +}.
def Vector_ContractionOp :
Vector_Op<"contract", [
NoSideEffect,
@ -714,8 +714,8 @@ def Vector_OuterProductOp :
}];
}
// TODO(andydavis) Add transformation which decomposes ReshapeOp into an
// optimized sequence of vector rotate/shuffle/select operations.
// TODO: Add transformation which decomposes ReshapeOp into an optimized
// sequence of vector rotate/shuffle/select operations.
def Vector_ReshapeOp :
Vector_Op<"reshape", [AttrSizedOperandSegments, NoSideEffect]>,
Arguments<(ins AnyVector:$vector, Variadic<Index>:$input_shape,
@ -849,7 +849,7 @@ def Vector_ExtractStridedSliceOp :
attribute and extracts the n-D subvector at the proper offset.
At the moment strides must contain only 1s.
// TODO(ntv) support non-1 strides.
// TODO: support non-1 strides.
Returns an n-D vector where the first k-D dimensions match the `sizes`
attribute. The returned subvector contains the elements starting at offset
@ -862,7 +862,7 @@ def Vector_ExtractStridedSliceOp :
{offsets = [0, 2], sizes = [2, 4], strides = [1, 1]}:
vector<4x8x16xf32> to vector<2x4x16xf32>
// TODO(ntv) Evolve to a range form syntax similar to:
// TODO: Evolve to a range form syntax similar to:
%1 = vector.extract_strided_slice %0[0:2:1][2:4:1]
vector<4x8x16xf32> to vector<2x4x16xf32>
```
@ -1513,7 +1513,7 @@ def Vector_MatmulOp : Vector_Op<"matrix_multiply", [NoSideEffect,
PredOpTrait<"rhs operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 1>>]>,
Arguments<(
// TODO(ntv, fhahn): tighten vector element types that make sense.
// TODO: tighten vector element types that make sense.
ins VectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, AnyFloat]>:$lhs,
VectorOfRankAndType<[1],
@ -1576,7 +1576,7 @@ def Vector_FlatTransposeOp : Vector_Op<"flat_transpose", [NoSideEffect,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]>,
Arguments<(
// TODO(ntv, fhahn, ajcbik): tighten vector element types that make sense.
// TODO: tighten vector element types that make sense.
ins VectorOfRankAndType<[1],
[AnySignlessInteger, AnySignedInteger, AnyFloat]>:$matrix,
I32Attr:$rows, I32Attr:$columns)>,

View File

@ -183,8 +183,8 @@ private:
///
/// This only kicks in when VectorTransformsOptions is set to AXPY.
//
// TODO (ajcbik): this is very similar, but not quite the same as
// the outerproduct lowering above; merge the two?
// TODO: this is very similar, but not quite the same as the outerproduct
// lowering above; merge the two?
class ContractionOpToAXPYLowering
: public OpRewritePattern<vector::ContractionOp> {
public:

View File

@ -160,9 +160,9 @@ namespace matcher {
/// over other smaller vector types in the function and avoids interfering with
/// operations on those.
/// This is a first approximation, it can easily be extended in the future.
/// TODO(ntv): this could all be much simpler if we added a bit that a vector
/// type to mark that a vector is a strict super-vector but it still does not
/// warrant adding even 1 extra bit in the IR for now.
/// TODO: this could all be much simpler if we added a bit that a vector type to
/// mark that a vector is a strict super-vector but it still does not warrant
/// adding even 1 extra bit in the IR for now.
bool operatesOnSuperVectorsOf(Operation &op, VectorType subVectorType);
} // end namespace matcher

View File

@ -417,7 +417,7 @@ public:
APInt getValue() const;
/// Return the integer value as a 64-bit int. The attribute must be a signless
/// integer.
// TODO(jpienaar): Change callers to use getValue instead.
// TODO: Change callers to use getValue instead.
int64_t getInt() const;
/// Return the integer value as a signed 64-bit int. The attribute must be
/// a signed integer.
@ -1438,8 +1438,7 @@ public:
auto zeroValue = getZeroValue<T>();
auto valueIt = getValues().getValues<T>().begin();
const std::vector<ptrdiff_t> flatSparseIndices(getFlattenedSparseIndices());
// TODO(riverriddle): Move-capture flatSparseIndices when c++14 is
// available.
// TODO: Move-capture flatSparseIndices when c++14 is available.
std::function<T(ptrdiff_t)> mapFn = [=](ptrdiff_t index) {
// Try to map the current index to one of the sparse indices.
for (unsigned i = 0, e = flatSparseIndices.size(); i != e; ++i)

View File

@ -558,7 +558,7 @@ private:
llvm::SMLoc convertLocToSMLoc(FileLineColLoc loc);
/// The maximum depth that a call stack will be printed.
/// TODO(riverriddle) This should be a tunable flag.
/// TODO: This should be a tunable flag.
unsigned callStackLimit = 10;
std::unique_ptr<detail::SourceMgrDiagnosticHandlerImpl> impl;

View File

@ -144,7 +144,7 @@ class Concat<string pre, Pred child, string suf> :
// Constraint definitions
//===----------------------------------------------------------------------===//
// TODO(b/130064155): Merge Constraints into Pred.
// TODO: Merge Constraints into Pred.
// Base class for named constraints.
//
@ -314,8 +314,8 @@ class Optional<Type type> : TypeConstraint<type.predicate, type.description> {
// Note that this does not "inherit" from Type because it would require
// duplicating Type subclasses for buildable and non-buildable cases to avoid
// diamond "inheritance".
// TODO(zinenko): we may extend this to a more general 'Buildable' trait,
// making some Types and some Attrs buildable.
// TODO: we may extend this to a more general 'Buildable' trait, making some
// Types and some Attrs buildable.
class BuildableType<code builder> {
// The builder call to invoke (if specified) to construct the BuildableType.
code builderCall = builder;
@ -578,7 +578,7 @@ def AnyRankedTensor :
ShapedContainerType<[AnyType], And<[IsTensorTypePred, HasRankPred]>,
"ranked tensor">;
// TODO(b/130064155) Have an easy way to add another constraint to a type.
// TODO: Have an easy way to add another constraint to a type.
class StaticShapeTensorOf<list<Type> allowedTypes>
: Type<And<[TensorOf<allowedTypes>.predicate, HasStaticShapePred]>,
"statically shaped " # TensorOf<allowedTypes>.description>;
@ -636,7 +636,7 @@ def F16MemRef : MemRefOf<[F16]>;
def F32MemRef : MemRefOf<[F32]>;
def F64MemRef : MemRefOf<[F64]>;
// TODO(b/130064155) Have an easy way to add another constraint to a type.
// TODO: Have an easy way to add another constraint to a type.
class MemRefRankOf<list<Type> allowedTypes, list<int> ranks> :
Type<And<[MemRefOf<allowedTypes>.predicate, HasAnyRankOfPred<ranks>]>,
StrJoin<!foreach(rank, ranks, rank # "D"), "/">.result # " " #
@ -1083,7 +1083,7 @@ class EnumAttrInfo<string name, list<EnumAttrCaseInfo> cases> {
// use "::" as the delimiter, e.g., given "A::B", generated code will be
// placed in `namespace A { namespace B { ... } }`. To avoid placing in any
// namespace, use "".
// TODO(b/134741431): use dialect to provide the namespace.
// TODO: use dialect to provide the namespace.
string cppNamespace = "";
// The name of the utility function that converts a value of the underlying
@ -1585,7 +1585,7 @@ def IsNullAttr : AttrConstraint<
// An attribute constraint on FlatSymbolRefAttr that requires that the
// reference point to an op of `opClass` within the closest parent with a symbol
// table.
// TODO(riverriddle) Add support for nested symbol references.
// TODO: Add support for nested symbol references.
class ReferToOp<string opClass> : AttrConstraint<
CPred<"isa_and_nonnull<" # opClass # ">("
"::mlir::SymbolTable::lookupNearestSymbolFrom("
@ -1711,8 +1711,8 @@ class ParentOneOf<list<string> ops>
def FirstAttrDerivedResultType :
GenInternalOpTrait<"FirstAttrDerivedResultType">;
// TODO(antiagainst): Turn the following into normal traits and generate
// verification for them.
// TODO: Turn the following into normal traits and generate verification for
// them.
// All variadic operands of the op have the same number of values.
// A variadic operand contains an array of values whose array size is only
@ -1980,9 +1980,9 @@ class Op<Dialect dialect, string mnemonic, list<OpTrait> props = []> {
code verifier = ?;
// Whether this op has associated canonicalization patterns.
// TODO(b/120163349): figure out a better way to write canonicalization
// patterns in TableGen rules directly instead of using this marker
// and C++ implementations.
// TODO: figure out a better way to write canonicalization patterns in
// TableGen rules directly instead of using this marker and C++
// implementations.
bit hasCanonicalizer = 0;
// Whether this op has a folder.
@ -2024,7 +2024,7 @@ def HasNoUseOf: Constraint<
// These traits often require including "mlir/IR/TypeUtilities.h".
// TODO(b/135033717): Improve the autogenerated error messages.
// TODO: Improve the autogenerated error messages.
class Rank<string name> :
StrFunc<"$" # name # ".getType().cast<::mlir::ShapedType>().getRank()">;
@ -2045,7 +2045,7 @@ class AllMatchPred<list<string> values> :
class AllMatch<list<string> values, string description> :
PredOpTrait<description, AllMatchPred<values>>;
// TODO(b/135032064): Only works for non-variadic.
// TODO: Only works for non-variadic.
class AllMatchSameOperatorPred<list<string> names, string operator> :
AllMatchPred<!foreach(n, names, !subst("$_self", "$" # n, operator))>;

View File

@ -250,7 +250,7 @@ public:
using ImplType = detail::ShapedTypeStorage;
using Type::Type;
// TODO(ntv): merge these two special values in a single one used everywhere.
// TODO: merge these two special values in a single one used everywhere.
// Unfortunately, uses of `-1` have crept deep into the codebase now and are
// hard to track.
static constexpr int64_t kDynamicSize = -1;
@ -561,7 +561,7 @@ public:
/// Returns the memory space in which data referred to by this memref resides.
unsigned getMemorySpace() const;
// TODO(ntv): merge these two special values in a single one used everywhere.
// TODO: merge these two special values in a single one used everywhere.
// Unfortunately, uses of `-1` have crept deep into the codebase now and are
// hard to track.
static constexpr int64_t kDynamicSize = -1;

View File

@ -58,7 +58,7 @@ OwningModuleRef parseSourceString(llvm::StringRef moduleStr,
/// constructed from a new SourceMgr with a single a MemoryBuffer wrapping
/// `attrStr`. If the passed `attrStr` has additional tokens that were not part
/// of the type, an error is emitted.
// TODO(ntv) Improve diagnostic reporting.
// TODO: Improve diagnostic reporting.
Attribute parseAttribute(llvm::StringRef attrStr, MLIRContext *context);
Attribute parseAttribute(llvm::StringRef attrStr, Type type);
@ -76,7 +76,7 @@ Attribute parseAttribute(llvm::StringRef attrStr, Type type, size_t &numRead);
/// constructed from a new SourceMgr with a single a MemoryBuffer wrapping
/// `typeStr`. If the passed `typeStr` has additional tokens that were not part
/// of the type, an error is emitted.
// TODO(ntv) Improve diagnostic reporting.
// TODO: Improve diagnostic reporting.
Type parseType(llvm::StringRef typeStr, MLIRContext *context);
/// This parses a single MLIR type to an MLIR context if it was valid. If not,

View File

@ -96,8 +96,8 @@ public:
/// The specific parser to use depending on llvm::cl parser used. This is only
/// necessary because we need to provide additional methods for certain data
/// type parsers.
/// TODO(riverriddle) We should upstream the methods in GenericOptionParser to
/// avoid the need to do this.
/// TODO: We should upstream the methods in GenericOptionParser to avoid the
/// need to do this.
template <typename DataType>
using OptionParser =
std::conditional_t<std::is_base_of<llvm::cl::generic_parser_base,

View File

@ -219,9 +219,9 @@ public:
StringRef getExtraClassDeclaration() const;
// Returns the Tablegen definition this operator was constructed from.
// TODO(antiagainst,zinenko): do not expose the TableGen record, this is a
// temporary solution to OpEmitter requiring a Record because Operator does
// not provide enough methods.
// TODO: do not expose the TableGen record, this is a temporary solution to
// OpEmitter requiring a Record because Operator does not provide enough
// methods.
const llvm::Record &getDef() const;
// Returns the dialect of the op.

View File

@ -407,8 +407,8 @@ private:
const llvm::Record &def;
// All operators.
// TODO(antiagainst): we need a proper context manager, like MLIRContext,
// for managing the lifetime of shared entities.
// TODO: we need a proper context manager, like MLIRContext, for managing the
// lifetime of shared entities.
RecordOperatorMap *recordOpMap;
};

View File

@ -355,8 +355,7 @@ struct OpConversionPattern : public ConversionPattern {
return matchAndRewrite(cast<SourceOp>(op), operands, rewriter);
}
// TODO(b/142763075): Use OperandAdaptor when it supports access to unnamed
// operands.
// TODO: Use OperandAdaptor when it supports access to unnamed operands.
/// Rewrite and Match methods that operate on the SourceOp type. These must be
/// overridden by the derived pattern class.

View File

@ -24,9 +24,8 @@ class AffineForOp;
struct ComputationSliceState;
class Operation;
// TODO(andydavis) Extend this module to include utility functions for querying
// fusion cost/storage reduction, and for performing the loop fusion
// transformation.
// TODO: Extend this module to include utility functions for querying fusion
// cost/storage reduction, and for performing the loop fusion transformation.
struct FusionResult {
enum ResultEnum {
@ -46,7 +45,7 @@ struct FusionResult {
/// returns a FusionResult explaining why fusion is not feasible.
/// NOTE: This function is not feature complete and should only be used in
/// testing.
/// TODO(andydavis) Update comments when this function is fully implemented.
/// TODO: Update comments when this function is fully implemented.
FusionResult canFuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
unsigned dstLoopDepth,
ComputationSliceState *srcSlice);
@ -71,14 +70,14 @@ struct LoopNestStats {
/// Collect loop nest statistics (eg. loop trip count and operation count)
/// in 'stats' for loop nest rooted at 'forOp'. Returns true on success,
/// returns false otherwise.
// TODO(andydavis) Consider moving this to LoopUtils.
// TODO: Consider moving this to LoopUtils.
bool getLoopNestStats(AffineForOp forOp, LoopNestStats *stats);
/// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'.
/// Currently, the total cost is computed by counting the total operation
/// instance count (i.e. total number of operations in the loop body * loop
/// trip count) for the entire loop nest.
// TODO(andydavis) Improve this cost model.
// TODO: Improve this cost model.
int64_t getComputeCost(AffineForOp forOp, LoopNestStats &stats);
/// Computes and returns in 'computeCost', the total compute cost of fusing the
@ -87,7 +86,7 @@ int64_t getComputeCost(AffineForOp forOp, LoopNestStats &stats);
/// (i.e. total number of operations in the loop body * loop trip count) for
/// the entire loop nest.
/// Returns true on success, failure otherwise (e.g. non-constant trip counts).
// TODO(andydavis) Improve this cost model.
// TODO: Improve this cost model.
bool getFusionComputeCost(AffineForOp srcForOp, LoopNestStats &srcStats,
AffineForOp dstForOp, LoopNestStats &dstStats,
ComputationSliceState *slice, int64_t *computeCost);

View File

@ -56,7 +56,7 @@ class OpBuilder;
// d1, d2) -> (d0 - d1, d2), and %ii will be the extra operand. Without any
// extra operands, note that 'indexRemap' would just be applied to existing
// indices (%i, %j).
// TODO(bondhugula): allow extraIndices to be added at any position.
// TODO: allow extraIndices to be added at any position.
LogicalResult replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
ArrayRef<Value> extraIndices = {},
AffineMap indexRemap = AffineMap(),

View File

@ -33,8 +33,8 @@ using llvm::dbgs;
/// Returns the sequence of AffineApplyOp Operations operation in
/// 'affineApplyOps', which are reachable via a search starting from 'operands',
/// and ending at operands which are not defined by AffineApplyOps.
// TODO(andydavis) Add a method to AffineApplyOp which forward substitutes
// the AffineApplyOp into any user AffineApplyOps.
// TODO: Add a method to AffineApplyOp which forward substitutes the
// AffineApplyOp into any user AffineApplyOps.
void mlir::getReachableAffineApplyOps(
ArrayRef<Value> operands, SmallVectorImpl<Operation *> &affineApplyOps) {
struct State {
@ -81,10 +81,10 @@ void mlir::getReachableAffineApplyOps(
// the loop IVs of the forOps appearing in that order. Any symbols founds in
// the bound operands are added as symbols in the system. Returns failure for
// the yet unimplemented cases.
// TODO(andydavis,bondhugula) Handle non-unit steps through local variables or
// stride information in FlatAffineConstraints. (For eg., by using iv - lb %
// step = 0 and/or by introducing a method in FlatAffineConstraints
// setExprStride(ArrayRef<int64_t> expr, int64_t stride)
// TODO: Handle non-unit steps through local variables or stride information in
// FlatAffineConstraints. (For eg., by using iv - lb % step = 0 and/or by
// introducing a method in FlatAffineConstraints setExprStride(ArrayRef<int64_t>
// expr, int64_t stride)
LogicalResult mlir::getIndexSet(MutableArrayRef<AffineForOp> forOps,
FlatAffineConstraints *domain) {
SmallVector<Value, 4> indices;
@ -104,10 +104,10 @@ LogicalResult mlir::getIndexSet(MutableArrayRef<AffineForOp> forOps,
// potentially involving any Function symbols. The dimensional identifiers in
// 'indexSet' correspond to the loops surrounding 'op' from outermost to
// innermost.
// TODO(andydavis) Add support to handle IfInsts surrounding 'op'.
// TODO: Add support to handle IfInsts surrounding 'op'.
static LogicalResult getInstIndexSet(Operation *op,
FlatAffineConstraints *indexSet) {
// TODO(andydavis) Extend this to gather enclosing IfInsts and consider
// TODO: Extend this to gather enclosing IfInsts and consider
// factoring it out into a utility function.
SmallVector<AffineForOp, 4> loops;
getLoopIVs(*op, &loops);
@ -130,9 +130,9 @@ namespace {
// an Value in multiple maps are provided (i.e. getSrcDimOrSymPos) to handle
// the common case of resolving positions for all access function operands.
//
// TODO(andydavis) Generalize this: could take a template parameter for
// the number of maps (3 in the current case), and lookups could take indices
// of maps to check. So getSrcDimOrSymPos would be "getPos(value, {0, 2})".
// TODO: Generalize this: could take a template parameter for the number of maps
// (3 in the current case), and lookups could take indices of maps to check. So
// getSrcDimOrSymPos would be "getPos(value, {0, 2})".
class ValuePositionMap {
public:
void addSrcValue(Value value) {
@ -758,7 +758,7 @@ void MemRefAccess::getAccessMap(AffineValueMap *accessMap) const {
// 0 0 0 -1 0 0 0 50 >= 0
//
//
// TODO(andydavis) Support AffineExprs mod/floordiv/ceildiv.
// TODO: Support AffineExprs mod/floordiv/ceildiv.
DependenceResult mlir::checkMemrefAccessDependence(
const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
unsigned loopDepth, FlatAffineConstraints *dependenceConstraints,
@ -874,8 +874,8 @@ void mlir::getDependenceComponents(
FlatAffineConstraints dependenceConstraints;
SmallVector<DependenceComponent, 2> depComps;
// TODO(andydavis,bondhugula) Explore whether it would be profitable
// to pre-compute and store deps instead of repeatedly checking.
// TODO: Explore whether it would be profitable to pre-compute and store
// deps instead of repeatedly checking.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints, &depComps);
if (hasDependence(result))

View File

@ -894,7 +894,7 @@ void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) {
// We are going to be removing one or more identifiers from the range.
assert(idStart < numIds && "invalid idStart position");
// TODO(andydavis) Make 'removeIdRange' a lambda called from here.
// TODO: Make 'removeIdRange' a lambda called from here.
// Remove eliminated identifiers from equalities.
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true);
@ -1173,8 +1173,8 @@ static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
if (c == pos)
continue;
// The coefficient of the quotient should be +/-divisor.
// TODO(bondhugula): could be extended to detect an affine function for
// the quotient (i.e., the coeff could be a non-zero multiple of divisor).
// TODO: could be extended to detect an affine function for the quotient
// (i.e., the coeff could be a non-zero multiple of divisor).
int64_t v = cst.atEq(r, c) * cst.atEq(r, pos);
if (v == divisor || v == -divisor) {
seenQuotient++;
@ -1182,8 +1182,8 @@ static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
quotientSign = v > 0 ? 1 : -1;
}
// The coefficient of the dividend should be +/-1.
// TODO(bondhugula): could be extended to detect an affine function of
// the other identifiers as the dividend.
// TODO: could be extended to detect an affine function of the other
// identifiers as the dividend.
else if (v == -1 || v == 1) {
seenDividend++;
dividendPos = c;
@ -1342,8 +1342,8 @@ static bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
}
// Expression can't be constructed as it depends on a yet unknown
// identifier.
// TODO(mlir-team): Visit/compute the identifiers in an order so that
// this doesn't happen. More complex but much more efficient.
// TODO: Visit/compute the identifiers in an order so that this doesn't
// happen. More complex but much more efficient.
if (c < f)
continue;
// Successfully detected the floordiv.
@ -1619,9 +1619,9 @@ void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num,
lbMap = AffineMap::get(numMapDims, numMapSymbols, expr);
ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + 1);
} else {
// TODO(bondhugula): Whenever there are local identifiers in the
// dependence constraints, we'll conservatively over-approximate, since we
// don't always explicitly compute them above (in the while loop).
// TODO: Whenever there are local identifiers in the dependence
// constraints, we'll conservatively over-approximate, since we don't
// always explicitly compute them above (in the while loop).
if (getNumLocalIds() == 0) {
// Work on a copy so that we don't update this constraint system.
if (!tmpClone) {
@ -1636,7 +1636,7 @@ void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num,
// If the above fails, we'll just use the constant lower bound and the
// constant upper bound (if they exist) as the slice bounds.
// TODO(b/126426796): being conservative for the moment in cases that
// TODO: being conservative for the moment in cases that
// lead to multiple bounds - until getConstDifference in LoopFusion.cpp is
// fixed (b/126426796).
if (!lbMap || lbMap.getNumResults() > 1) {
@ -2356,8 +2356,8 @@ void FlatAffineConstraints::removeTrivialRedundancy() {
}
inequalities.resize(numReservedCols * pos);
// TODO(bondhugula): consider doing this for equalities as well, but probably
// not worth the savings.
// TODO: consider doing this for equalities as well, but probably not worth
// the savings.
}
void FlatAffineConstraints::clearAndCopyFrom(
@ -2434,8 +2434,8 @@ getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
/// holes/splinters: j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO(bondhugula): a slight modification to yield dark shadow version of FM
// (tightened), which can prove the existence of a solution if there is one.
// TODO: a slight modification to yield dark shadow version of FM (tightened),
// which can prove the existence of a solution if there is one.
void FlatAffineConstraints::FourierMotzkinEliminate(
unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
@ -2467,7 +2467,7 @@ void FlatAffineConstraints::FourierMotzkinEliminate(
}
if (r == getNumInequalities()) {
// If it doesn't appear, just remove the column and return.
// TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
// TODO: refactor removeColumns to use it from here.
removeId(pos);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
@ -2538,7 +2538,7 @@ void FlatAffineConstraints::FourierMotzkinEliminate(
// coefficient in the canonical form as the view taken here is that of the
// term being moved to the other size of '>='.
int64_t ubCoeff = -atIneq(ubPos, pos);
// TODO(bondhugula): refactor this loop to avoid all branches inside.
// TODO: refactor this loop to avoid all branches inside.
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
@ -2742,14 +2742,14 @@ FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) {
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
if (!extent.hasValue())
// TODO(bondhugula): symbolic extents when necessary.
// TODO(bondhugula): handle union if a dimension is unbounded.
// TODO: symbolic extents when necessary.
// TODO: handle union if a dimension is unbounded.
return failure();
auto otherExtent = otherAligned.getConstantBoundOnDimSize(
d, &otherLb, &otherLbFloorDivisor, &otherUb);
if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor)
// TODO(bondhugula): symbolic extents when necessary.
// TODO: symbolic extents when necessary.
return failure();
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
@ -2819,9 +2819,9 @@ FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) {
append(commonCst);
removeTrivialRedundancy();
// TODO(mlir-team): copy over pure symbolic constraints from this and 'other'
// over to the union (since the above are just the union along dimensions); we
// shouldn't be discarding any other constraints on the symbols.
// TODO: copy over pure symbolic constraints from this and 'other' over to the
// union (since the above are just the union along dimensions); we shouldn't
// be discarding any other constraints on the symbols.
return success();
}

View File

@ -213,7 +213,7 @@ DenseSet<Value> mlir::getInvariantAccesses(Value iv, ArrayRef<Value> indices) {
/// Returns false if the MemRef has a non-identity layoutMap or more than 1
/// layoutMap. This is conservative.
///
// TODO(ntv): check strides.
// TODO: check strides.
template <typename LoadOrStoreOp>
static bool isContiguousAccess(Value iv, LoadOrStoreOp memoryOp,
int *memRefDim) {
@ -224,8 +224,7 @@ static bool isContiguousAccess(Value iv, LoadOrStoreOp memoryOp,
auto memRefType = memoryOp.getMemRefType();
auto layoutMap = memRefType.getAffineMaps();
// TODO(ntv): remove dependence on Builder once we support non-identity
// layout map.
// TODO: remove dependence on Builder once we support non-identity layout map.
Builder b(memoryOp.getContext());
if (layoutMap.size() >= 2 ||
(layoutMap.size() == 1 &&
@ -314,7 +313,7 @@ isVectorizableLoopBodyWithOpCond(AffineForOp loop,
auto store = dyn_cast<AffineStoreOp>(op);
// Only scalar types are considered vectorizable, all load/store must be
// vectorizable for a loop to qualify as vectorizable.
// TODO(ntv): ponder whether we want to be more general here.
// TODO: ponder whether we want to be more general here.
bool vector = load ? isVectorElement(load) : isVectorElement(store);
if (vector) {
return false;
@ -345,8 +344,8 @@ bool mlir::isVectorizableLoopBody(AffineForOp loop,
/// Checks whether SSA dominance would be violated if a for op's body
/// operations are shifted by the specified shifts. This method checks if a
/// 'def' and all its uses have the same shift factor.
// TODO(mlir-team): extend this to check for memory-based dependence violation
// when we have the support.
// TODO: extend this to check for memory-based dependence violation when we have
// the support.
bool mlir::isOpwiseShiftValid(AffineForOp forOp, ArrayRef<uint64_t> shifts) {
auto *forBody = forOp.getBody();
assert(shifts.size() == forBody->getOperations().size());

View File

@ -68,8 +68,8 @@ unsigned NestedPattern::getDepth() const {
/// 3. if all is good, recursively matches the nested patterns;
/// 4. if all nested match then the single operation matches too and is
/// appended to the list of matches;
/// 5. TODO(ntv) Optionally applies actions (lambda), in which case we will
/// want to traverse in post-order DFS to avoid invalidating iterators.
/// 5. TODO: Optionally applies actions (lambda), in which case we will want
/// to traverse in post-order DFS to avoid invalidating iterators.
void NestedPattern::matchOne(Operation *op,
SmallVectorImpl<NestedMatch> *matches) {
if (skip == op) {

View File

@ -191,7 +191,7 @@ LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
//
// TODO(bondhugula): extend this to any other memref dereferencing ops
// TODO: extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
ComputationSliceState *sliceState,
@ -258,7 +258,7 @@ LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
if (auto loop = getForInductionVarOwner(operand)) {
// Note that cst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO(bondhugula): rewrite this to use getInstIndexSet; this way
// TODO: rewrite this to use getInstIndexSet; this way
// conditionals will be handled when the latter supports it.
if (failed(cst.addAffineForOpDomain(loop)))
return failure();
@ -330,7 +330,7 @@ LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
// Add upper/lower bounds for each memref dimension with static size
// to guard against potential over-approximation from projection.
// TODO(andydavis) Support dynamic memref dimensions.
// TODO: Support dynamic memref dimensions.
if (addMemRefDimBounds) {
auto memRefType = memref.getType().cast<MemRefType>();
for (unsigned r = 0; r < rank; r++) {
@ -390,7 +390,7 @@ Optional<int64_t> MemRefRegion::getRegionSize() {
/// Returns the size of memref data in bytes if it's statically shaped, None
/// otherwise. If the element of the memref has vector type, takes into account
/// size of the vector as well.
// TODO(mlir-team): improve/complete this when we have target data.
// TODO: improve/complete this when we have target data.
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
if (!memRefType.hasStaticShape())
return None;
@ -434,7 +434,7 @@ LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
// TODO(bondhugula): handle dynamic dim sizes.
// TODO: handle dynamic dim sizes.
if (dimSize == -1)
continue;
@ -525,7 +525,7 @@ static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
}
// Returns the innermost common loop depth for the set of operations in 'ops'.
// TODO(andydavis) Move this to LoopUtils.
// TODO: Move this to LoopUtils.
static unsigned
getInnermostCommonLoopDepth(ArrayRef<Operation *> ops,
SmallVectorImpl<AffineForOp> &surroundingLoops) {
@ -782,7 +782,7 @@ void mlir::getComputationSliceState(
}
// Clear all sliced loop bounds beginning at the first sequential loop, or
// first loop with a slice fusion barrier attribute..
// TODO(andydavis, bondhugula) Use MemRef read/write regions instead of
// TODO: Use MemRef read/write regions instead of
// using 'kSliceFusionBarrierAttrName'.
auto getSliceLoop = [&](unsigned i) {
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
@ -804,10 +804,10 @@ void mlir::getComputationSliceState(
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO(andydavis,bondhugula): extend the slicing utility to compute slices that
// TODO: extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO(andydavis,bondhugula): the slice computation is incorrect in the cases
// TODO: the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
@ -832,7 +832,7 @@ mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
SmallVector<unsigned, 4> positions;
// TODO(andydavis): This code is incorrect since srcLoopIVs can be 0-d.
// TODO: This code is incorrect since srcLoopIVs can be 0-d.
findInstPosition(srcOpInst, srcLoopIVs[0].getOperation()->getBlock(),
&positions);

View File

@ -30,7 +30,7 @@ static Type getSrcVectorElementType(OpTy op) {
return op.src().getType().template cast<VectorType>().getElementType();
}
// TODO(ntv, zinenko): Code is currently copy-pasted and adapted from the code
// TODO: Code is currently copy-pasted and adapted from the code
// 1-1 LLVM conversion. It would better if it were properly exposed in core and
// reusable.
/// Basic lowering implementation for one-to-one rewriting from AVX512 Ops to
@ -76,7 +76,7 @@ matchAndRewriteOneToOne(const ConvertToLLVMPattern &lowering,
}
namespace {
// TODO(ntv): Patterns are too verbose due to the fact that we have 1 op (e.g.
// TODO: Patterns are too verbose due to the fact that we have 1 op (e.g.
// MaskRndScaleOp) and different possible target ops. It would be better to take
// a Functor so that all these conversions become 1-liners.
struct MaskRndScaleOpPS512Conversion : public ConvertToLLVMPattern {

View File

@ -140,7 +140,7 @@ struct LowerGpuOpsToNVVMOpsPass
LLVM::LogOp, LLVM::Log10Op, LLVM::Log2Op>();
target.addIllegalOp<FuncOp>();
target.addLegalDialect<NVVM::NVVMDialect>();
// TODO(csigg): Remove once we support replacing non-root ops.
// TODO: Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>();
if (failed(applyPartialConversion(m, target, patterns)))
signalPassFailure();

View File

@ -74,7 +74,7 @@ struct LowerGpuOpsToROCDLOpsPass
LLVM::LogOp, LLVM::Log10Op, LLVM::Log2Op>();
target.addIllegalOp<FuncOp>();
target.addLegalDialect<ROCDL::ROCDLDialect>();
// TODO(whchung): Remove once we support replacing non-root ops.
// TODO: Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>();
if (failed(applyPartialConversion(m, target, patterns)))
signalPassFailure();

View File

@ -219,7 +219,7 @@ public:
BaseViewConversionHelper desc(
typeConverter.convertType(sliceOp.getShapedType()));
// TODO(ntv): extract sizes and emit asserts.
// TODO: extract sizes and emit asserts.
SmallVector<Value, 4> strides(memRefType.getRank());
for (int i = 0, e = memRefType.getRank(); i < e; ++i)
strides[i] = baseDesc.stride(i);

View File

@ -92,7 +92,7 @@ SingleWorkgroupReduction::matchAsPerformingReduction(
if (genericOp.indexing_maps().getValue().size() != 2)
return llvm::None;
// TODO(nicolasvasilache): create utility functions for these checks in Linalg
// TODO: create utility functions for these checks in Linalg
// and use them.
auto inputMap = genericOp.indexing_maps().getValue()[0].cast<AffineMapAttr>();
auto outputMap =
@ -132,7 +132,7 @@ LogicalResult SingleWorkgroupReduction::matchAndRewrite(
[](const APInt &size) { return !size.isOneValue(); }))
return failure();
// TODO(antiagainst): Query the target environment to make sure the current
// TODO: Query the target environment to make sure the current
// workload fits in a local workgroup.
Value convertedInput = operands[0], convertedOutput = operands[1];
@ -141,7 +141,7 @@ LogicalResult SingleWorkgroupReduction::matchAndRewrite(
// Get the invocation ID.
Value x = getLocalInvocationDimSize(genericOp, /*dim=*/0, loc, &rewriter);
// TODO(antiagainst): Load to Workgroup storage class first.
// TODO: Load to Workgroup storage class first.
// Get the input element accessed by this invocation.
Value inputElementPtr = spirv::getElementPtr(

View File

@ -173,7 +173,7 @@ public:
if (!libraryCallName)
return failure();
// TODO(pifon, ntv): Use induction variables values instead of zeros, when
// TODO: Use induction variables values instead of zeros, when
// IndexedGenericOp is tiled.
auto zero = rewriter.create<mlir::ConstantOp>(
op.getLoc(), rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
@ -227,7 +227,7 @@ public:
/// Populate the given list with patterns that convert from Linalg to Standard.
void mlir::populateLinalgToStandardConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
// TODO(ntv) ConvOp conversion needs to export a descriptor with relevant
// TODO: ConvOp conversion needs to export a descriptor with relevant
// attribute values such as kernel striding and dilation.
// clang-format off
patterns.insert<

View File

@ -378,12 +378,12 @@ static LogicalResult processParallelLoop(
ParallelOp parallelOp, gpu::LaunchOp launchOp,
BlockAndValueMapping &cloningMap, SmallVectorImpl<Operation *> &worklist,
DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) {
// TODO(herhut): Verify that this is a valid GPU mapping.
// TODO: Verify that this is a valid GPU mapping.
// processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
ArrayAttr mapping =
parallelOp.getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
// TODO(herhut): Support reductions.
// TODO: Support reductions.
if (!mapping || parallelOp.getNumResults() != 0)
return failure();
@ -431,7 +431,7 @@ static LogicalResult processParallelLoop(
loc, annotation.map().getValue().compose(lowerAndStep),
ValueRange{operand, step, lowerBound});
// If there was also a bound, insert that, too.
// TODO(herhut): Check that we do not assign bounds twice.
// TODO: Check that we do not assign bounds twice.
if (annotation.bound().getValue()) {
// We pass as the single operand to the bound-map the number of
// iterations, which is (upperBound - lowerBound) ceilDiv step. To

View File

@ -331,7 +331,7 @@ LLVMTypeConverter::convertFunctionTypeCWrapper(FunctionType type) {
// 4. a second array containing as many `index`-type integers as the rank of
// the MemRef: the second array represents the "stride" (in tensor abstraction
// sense), i.e. the number of consecutive elements of the underlying buffer.
// TODO(ntv, zinenko): add assertions for the static cases.
// TODO: add assertions for the static cases.
//
// template <typename Elem, size_t Rank>
// struct {

View File

@ -536,7 +536,7 @@ LogicalResult ConstantCompositeOpPattern::matchAndRewrite(
srcType.getElementType());
dstElementsAttr = dstElementsAttr.reshape(dstAttrType);
} else {
// TODO(antiagainst): add support for large vectors.
// TODO: add support for large vectors.
return failure();
}
}

View File

@ -110,7 +110,7 @@ static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
}
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO(rriddle): Better support for attribute subtype forwarding + slicing.
// TODO: Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront = 0,
unsigned dropBack = 0) {
@ -927,7 +927,7 @@ public:
loc, toLLVMTy(vectorCmpType), linearIndices);
// 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
// TODO(ntv, ajcbik): when the leaf transfer rank is k > 1 we need the last
// TODO: when the leaf transfer rank is k > 1 we need the last
// `k` dimensions here.
unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
Value offsetIndex = *(xferOp.indices().begin() + lastIndex);
@ -968,7 +968,7 @@ public:
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO(ajcbik): rely solely on libc in future? something else?
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,

View File

@ -86,7 +86,7 @@ public:
scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp),
op(xferOp.getOperation()) {
vectorType = xferOp.getVectorType();
// TODO(ntv, ajcbik): when we go to k > 1-D vectors adapt minorRank.
// TODO: when we go to k > 1-D vectors adapt minorRank.
minorRank = 1;
majorRank = vectorType.getRank() - minorRank;
leadingRank = xferOp.getMemRefType().getRank() - (majorRank + minorRank);
@ -528,8 +528,8 @@ MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType(
/// in the presence of data-parallel only operations, we generate code that
/// writes the same value multiple time on the edge locations.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
/// TODO: implement alternatives to clipping.
/// TODO: support non-data-parallel operations.
/// Performs the rewrite.
template <>
@ -603,8 +603,8 @@ LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite(
/// See `Important notes about clipping and full-tiles only abstraction` in the
/// description of `readClipped` above.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
/// TODO: implement alternatives to clipping.
/// TODO: support non-data-parallel operations.
template <>
LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {

View File

@ -467,7 +467,7 @@ indicesFromAffineApplyOp(ArrayRef<Value> operands) {
// of allowing mathematical AffineMap composition.
// Returns an AffineMap where symbols that come from an AffineApplyOp have been
// rewritten as dims and are ordered after the original dims.
// TODO(andydavis,ntv): This promotion makes AffineMap lose track of which
// TODO: This promotion makes AffineMap lose track of which
// symbols are represented as dims. This loss is static but can still be
// recovered dynamically (with `isValidSymbol`). Still this is annoying for the
// semi-affine map case. A dynamic canonicalization of all dims that are valid
@ -536,7 +536,7 @@ static AffineMap promoteComposedSymbolsAsDims(AffineMap map,
/// composition via symbols, which is ambiguous mathematically. This corner case
/// is handled by locally rewriting such symbols that come from AffineApplyOp
/// into dims and composing through dims.
/// TODO(andydavis, ntv): Composition via symbols comes at a significant code
/// TODO: Composition via symbols comes at a significant code
/// complexity. Alternatively we should investigate whether we want to
/// explicitly disallow symbols coming from affine.apply and instead force the
/// user to compose symbols beforehand. The annoyances may be small (i.e. 1 or 2
@ -647,7 +647,7 @@ AffineApplyNormalizer::AffineApplyNormalizer(AffineMap map,
LLVM_DEBUG(auxiliaryMap.print(dbgs() << "\nWith map: "));
LLVM_DEBUG(map.compose(auxiliaryMap).print(dbgs() << "\nResult: "));
// TODO(andydavis,ntv): Disabling simplification results in major speed gains.
// TODO: Disabling simplification results in major speed gains.
// Another option is to cache the results as it is expected a lot of redundant
// work is performed in practice.
affineMap = simplifyAffineMap(map.compose(auxiliaryMap));
@ -928,7 +928,7 @@ static LogicalResult foldMemRefCast(Operation *op) {
// AffineDmaStartOp
//===----------------------------------------------------------------------===//
// TODO(b/133776335) Check that map operands are loop IVs or symbols.
// TODO: Check that map operands are loop IVs or symbols.
void AffineDmaStartOp::build(OpBuilder &builder, OperationState &result,
Value srcMemRef, AffineMap srcMap,
ValueRange srcIndices, Value destMemRef,
@ -1098,7 +1098,7 @@ LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands,
// AffineDmaWaitOp
//===----------------------------------------------------------------------===//
// TODO(b/133776335) Check that map operands are loop IVs or symbols.
// TODO: Check that map operands are loop IVs or symbols.
void AffineDmaWaitOp::build(OpBuilder &builder, OperationState &result,
Value tagMemRef, AffineMap tagMap,
ValueRange tagIndices, Value numElements) {
@ -2196,7 +2196,7 @@ static OpFoldResult foldMinMaxOp(T op, ArrayRef<Attribute> operands) {
"expected affine min or max op");
// Fold the affine map.
// TODO(andydavis, ntv) Fold more cases:
// TODO: Fold more cases:
// min(some_affine, some_affine + constant, ...), etc.
SmallVector<int64_t, 2> results;
auto foldedMap = op.map().partialConstantFold(operands, &results);

View File

@ -85,7 +85,7 @@ bool AffineValueMap::isFunctionOf(unsigned idx, Value value) const {
return false;
}
auto expr = const_cast<AffineValueMap *>(this)->getAffineMap().getResult(idx);
// TODO(ntv): this is better implemented on a flattened representation.
// TODO: this is better implemented on a flattened representation.
// At least for now it is conservative.
return expr.isFunctionOfDim(index);
}

View File

@ -46,7 +46,7 @@ namespace {
/// inner levels if necessary to determine at what depth copies need to be
/// placed so that the allocated buffers fit within the memory capacity
/// provided.
// TODO(bondhugula): We currently can't generate copies correctly when stores
// TODO: We currently can't generate copies correctly when stores
// are strided. Check for strided stores.
struct AffineDataCopyGeneration
: public AffineDataCopyGenerationBase<AffineDataCopyGeneration> {
@ -75,7 +75,7 @@ struct AffineDataCopyGeneration
/// Generates copies for memref's living in 'slowMemorySpace' into newly created
/// buffers in 'fastMemorySpace', and replaces memory operations to the former
/// by the latter. Only load op's handled for now.
/// TODO(bondhugula): extend this to store op's.
/// TODO: extend this to store op's.
std::unique_ptr<OperationPass<FuncOp>> mlir::createAffineDataCopyGenerationPass(
unsigned slowMemorySpace, unsigned fastMemorySpace, unsigned tagMemorySpace,
int minDmaTransferSize, uint64_t fastMemCapacityBytes) {
@ -113,7 +113,7 @@ AffineDataCopyGeneration::runOnBlock(Block *block,
// operations excluding AffineForOp's) are always assumed to not exhaust
// memory. As a result, this approach is conservative in some cases at the
// moment; we do a check later and report an error with location info.
// TODO(bondhugula): An 'affine.if' operation is being treated similar to an
// TODO: An 'affine.if' operation is being treated similar to an
// operation. 'affine.if''s could have 'affine.for's in them;
// treat them separately.

View File

@ -37,8 +37,8 @@ using namespace mlir;
namespace {
/// Loop invariant code motion (LICM) pass.
/// TODO(asabne) : The pass is missing zero-trip tests.
/// TODO(asabne) : Check for the presence of side effects before hoisting.
/// TODO: The pass is missing zero-trip tests.
/// TODO: Check for the presence of side effects before hoisting.
/// TODO: This code should be removed once the new LICM pass can handle its
/// uses.
struct LoopInvariantCodeMotion
@ -62,7 +62,7 @@ areAllOpsInTheBlockListInvariant(Region &blockList, Value indVar,
SmallPtrSetImpl<Operation *> &opsToHoist);
static bool isMemRefDereferencingOp(Operation &op) {
// TODO(asabne): Support DMA Ops.
// TODO: Support DMA Ops.
return isa<AffineLoadOp, AffineStoreOp>(op);
}
@ -81,7 +81,7 @@ bool isOpLoopInvariant(Operation &op, Value indVar,
// 'affine.if'.
return false;
} else if (isa<AffineDmaStartOp, AffineDmaWaitOp>(op)) {
// TODO(asabne): Support DMA ops.
// TODO: Support DMA ops.
return false;
} else if (!isa<ConstantOp>(op)) {
if (isMemRefDereferencingOp(op)) {

View File

@ -159,7 +159,7 @@ constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
/// Tiles the specified band of perfectly nested loops creating tile-space loops
/// and intra-tile loops. A band is a contiguous set of loops.
// TODO(bondhugula): handle non hyper-rectangular spaces.
// TODO: handle non hyper-rectangular spaces.
LogicalResult
mlir::tilePerfectlyNested(MutableArrayRef<AffineForOp> input,
ArrayRef<unsigned> tileSizes,
@ -282,7 +282,7 @@ static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
// based on a simple model that looks at the memory footprint and determines
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
// along each of the dimensions being tiled.
// TODO(mlir-team): evolve this model. Tile size determination is a large area
// TODO: evolve this model. Tile size determination is a large area
// to play with in general.
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
@ -334,7 +334,7 @@ void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
}
// Divide all loops equally in an attempt to reduce footprint.
// TODO(bondhugula): this is approximate. Ideally, obtain reuse factor /
// TODO: this is approximate. Ideally, obtain reuse factor /
// profitability along each dimension and weight tile sizes based on that as
// one possible approach. Or compute a polynomial in tile sizes and solve for
// it.

View File

@ -236,7 +236,7 @@ using namespace mlir;
///
/// Lowering, unrolling, pipelining:
/// ================================
/// TODO(ntv): point to the proper places.
/// TODO: point to the proper places.
///
/// Algorithm:
/// ==========
@ -248,7 +248,7 @@ using namespace mlir;
/// reduction, vectorizable, ...) as well as b. all contiguous load/store
/// operations along a specified minor dimension (not necessarily the
/// fastest varying) ;
/// 2. analyzing those patterns for profitability (TODO(ntv): and
/// 2. analyzing those patterns for profitability (TODO: and
/// interference);
/// 3. Then, for each pattern in order:
/// a. applying iterative rewriting of the loop and the load operations in
@ -259,7 +259,7 @@ using namespace mlir;
/// c. traversing the use-def chains starting from the roots and iteratively
/// propagating vectorized values. Scalar values that are encountered
/// during this process must come from outside the scope of the current
/// pattern (TODO(ntv): enforce this and generalize). Such a scalar value
/// pattern (TODO: enforce this and generalize). Such a scalar value
/// is vectorized only if it is a constant (into a vector splat). The
/// non-constant case is not supported for now and results in the pattern
/// failing to vectorize;
@ -582,7 +582,7 @@ Vectorize::Vectorize(ArrayRef<int64_t> virtualVectorSize) {
vectorSizes = virtualVectorSize;
}
/////// TODO(ntv): Hoist to a VectorizationStrategy.cpp when appropriate.
/////// TODO: Hoist to a VectorizationStrategy.cpp when appropriate.
/////////
namespace {
@ -614,7 +614,7 @@ static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern,
/// load/store MemRefs, this creates a generic vectorization strategy that works
/// for any loop in a hierarchy (outermost, innermost or intermediate).
///
/// TODO(ntv): In the future we should additionally increase the power of the
/// TODO: In the future we should additionally increase the power of the
/// profitability analysis along 3 directions:
/// 1. account for loop extents (both static and parametric + annotations);
/// 2. account for data layout permutations;
@ -636,7 +636,7 @@ static LogicalResult analyzeProfitability(ArrayRef<NestedMatch> matches,
return success();
}
///// end TODO(ntv): Hoist to a VectorizationStrategy.cpp when appropriate /////
///// end TODO: Hoist to a VectorizationStrategy.cpp when appropriate /////
namespace {
@ -741,7 +741,7 @@ static void computeMemoryOpIndices(Operation *op, AffineMap map,
}
}
////// TODO(ntv): Hoist to a VectorizationMaterialize.cpp when appropriate. ////
////// TODO: Hoist to a VectorizationMaterialize.cpp when appropriate. ////
/// Handles the vectorization of load and store MLIR operations.
///
@ -763,7 +763,7 @@ static LogicalResult vectorizeRootOrTerminal(Value iv,
auto memRefType = memoryOp.getMemRef().getType().template cast<MemRefType>();
auto elementType = memRefType.getElementType();
// TODO(ntv): ponder whether we want to further vectorize a vector value.
// TODO: ponder whether we want to further vectorize a vector value.
assert(VectorType::isValidElementType(elementType) &&
"Not a valid vector element type");
auto vectorType = VectorType::get(state->strategy->vectorSizes, elementType);
@ -772,7 +772,7 @@ static LogicalResult vectorizeRootOrTerminal(Value iv,
auto *opInst = memoryOp.getOperation();
// For now, vector.transfers must be aligned, operate only on indices with an
// identity subset of AffineMap and do not change layout.
// TODO(ntv): increase the expressiveness power of vector.transfer operations
// TODO: increase the expressiveness power of vector.transfer operations
// as needed by various targets.
if (auto load = dyn_cast<AffineLoadOp>(opInst)) {
OpBuilder b(opInst);
@ -800,7 +800,7 @@ static LogicalResult vectorizeRootOrTerminal(Value iv,
}
return success();
}
/// end TODO(ntv): Hoist to a VectorizationMaterialize.cpp when appropriate. ///
/// end TODO: Hoist to a VectorizationMaterialize.cpp when appropriate. ///
/// Coarsens the loops bounds and transforms all remaining load and store
/// operations into the appropriate vector.transfer.
@ -937,7 +937,7 @@ static Value vectorizeConstant(Operation *op, ConstantOp constant, Type type) {
/// Returns an operand that has been vectorized to match `state`'s strategy if
/// vectorization is possible with the above logic. Returns nullptr otherwise.
///
/// TODO(ntv): handle more complex cases.
/// TODO: handle more complex cases.
static Value vectorizeOperand(Value operand, Operation *op,
VectorizationState *state) {
LLVM_DEBUG(dbgs() << "\n[early-vect]vectorize operand: " << operand);
@ -956,7 +956,7 @@ static Value vectorizeOperand(Value operand, Operation *op,
LLVM_DEBUG(dbgs() << "-> delayed replacement by: " << res);
return res;
}
// 2. TODO(ntv): broadcast needed.
// 2. TODO: broadcast needed.
if (operand.getType().isa<VectorType>()) {
LLVM_DEBUG(dbgs() << "-> non-vectorizable");
return nullptr;
@ -978,7 +978,7 @@ static Value vectorizeOperand(Value operand, Operation *op,
/// particular operation vectorizes. For now we implement the case distinction
/// here.
/// Returns a vectorized form of an operation or nullptr if vectorization fails.
// TODO(ntv): consider adding a trait to Op to describe how it gets vectorized.
// TODO: consider adding a trait to Op to describe how it gets vectorized.
// Maybe some Ops are not vectorizable or require some tricky logic, we cannot
// do one-off logic here; ideally it would be TableGen'd.
static Operation *vectorizeOneOperation(Operation *opInst,
@ -1044,9 +1044,9 @@ static Operation *vectorizeOneOperation(Operation *opInst,
}
// Create a clone of the op with the proper operands and return types.
// TODO(ntv): The following assumes there is always an op with a fixed
// TODO: The following assumes there is always an op with a fixed
// name that works both in scalar mode and vector mode.
// TODO(ntv): Is it worth considering an Operation.clone operation which
// TODO: Is it worth considering an Operation.clone operation which
// changes the type so we can promote an Operation with less boilerplate?
OpBuilder b(opInst);
OperationState newOp(opInst->getLoc(), opInst->getName().getStringRef(),
@ -1072,7 +1072,7 @@ static LogicalResult vectorizeNonTerminals(VectorizationState *state) {
// Note: we have to exclude terminals because some of their defs may not be
// nested under the vectorization pattern (e.g. constants defined in an
// encompassing scope).
// TODO(ntv): Use a backward slice for terminals, avoid special casing and
// TODO: Use a backward slice for terminals, avoid special casing and
// merge implementations.
for (auto *op : state->roots) {
getForwardSlice(op, &worklist, [state](Operation *op) {
@ -1120,7 +1120,7 @@ static LogicalResult vectorizeRootMatch(NestedMatch m,
// pattern matching, from profitability analysis, from application.
// As a consequence we must check that each root pattern is still
// vectorizable. If a pattern is not vectorizable anymore, we just skip it.
// TODO(ntv): implement a non-greedy profitability analysis that keeps only
// TODO: implement a non-greedy profitability analysis that keeps only
// non-intersecting patterns.
if (!isVectorizableLoopBody(loop, vectorTransferPattern())) {
LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ loop is not vectorizable");
@ -1162,7 +1162,7 @@ static LogicalResult vectorizeRootMatch(NestedMatch m,
// 2. Vectorize operations reached by use-def chains from root except the
// terminals (store operations) that need to be post-processed separately.
// TODO(ntv): add more as we expand.
// TODO: add more as we expand.
if (failed(vectorizeNonTerminals(&state))) {
LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed vectorizeNonTerminals");
return guard.failure();
@ -1172,7 +1172,7 @@ static LogicalResult vectorizeRootMatch(NestedMatch m,
// Note: we have to post-process terminals because some of their defs may not
// be nested under the vectorization pattern (e.g. constants defined in an
// encompassing scope).
// TODO(ntv): Use a backward slice for terminals, avoid special casing and
// TODO: Use a backward slice for terminals, avoid special casing and
// merge implementations.
for (auto *op : state.terminals) {
if (!vectorizeOneOperation(op, &state)) { // nullptr == failure
@ -1221,7 +1221,7 @@ void Vectorize::runOnFunction() {
// This automatically prunes intersecting matches.
for (auto m : matches) {
VectorizationStrategy strategy;
// TODO(ntv): depending on profitability, elect to reduce the vector size.
// TODO: depending on profitability, elect to reduce the vector size.
strategy.vectorSizes.assign(vectorSizes.begin(), vectorSizes.end());
if (failed(analyzeProfitability(m.getMatchedChildren(), 1, patternDepth,
&strategy))) {
@ -1229,10 +1229,10 @@ void Vectorize::runOnFunction() {
}
vectorizeLoopIfProfitable(m.getMatchedOperation(), 0, patternDepth,
&strategy);
// TODO(ntv): if pattern does not apply, report it; alter the
// TODO: if pattern does not apply, report it; alter the
// cost/benefit.
vectorizeRootMatch(m, &strategy);
// TODO(ntv): some diagnostics if failure to vectorize occurs.
// TODO: some diagnostics if failure to vectorize occurs.
}
}
LLVM_DEBUG(dbgs() << "\n");

View File

@ -87,7 +87,7 @@ LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
return launchOp.emitOpError("kernel function is missing the '")
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
// TODO(ntv,zinenko,herhut): if the kernel function has been converted to
// TODO: if the kernel function has been converted to
// the LLVM dialect but the caller hasn't (which happens during the
// separate compilation), do not check type correspondence as it would
// require the verifier to be aware of the LLVM type conversion.

View File

@ -156,7 +156,7 @@ static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
map.map(operand.value(), entryBlock.getArgument(operand.index()));
// Clone the region of the gpu.launch operation into the gpu.func operation.
// TODO(ravishankarm): If cloneInto can be modified such that if a mapping for
// TODO: If cloneInto can be modified such that if a mapping for
// a block exists, that block will be used to clone operations into (at the
// end of the block), instead of creating a new block, this would be much
// cleaner.

View File

@ -80,7 +80,7 @@ MappingLevel &operator++(MappingLevel &mappingLevel) {
/// Computed the hardware id to use for a given mapping level. Will
/// assign x,y and z hardware ids for the first 3 dimensions and use
/// sequential after.
/// TODO(ravishankarm/herhut) : Make this use x for the inner-most loop that is
/// TODO: Make this use x for the inner-most loop that is
/// distributed to map to x, the next innermost to y and the next innermost to
/// z.
static gpu::Processor getHardwareIdForMapping(MappingLevel level,

View File

@ -978,7 +978,7 @@ static LogicalResult verify(DialectCastOp op) {
// * if we allow memrefs to cast from/to bare pointers, some users might
// alternatively want metadata that only present in the descriptor.
//
// TODO(timshen): re-evaluate the memref cast design when it's needed.
// TODO: re-evaluate the memref cast design when it's needed.
return op.emitOpError("type must be non-index integer types, float types, "
"or vector of mentioned types.");
};

View File

@ -141,7 +141,7 @@ static LogicalResult verify(MmaOp op) {
// NVVMDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//
// TODO(herhut): This should be the llvm.nvvm dialect once this is supported.
// TODO: This should be the llvm.nvvm dialect once this is supported.
NVVMDialect::NVVMDialect(MLIRContext *context) : Dialect("nvvm", context) {
addOperations<
#define GET_OP_LIST

View File

@ -84,7 +84,7 @@ static ParseResult parseROCDLMubufStoreOp(OpAsmParser &parser,
// ROCDLDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//
// TODO(herhut): This should be the llvm.rocdl dialect once this is supported.
// TODO: This should be the llvm.rocdl dialect once this is supported.
ROCDLDialect::ROCDLDialect(MLIRContext *context) : Dialect("rocdl", context) {
addOperations<
#define GET_OP_LIST

View File

@ -223,7 +223,7 @@ LinalgDependenceGraph::findOperationsWithCoveringDependences(
SmallVector<Operation *, 8> res;
// Consider an intermediate interleaved `interim` op, look for any dependence
// to an aliasing view on a src -> op -> dst path.
// TODO(ntv) we are not considering paths yet, just interleaved positions.
// TODO: we are not considering paths yet, just interleaved positions.
for (auto dt : types) {
for (auto dependence : getDependencesFrom(src, dt)) {
auto interimPos = linalgOpPositions.lookup(dependence.dependentOpView.op);

View File

@ -226,7 +226,7 @@ Operation *mlir::edsc::ops::linalg_generic_conv_nhwc(Value vI, Value vW,
ArrayRef<int> strides,
ArrayRef<int> dilations) {
MLIRContext *ctx = ScopedContext::getContext();
// TODO(ntv) some template magic to make everything rank-polymorphic.
// TODO: some template magic to make everything rank-polymorphic.
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
@ -259,7 +259,7 @@ Operation *mlir::edsc::ops::linalg_generic_dilated_conv_nhwc(
Value vI, Value vW, Value vO, int depth_multiplier, ArrayRef<int> strides,
ArrayRef<int> dilations) {
MLIRContext *ctx = ScopedContext::getContext();
// TODO(ntv) some template magic to make everything rank-polymorphic.
// TODO: some template magic to make everything rank-polymorphic.
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");

View File

@ -447,7 +447,7 @@ static bool isReshapableDimBand(unsigned dim, unsigned extent,
// proper symbol in the AffineExpr of a stride.
if (ShapedType::isDynamic(sizes[dim + 1]))
return false;
// TODO(ntv) Refine this by passing the proper nDims and nSymbols so we can
// TODO: Refine this by passing the proper nDims and nSymbols so we can
// simplify on the fly and catch more reshapable cases.
if (strides[idx] != strides[idx + 1] * sizes[idx + 1])
return false;
@ -520,7 +520,7 @@ computeReshapeCollapsedType(MemRefType type,
/// Helper functions assert Attribute of the proper type in attr and returns the
/// corresponding vector.
/// TODO(rridle,ntv) this should be evolved into a generic
/// TODO: this should be evolved into a generic
/// `getRangeOfType<AffineMap>(ArrayAttr attrs)` that does not copy.
static SmallVector<AffineMap, 4> getAffineMaps(ArrayAttr attrs) {
return llvm::to_vector<8>(llvm::map_range(
@ -713,7 +713,7 @@ static LogicalResult verify(TensorReshapeOp op) {
if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
return failure();
auto maps = getAffineMaps(op.reassociation());
// TODO(ntv): expanding a ? with a non-constant is under-specified. Error
// TODO: expanding a ? with a non-constant is under-specified. Error
// out.
RankedTensorType expectedType =
computeTensorReshapeCollapsedType(expandedType, maps);
@ -744,7 +744,7 @@ void mlir::linalg::SliceOp::build(OpBuilder &b, OperationState &result,
(void)res;
unsigned rank = memRefType.getRank();
// TODO(ntv): propagate static size and stride information when available.
// TODO: propagate static size and stride information when available.
SmallVector<int64_t, 4> sizes(rank, -1); // -1 encodes dynamic size.
result.addTypes({MemRefType::Builder(memRefType)
.setShape(sizes)
@ -1075,7 +1075,7 @@ mlir::linalg::weightedPoolingInputIndex(PoolingOp op,
SmallVector<AffineExpr, 4> res;
res.reserve(outputDims.size());
for (unsigned i = 0, e = outputDims.size(); i < e; ++i) {
// TODO(ntv): add a level of indirection to linalg.generic.
// TODO: add a level of indirection to linalg.generic.
auto expr = op.getStride(i) * outputDims[i] +
op.getDilation(i) * windowDims[i] - op.getLowPad(i);
res.push_back(expr);
@ -1137,7 +1137,7 @@ std::string mlir::linalg::generateLibraryCallName(Operation *op) {
return ss.str();
}
// TODO(ntv, rriddle): Consider making all this boilerplate easy to autogenerate
// TODO: Consider making all this boilerplate easy to autogenerate
// with Tablegen. This seems a desirable property in the context of OpInterfaces
// where a Linalg "named" op **isa** LinalgOp.
LogicalResult ConvOp::fold(ArrayRef<Attribute>,

View File

@ -279,12 +279,12 @@ bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
// TODO(ntv): add a level of indirection to linalg.generic.
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
// TODO(ntv): add a level of indirection to linalg.generic.
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
@ -403,7 +403,7 @@ static void fuseLinalgOpsGreedily(FuncOp f) {
linalgOps.push_back(op);
});
// TODO(pifon, ntv): LinalgDependenceGraph should be able to update itself.
// TODO: LinalgDependenceGraph should be able to update itself.
// The current naive and expensive reconstruction of the graph should be
// removed.
for (auto *op : llvm::reverse(linalgOps)) {

View File

@ -165,7 +165,7 @@ void emitScalarImplementation(ArrayRef<Value> allIvs,
SmallVector<Value, 4> indexedValues;
indexedValues.reserve(nInputs + nOutputs);
// TODO(mravishankar): Avoid the loads if the corresponding argument of the
// TODO: Avoid the loads if the corresponding argument of the
// region has no uses.
// 1.a. Emit load from input views.
for (unsigned i = 0; i < nInputs; ++i) {
@ -183,7 +183,7 @@ void emitScalarImplementation(ArrayRef<Value> allIvs,
IndexedValueType(linalgOp.getOutputBuffer(i))(indexing));
}
// TODO(ntv): When a region inliner exists, use it.
// TODO: When a region inliner exists, use it.
// 2. Inline region, currently only works for a single basic block.
// 3. Emit store.
SmallVector<SmallVector<Value, 8>, 8> indexing;
@ -246,7 +246,7 @@ void emitScalarImplementation(ArrayRef<Value> allIvs, DotOp dotOp) {
template <typename IndexedValueType>
Value getConvOpInput(ConvOp convOp, StdIndexedValue im,
MutableArrayRef<Value> imIdx) {
// TODO(ntv): add a level of indirection to linalg.generic.
// TODO: add a level of indirection to linalg.generic.
if (!convOp.padding())
return im(imIdx);
@ -409,7 +409,7 @@ static void emitScalarImplementation(ArrayRef<Value> allIvs,
for (unsigned i = 0; i < nLoops; ++i)
indexedValues.push_back(allIvs[i]);
// TODO(mravishankar): Avoid the loads if the corresponding argument of the
// TODO: Avoid the loads if the corresponding argument of the
// region has no uses.
// 1.a. Emit load from input views.
for (unsigned i = 0; i < nInputs; ++i) {
@ -428,7 +428,7 @@ static void emitScalarImplementation(ArrayRef<Value> allIvs,
IndexedValueType(indexedGenericOp.getOutputBuffer(i))(indexing));
}
// TODO(ntv): When a region inliner exists, use it.
// TODO: When a region inliner exists, use it.
// 2. Inline region, currently only works for a single basic block.
// 3. Emit store.
SmallVector<SmallVector<Value, 8>, 8> indexing;
@ -560,7 +560,7 @@ static void lowerLinalgToLoopsImpl(FuncOp funcOp, MLIRContext *context) {
OwningRewritePatternList patterns;
// Canonicalization and folding patterns applied greedily allow cleaning up
// the emitted IR on the fly.
// TODO(ntv) fold view and subview ops?
// TODO: fold view and subview ops?
insertPatterns<LoopType,
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"

View File

@ -316,7 +316,7 @@ promoteSubViews(OpBuilder &b, LinalgOp op,
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
// TODO(ntv): add a level of indirection to linalg.generic.
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return {};
}

View File

@ -161,7 +161,7 @@ struct TileCheck : public AffineExprVisitor<TileCheck> {
// }
// }
//
// TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices
// TODO: Investigate whether mixing implicit and explicit indices
// does not lead to losing information.
static void transformIndexedGenericOpIndices(
OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
@ -176,7 +176,7 @@ static void transformIndexedGenericOpIndices(
// that refers to an existing function symbol. The `fun` function call will be
// inserted in the loop body in that case.
//
// TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute.
// TODO: Add support for `linalg.indexed_generic` with `fun` attribute.
auto &region = indexedGenericOp.region();
if (region.empty()) {
indexedGenericOp.emitOpError("expected a region");

View File

@ -83,7 +83,7 @@ LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
if (!genericOp || !::isRowMajorMatmul(genericOp))
return failure();
// TODO(ntv): non-identity layout.
// TODO: non-identity layout.
auto isStaticMemRefWithIdentityLayout = [](Value v) {
auto m = v.getType().dyn_cast<MemRefType>();
if (!m || !m.hasStaticShape() || !m.getAffineMaps().empty())

View File

@ -181,7 +181,7 @@ void GenerateLoopNest<AffineForOp>::doit(
/// of the innermost loop is populated by `bodyBuilderFn` that accepts a range
/// of induction variables for all loops. `ivStorage` is used to store the
/// partial list of induction variables.
// TODO(zinenko,ntv): this function can be made iterative instead. However, it
// TODO: this function can be made iterative instead. However, it
// will have at most as many recursive calls as nested loops, which rarely
// exceeds 10.
static void

View File

@ -61,7 +61,7 @@ static bool getDefaultStorageParams(unsigned numBits, bool narrowRange,
// point is derived from the shifted range, and the scale isn't changed. As
// a consequence some values, which are supposed in the original [rmin, rmax]
// range will be outside the shifted range and be clamped during quantization.
// TODO(fengliuai): we should nudge the scale as well, but that requires the
// TODO: we should nudge the scale as well, but that requires the
// fake quant op used in the training to use the nudged scale as well.
static void getNudgedScaleAndZeroPoint(int64_t qmin, int64_t qmax, double rmin,
double rmax, double &scale,

View File

@ -137,7 +137,7 @@ Attribute mlir::quant::quantizeAttr(Attribute realValue,
quantizedElementType.dyn_cast<UniformQuantizedPerAxisType>()) {
UniformQuantizedPerAxisValueConverter converter(uniformQuantizedPerAxis);
auto converted = converter.convert(realValue);
// TODO(fengliuai): why we need this outConvertedType? remove it?
// TODO: why we need this outConvertedType? remove it?
if (converted) {
outConvertedType = converted.getType();
}

View File

@ -68,7 +68,7 @@ UniformQuantizedPerAxisValueConverter::convert(Attribute realValue) {
if (auto attr = realValue.dyn_cast<DenseFPElementsAttr>()) {
return convert(attr);
}
// TODO(fengliuai): handles sparse elements attribute
// TODO: handles sparse elements attribute
return nullptr;
}

View File

@ -187,7 +187,7 @@ public:
SDBM SDBM::get(ArrayRef<SDBMExpr> inequalities, ArrayRef<SDBMExpr> equalities) {
SDBM result;
// TODO(zinenko): consider detecting equalities in the list of inequalities.
// TODO: consider detecting equalities in the list of inequalities.
// This is potentially expensive and requires to
// - create a list of negated inequalities (may allocate under lock);
// - perform a pairwise comparison of direct and negated inequalities;
@ -289,7 +289,7 @@ SDBM SDBM::get(ArrayRef<SDBMExpr> inequalities, ArrayRef<SDBMExpr> equalities) {
// value is positive, the set defined by SDBM is trivially empty. We store
// this value anyway and continue processing to maintain the correspondence
// between the matrix form and the list-of-SDBMExpr form.
// TODO(zinenko): we may want to reconsider this once we have canonicalization
// TODO: we may want to reconsider this once we have canonicalization
// or simplification in place
auto updateMatrix = [](SDBM &sdbm, const SDBMBuilderResult &r) {
for (auto positivePos : r.positivePos) {

View File

@ -451,7 +451,7 @@ Optional<SDBMExpr> SDBMExpr::tryConvertAffineExpr(AffineExpr affine) {
if (pattern.match(expr)) {
if (SDBMExpr converted = visit(x.matched())) {
if (auto varConverted = converted.dyn_cast<SDBMTermExpr>())
// TODO(ntv): return varConverted.stripe(C.getConstantValue());
// TODO: return varConverted.stripe(C.getConstantValue());
return SDBMStripeExpr::get(
varConverted,
SDBMConstantExpr::get(dialect,

View File

@ -69,11 +69,11 @@ struct SPIRVInlinerInterface : public DialectInlinerInterface {
/// operation registered to the current dialect.
bool isLegalToInline(Operation *op, Region *dest,
BlockAndValueMapping &) const final {
// TODO(antiagainst): Enable inlining structured control flows with return.
// TODO: Enable inlining structured control flows with return.
if ((isa<spirv::SelectionOp, spirv::LoopOp>(op)) &&
containsReturn(op->getRegion(0)))
return false;
// TODO(antiagainst): we need to filter OpKill here to avoid inlining it to
// TODO: we need to filter OpKill here to avoid inlining it to
// a loop continue construct:
// https://github.com/KhronosGroup/SPIRV-Headers/issues/86
// However OpKill is fragment shader specific and we don't support it yet.
@ -330,7 +330,7 @@ static Type parseCooperativeMatrixType(SPIRVDialect const &dialect,
return CooperativeMatrixNVType::get(elementTy, scope, dims[0], dims[1]);
}
// TODO(ravishankarm) : Reorder methods to be utilities first and parse*Type
// TODO: Reorder methods to be utilities first and parse*Type
// methods in alphabetical order
//
// storage-class ::= `UniformConstant`
@ -438,7 +438,7 @@ static Optional<ValTy> parseAndVerify(SPIRVDialect const &dialect,
template <>
Optional<Type> parseAndVerify<Type>(SPIRVDialect const &dialect,
DialectAsmParser &parser) {
// TODO(ravishankarm): Further verify that the element type can be sampled
// TODO: Further verify that the element type can be sampled
auto ty = parseAndVerifyType(dialect, parser);
if (!ty)
return llvm::None;
@ -1054,7 +1054,7 @@ LogicalResult SPIRVDialect::verifyOperationAttribute(Operation *op,
StringRef symbol = attribute.first.strref();
Attribute attr = attribute.second;
// TODO(antiagainst): figure out a way to generate the description from the
// TODO: figure out a way to generate the description from the
// StructAttr definition.
if (symbol == spirv::getEntryPointABIAttrName()) {
if (!attr.isa<spirv::EntryPointABIAttr>())

View File

@ -89,7 +89,7 @@ static LogicalResult checkCapabilityRequirements(
Type SPIRVTypeConverter::getIndexType(MLIRContext *context) {
// Convert to 32-bit integers for now. Might need a way to control this in
// future.
// TODO(ravishankarm): It is probably better to make it 64-bit integers. To
// TODO: It is probably better to make it 64-bit integers. To
// this some support is needed in SPIR-V dialect for Conversion
// instructions. The Vulkan spec requires the builtins like
// GlobalInvocationID, etc. to be 32-bit (unsigned) integers which should be
@ -104,7 +104,7 @@ Type SPIRVTypeConverter::getIndexType(MLIRContext *context) {
/// behind the number assignments; we try to follow NVVM conventions and largely
/// give common storage classes a smaller number. The hope is use symbolic
/// memory space representation eventually after memref supports it.
// TODO(antiagainst): swap Generic and StorageBuffer assignment to be more akin
// TODO: swap Generic and StorageBuffer assignment to be more akin
// to NVVM.
#define STORAGE_SPACE_MAP_LIST(MAP_FN) \
MAP_FN(spirv::StorageClass::Generic, 1) \
@ -155,7 +155,7 @@ SPIRVTypeConverter::getStorageClassForMemorySpace(unsigned space) {
#undef STORAGE_SPACE_MAP_LIST
// TODO(ravishankarm): This is a utility function that should probably be
// TODO: This is a utility function that should probably be
// exposed by the SPIR-V dialect. Keeping it local till the use case arises.
static Optional<int64_t> getTypeNumBytes(Type t) {
if (t.isa<spirv::ScalarType>()) {
@ -239,7 +239,7 @@ convertScalarType(const spirv::TargetEnv &targetEnv, spirv::ScalarType type,
// Otherwise we need to adjust the type, which really means adjusting the
// bitwidth given this is a scalar type.
// TODO(antiagainst): We are unconditionally converting the bitwidth here,
// TODO: We are unconditionally converting the bitwidth here,
// this might be okay for non-interface types (i.e., types used in
// Private/Function storage classes), but not for interface types (i.e.,
// types used in StorageBuffer/Uniform/PushConstant/etc. storage classes).
@ -263,7 +263,7 @@ static Optional<Type>
convertVectorType(const spirv::TargetEnv &targetEnv, VectorType type,
Optional<spirv::StorageClass> storageClass = {}) {
if (!spirv::CompositeType::isValid(type)) {
// TODO(antiagainst): One-element vector types can be translated into scalar
// TODO: One-element vector types can be translated into scalar
// types. Vector types with more than four elements can be translated into
// array types.
LLVM_DEBUG(llvm::dbgs()
@ -297,7 +297,7 @@ convertVectorType(const spirv::TargetEnv &targetEnv, VectorType type,
/// manipulate, like what we do for vectors.
static Optional<Type> convertTensorType(const spirv::TargetEnv &targetEnv,
TensorType type) {
// TODO(ravishankarm) : Handle dynamic shapes.
// TODO: Handle dynamic shapes.
if (!type.hasStaticShape()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: dynamic shape unimplemented\n");
@ -406,7 +406,7 @@ SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr)
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
// were tried before.
//
// TODO(antiagainst): this assumes that the SPIR-V types are valid to use in
// TODO: this assumes that the SPIR-V types are valid to use in
// the given target environment, which should be the case if the whole
// pipeline is driven by the same target environment. Still, we probably still
// want to validate and convert to be safe.
@ -462,7 +462,7 @@ LogicalResult
FuncOpConversion::matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
auto fnType = funcOp.getType();
// TODO(antiagainst): support converting functions with one result.
// TODO: support converting functions with one result.
if (fnType.getNumResults())
return failure();

View File

@ -27,7 +27,7 @@
using namespace mlir;
// TODO(antiagainst): generate these strings using ODS.
// TODO: generate these strings using ODS.
static constexpr const char kAlignmentAttrName[] = "alignment";
static constexpr const char kBranchWeightAttrName[] = "branch_weights";
static constexpr const char kCallee[] = "callee";
@ -313,7 +313,7 @@ static LogicalResult verifyLoadStorePtrAndValTypes(LoadStoreOpTy op, Value ptr,
// ODS already checks ptr is spirv::PointerType. Just check that the pointee
// type of the pointer and the type of the value are the same
//
// TODO(ravishankarm): Check that the value type satisfies restrictions of
// TODO: Check that the value type satisfies restrictions of
// SPIR-V OpLoad/OpStore operations
if (val.getType() !=
ptr.getType().cast<spirv::PointerType>().getPointeeType()) {
@ -618,7 +618,7 @@ static LogicalResult verifyGroupNonUniformArithmeticOp(Operation *groupOp) {
Operation *sizeOp = groupOp->getOperand(1).getDefiningOp();
int32_t clusterSize = 0;
// TODO(antiagainst): support specialization constant here.
// TODO: support specialization constant here.
if (failed(extractValueFromConstOp(sizeOp, clusterSize)))
return groupOp->emitOpError(
"cluster size operand must come from a constant op");
@ -753,7 +753,7 @@ static Type getElementPtrType(Type type, ValueRange indices, Location baseLoc) {
return nullptr;
}
// TODO(denis0x0D): this should be relaxed to allow
// TODO: this should be relaxed to allow
// integer literals of other bitwidths.
if (failed(extractValueFromConstOp(op, index))) {
emitError(baseLoc,
@ -948,7 +948,7 @@ static LogicalResult verify(spirv::AtomicCompareExchangeWeakOp atomOp) {
"as the op result type, but found ")
<< pointeeType << " vs " << atomOp.getType();
// TODO(antiagainst): Unequal cannot be set to Release or Acquire and Release.
// TODO: Unequal cannot be set to Release or Acquire and Release.
// In addition, Unequal cannot be set to a stronger memory-order then Equal.
return success();
@ -1384,7 +1384,7 @@ bool spirv::ConstantOp::isBuildableWith(Type type) {
if (type.getKind() >= Type::FIRST_SPIRV_TYPE &&
type.getKind() <= spirv::TypeKind::LAST_SPIRV_TYPE) {
// TODO(antiagainst): support constant struct
// TODO: support constant struct
return type.isa<spirv::ArrayType>();
}
@ -1633,7 +1633,7 @@ LogicalResult spirv::FuncOp::verifyBody() {
return WalkResult::advance();
});
// TODO(antiagainst): verify other bits like linkage type.
// TODO: verify other bits like linkage type.
return failure(walkResult.wasInterrupted());
}
@ -1939,7 +1939,7 @@ void spirv::LoopOp::build(OpBuilder &builder, OperationState &state) {
}
static ParseResult parseLoopOp(OpAsmParser &parser, OperationState &state) {
// TODO(antiagainst): support loop control properly
// TODO: support loop control properly
Builder builder = parser.getBuilder();
state.addAttribute("loop_control",
builder.getI32IntegerAttr(
@ -2222,7 +2222,7 @@ static LogicalResult verify(spirv::ModuleOp moduleOp) {
if (funcOp.isExternal())
return op.emitError("'spv.module' cannot contain external functions");
// TODO(antiagainst): move this check to spv.func.
// TODO: move this check to spv.func.
for (auto &block : funcOp)
for (auto &op : block) {
if (op.getDialect() != dialect)
@ -2302,7 +2302,7 @@ static LogicalResult verify(spirv::SelectOp op) {
static ParseResult parseSelectionOp(OpAsmParser &parser,
OperationState &state) {
// TODO(antiagainst): support selection control properly
// TODO: support selection control properly
Builder builder = parser.getBuilder();
state.addAttribute("selection_control",
builder.getI32IntegerAttr(
@ -2536,7 +2536,7 @@ static LogicalResult verify(spirv::UnreachableOp unreachableOp) {
if (block->hasNoPredecessors())
return success();
// TODO(antiagainst): further verification needs to analyze reachability from
// TODO: further verification needs to analyze reachability from
// the entry block.
return success();
@ -2626,7 +2626,7 @@ static LogicalResult verify(spirv::VariableOp varOp) {
"constant or spv.globalVariable op");
}
// TODO(antiagainst): generate these strings using ODS.
// TODO: generate these strings using ODS.
auto *op = varOp.getOperation();
auto descriptorSetName = llvm::convertToSnakeFromCamelCase(
stringifyDecoration(spirv::Decoration::DescriptorSet));

View File

@ -86,7 +86,7 @@ spirv::getRecursiveImpliedCapabilities(Capability cap) {
llvm::SetVector<Capability, SmallVector<Capability, 0>> allCaps(
directCaps.begin(), directCaps.end());
// TODO(antiagainst): This is insufficient; find a better way to handle this
// TODO: This is insufficient; find a better way to handle this
// (e.g., using static lists) if this turns out to be a bottleneck.
for (unsigned i = 0; i < allCaps.size(); ++i)
for (Capability c : getDirectImpliedCapabilities(allCaps[i]))

View File

@ -91,7 +91,7 @@ using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO(antiagainst): clean up created ops on errors
// TODO: clean up created ops on errors
class Deserializer {
public:
/// Creates a deserializer for the given SPIR-V `binary` module.
@ -420,7 +420,7 @@ private:
/// MLIRContext to create SPIR-V ModuleOp into.
MLIRContext *context;
// TODO(antiagainst): create Location subclass for binary blob
// TODO: create Location subclass for binary blob
Location unknownLoc;
/// The SPIR-V ModuleOp.
@ -602,7 +602,7 @@ LogicalResult Deserializer::processHeader() {
<< majorVersion;
}
// TODO(antiagainst): generator number, bound, schema
// TODO: generator number, bound, schema
curOffset = spirv::kHeaderWordCount;
return success();
}
@ -676,7 +676,7 @@ LogicalResult Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) {
}
LogicalResult Deserializer::processDecoration(ArrayRef<uint32_t> words) {
// TODO : This function should also be auto-generated. For now, since only a
// TODO: This function should also be auto-generated. For now, since only a
// few decorations are processed/handled in a meaningful manner, going with a
// manual implementation.
if (words.size() < 2) {
@ -804,7 +804,7 @@ LogicalResult Deserializer::processFunction(ArrayRef<uint32_t> operands) {
return emitError(unknownLoc, "unknown Function Control: ") << operands[2];
}
if (functionControl.getValue() != spirv::FunctionControl::None) {
/// TODO : Handle different function controls
/// TODO: Handle different function controls
return emitError(unknownLoc, "unhandled Function Control: '")
<< spirv::stringifyFunctionControl(functionControl.getValue())
<< "'";
@ -1197,7 +1197,7 @@ LogicalResult Deserializer::processArrayType(ArrayRef<uint32_t> operands) {
}
unsigned count = 0;
// TODO(antiagainst): The count can also come frome a specialization constant.
// TODO: The count can also come frome a specialization constant.
auto countInfo = getConstant(operands[2]);
if (!countInfo) {
return emitError(unknownLoc, "OpTypeArray count <id> ")
@ -1336,7 +1336,7 @@ LogicalResult Deserializer::processStructType(ArrayRef<uint32_t> operands) {
}
typeMap[operands[0]] =
spirv::StructType::get(memberTypes, offsetInfo, memberDecorationsInfo);
// TODO(ravishankarm): Update StructType to have member name as attribute as
// TODO: Update StructType to have member name as attribute as
// well.
return success();
}
@ -1823,7 +1823,7 @@ spirv::LoopOp ControlFlowStructurizer::createLoopOp() {
// merge block so that the newly created LoopOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
// TODO(antiagainst): handle loop control properly
// TODO: handle loop control properly
auto loopOp = builder.create<spirv::LoopOp>(location);
loopOp.addEntryAndMergeBlock();
@ -1966,7 +1966,7 @@ LogicalResult ControlFlowStructurizer::structurizeImpl() {
// selection/loop. If so, they will be recorded within blockMergeInfo.
// We need to update the pointers there to the newly remapped ones so we can
// continue structurizing them later.
// TODO(antiagainst): The asserts in the following assumes input SPIR-V blob
// TODO: The asserts in the following assumes input SPIR-V blob
// forms correctly nested selection/loop constructs. We should relax this
// and support error cases better.
auto it = blockMergeInfo.find(block);

View File

@ -283,7 +283,7 @@ private:
/// iterates the DenseElementsAttr to construct the constant array, and
/// returns the result <id> associated with it. Returns 0 if failed. Note
/// that the size of `index` must match the rank.
/// TODO(hanchung): Consider to enhance splat elements cases. For splat cases,
/// TODO: Consider to enhance splat elements cases. For splat cases,
/// we don't need to loop over all elements, especially when the splat value
/// is zero. We can use OpConstantNull when the value is zero.
uint32_t prepareDenseElementsConstant(Location loc, Type constType,
@ -511,7 +511,7 @@ LogicalResult Serializer::serialize() {
if (failed(module.verify()))
return failure();
// TODO(antiagainst): handle the other sections
// TODO: handle the other sections
processCapability();
processExtension();
processMemoryModel();
@ -773,7 +773,7 @@ LogicalResult Serializer::processFuncOp(spirv::FuncOp op) {
operands.push_back(resTypeID);
auto funcID = getOrCreateFunctionID(op.getName());
operands.push_back(funcID);
// TODO : Support other function control options.
// TODO: Support other function control options.
operands.push_back(static_cast<uint32_t>(spirv::FunctionControl::None));
operands.push_back(fnTypeID);
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunction, operands);
@ -1136,7 +1136,7 @@ Serializer::prepareBasicType(Location loc, Type type, uint32_t resultID,
return success();
}
// TODO(ravishankarm) : Handle other types.
// TODO: Handle other types.
return emitError(loc, "unhandled type in serialization: ") << type;
}
@ -1229,7 +1229,7 @@ uint32_t Serializer::prepareArrayConstant(Location loc, Type constType,
return resultID;
}
// TODO(hanchung): Turn the below function into iterative function, instead of
// TODO: Turn the below function into iterative function, instead of
// recursive function.
uint32_t
Serializer::prepareDenseElementsConstant(Location loc, Type constType,
@ -1572,7 +1572,7 @@ LogicalResult Serializer::processSelectionOp(spirv::SelectionOp selectionOp) {
auto emitSelectionMerge = [&]() {
emitDebugLine(functionBody, loc);
lastProcessedWasMergeInst = true;
// TODO(antiagainst): properly support selection control here
// TODO: properly support selection control here
encodeInstructionInto(
functionBody, spirv::Opcode::OpSelectionMerge,
{mergeID, static_cast<uint32_t>(spirv::SelectionControl::None)});
@ -1635,7 +1635,7 @@ LogicalResult Serializer::processLoopOp(spirv::LoopOp loopOp) {
auto emitLoopMerge = [&]() {
emitDebugLine(functionBody, loc);
lastProcessedWasMergeInst = true;
// TODO(antiagainst): properly support loop control here
// TODO: properly support loop control here
encodeInstructionInto(
functionBody, spirv::Opcode::OpLoopMerge,
{mergeID, continueID, static_cast<uint32_t>(spirv::LoopControl::None)});

View File

@ -72,13 +72,13 @@ getInterfaceVariables(spirv::FuncOp funcOp,
}
llvm::SetVector<Operation *> interfaceVarSet;
// TODO(ravishankarm) : This should in reality traverse the entry function
// TODO: This should in reality traverse the entry function
// call graph and collect all the interfaces. For now, just traverse the
// instructions in this function.
funcOp.walk([&](spirv::AddressOfOp addressOfOp) {
auto var =
module.lookupSymbol<spirv::GlobalVariableOp>(addressOfOp.variable());
// TODO(antiagainst): Per SPIR-V spec: "Before version 1.4, the interfaces
// TODO: Per SPIR-V spec: "Before version 1.4, the interfaces
// storage classes are limited to the Input and Output storage classes.
// Starting with version 1.4, the interfaces storage classes are all
// storage classes used in declaring all global variables referenced by the
@ -158,7 +158,7 @@ LogicalResult ProcessInterfaceVarABI::matchAndRewrite(
ConversionPatternRewriter &rewriter) const {
if (!funcOp.getAttrOfType<spirv::EntryPointABIAttr>(
spirv::getEntryPointABIAttrName())) {
// TODO(ravishankarm) : Non-entry point functions are not handled.
// TODO: Non-entry point functions are not handled.
return failure();
}
TypeConverter::SignatureConversion signatureConverter(
@ -169,7 +169,7 @@ LogicalResult ProcessInterfaceVarABI::matchAndRewrite(
auto abiInfo = funcOp.getArgAttrOfType<spirv::InterfaceVarABIAttr>(
argType.index(), attrName);
if (!abiInfo) {
// TODO(ravishankarm) : For non-entry point functions, it should be legal
// TODO: For non-entry point functions, it should be legal
// to pass around scalar/vector values and return a scalar/vector. For now
// non-entry point functions are not handled in this ABI lowering and will
// produce an error.
@ -187,7 +187,7 @@ LogicalResult ProcessInterfaceVarABI::matchAndRewrite(
rewriter.create<spirv::AddressOfOp>(funcOp.getLoc(), var);
// Check if the arg is a scalar or vector type. In that case, the value
// needs to be loaded into registers.
// TODO(ravishankarm) : This is loading value of the scalar into registers
// TODO: This is loading value of the scalar into registers
// at the start of the function. It is probably better to do the load just
// before the use. There might be multiple loads and currently there is no
// easy way to replace all uses with a sequence of operations.

View File

@ -163,7 +163,7 @@ void UpdateVCEPass::runOnOperation() {
if (walkResult.wasInterrupted())
return signalPassFailure();
// TODO(antiagainst): verify that the deduced version is consistent with
// TODO: verify that the deduced version is consistent with
// SPIR-V ops' maximal version requirements.
auto triple = spirv::VerCapExtAttr::get(

View File

@ -896,7 +896,7 @@ OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
// TODO(gcmn) We could actually do some intelligent things if we know only one
// TODO: We could actually do some intelligent things if we know only one
// of the operands, but it's inf or nan.
if (!lhs || !rhs)
return {};

View File

@ -159,7 +159,7 @@ static ParseResult parseContractionOp(OpAsmParser &parser,
Type resultType;
auto loc = parser.getCurrentLocation();
DictionaryAttr dictAttr;
// TODO(andydavis, ntv) Unify linalg op attribute parsing.
// TODO: Unify linalg op attribute parsing.
if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
parser.parseOperand(lhsInfo) || parser.parseComma() ||
parser.parseOperand(rhsInfo) || parser.parseComma() ||
@ -192,7 +192,7 @@ static ParseResult parseContractionOp(OpAsmParser &parser,
}
static void print(OpAsmPrinter &p, ContractionOp op) {
// TODO(andydavis, ntv) Unify printing code with linalg ops.
// TODO: Unify printing code with linalg ops.
auto attrNames = op.getTraitAttrNames();
llvm::StringSet<> traitAttrsSet;
traitAttrsSet.insert(attrNames.begin(), attrNames.end());
@ -592,7 +592,7 @@ isValidExtractOrInsertSlicesType(Operation *op, VectorType vectorType,
TupleType tupleType, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
// Check for non-unit strides.
// TODO(b/144845578) Support non-1 strides.
// TODO: Support non-1 strides.
if (llvm::any_of(strides, [](int64_t s) { return s != 1; }))
return op->emitError("requires unit strides");
// Check that 'vectorType' rank matches rank of tuple element vectors.
@ -864,7 +864,7 @@ void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
result.addAttribute(getStridesAttrName(), stridesAttr);
}
// TODO(ntv) Should be moved to Tablegen Confined attributes.
// TODO: Should be moved to Tablegen Confined attributes.
template <typename OpType>
static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
ArrayAttr arrayAttr,
@ -1331,7 +1331,7 @@ static LogicalResult verifyTransferOp(Operation *op, MemRefType memrefType,
if (memrefVecEltRank > resultVecRank)
return op->emitOpError(
"requires memref vector element and vector result ranks to match.");
// TODO(b/146516564) Move this to isSuffix in Vector/Utils.h.
// TODO: Move this to isSuffix in Vector/Utils.h.
unsigned rankOffset = resultVecRank - memrefVecEltRank;
auto memrefVecEltShape = memrefVectorElementType.getShape();
auto resultVecShape = vectorType.getShape();

View File

@ -101,7 +101,7 @@ static Type adjustType(VectorType tp, int64_t index) {
}
// Helper method to possibly drop a dimension in a load.
// TODO(ajcbik): use a reshaping vector load (and share lowering code)
// TODO
static Value reshapeLoad(Location loc, Value val, VectorType type,
int64_t index, int64_t pos,
PatternRewriter &rewriter) {
@ -129,7 +129,7 @@ static Value reshapeLoad(Location loc, Value val, VectorType type,
}
// Helper method to possibly drop a dimension in a store.
// TODO(ajcbik): use a reshaping vector store (and share lowering code)
// TODO
static Value reshapeStore(Location loc, Value val, Value result,
VectorType type, int64_t index, int64_t pos,
PatternRewriter &rewriter) {
@ -182,7 +182,7 @@ static void getMappedElements(const DenseMap<int64_t, int64_t> &indexMap,
// Returns a tuple type with vector element types for each resulting slice
// of 'vectorType' unrolled by 'sizes' and 'strides'.
// TODO(andydavis) Move this to a utility function and share it with
// TODO: Move this to a utility function and share it with
// Extract/InsertSlicesOp verification.
static TupleType generateExtractSlicesOpResultType(VectorType vectorType,
ArrayRef<int64_t> sizes,
@ -276,7 +276,7 @@ static Value getOrCreateUnrolledVectorSlice(
// Compute slice offsets.
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
getMappedElements(indexMap, offsets, sliceOffsets);
// TODO(b/144845578) Support non-1 strides.
// TODO: Support non-1 strides.
SmallVector<int64_t, 4> sliceStrides(state.unrolledShape.size(), 1);
// Compute linear index of 'sliceOffsets' w.r.t 'state.basis'.
int64_t sliceLinearIndex =
@ -347,7 +347,7 @@ struct VectorState {
// insertslice
// |
// TODO(andydavis) Add the following canonicalization/simplification patterns:
// TODO: Add the following canonicalization/simplification patterns:
// *) Add pattern which matches InsertStridedSlice -> StridedSlice and forwards
// InsertStridedSlice operand to StridedSlice.
// *) Add pattern which matches SourceOp -> StridedSlice -> UserOp which checks
@ -357,7 +357,7 @@ struct VectorState {
// operation, and leave the duplicate StridedSlice ops with no users
// (removable with DCE).
// TODO(andydavis) Generalize this to support structured ops beyond
// TODO: Generalize this to support structured ops beyond
// vector ContractionOp, and merge it with 'unrollSingleResultVectorOp'
static Value unrollSingleResultStructuredOp(Operation *op,
ArrayRef<int64_t> iterationBounds,
@ -473,7 +473,7 @@ static void getVectorContractionOpUnrollState(
vectors.push_back({contractionOp.getRHSVectorMaskType(),
vectors[1].indexMap, accOperandIndex + 2, false});
}
// TODO(andydavis) Use linalg style 'args_in'/'args_out' to partition
// TODO: Use linalg style 'args_in'/'args_out' to partition
// 'vectors' instead of 'resultIndex'.
resultIndex = accOperandIndex;
}
@ -618,7 +618,7 @@ struct SplitTransferReadOp : public OpRewritePattern<vector::TransferReadOp> {
LogicalResult matchAndRewrite(vector::TransferReadOp xferReadOp,
PatternRewriter &rewriter) const override {
// TODO(andydavis, ntv) Support splitting TransferReadOp with non-identity
// TODO: Support splitting TransferReadOp with non-identity
// permutation maps. Repurpose code from MaterializeVectors transformation.
if (!isIdentitySuffix(xferReadOp.permutation_map()))
return failure();
@ -677,7 +677,7 @@ struct SplitTransferWriteOp : public OpRewritePattern<vector::TransferWriteOp> {
LogicalResult matchAndRewrite(vector::TransferWriteOp xferWriteOp,
PatternRewriter &rewriter) const override {
// TODO(andydavis, ntv) Support splitting TransferWriteOp with non-identity
// TODO: Support splitting TransferWriteOp with non-identity
// permutation maps. Repurpose code from MaterializeVectors transformation.
if (!isIdentitySuffix(xferWriteOp.permutation_map()))
return failure();
@ -1553,7 +1553,7 @@ namespace mlir {
/// the vector.contract op is a row-major matrix multiply.
LogicalResult
ContractionOpToMatmulOpLowering::match(vector::ContractionOp op) const {
// TODO(ajcbik): implement masks
// TODO: implement masks
if (llvm::size(op.masks()) != 0)
return failure();
@ -1619,7 +1619,7 @@ void ContractionOpToMatmulOpLowering::rewrite(vector::ContractionOp op,
/// otherwise supports any layout permutation of the matrix-multiply.
LogicalResult
ContractionOpToOuterProductOpLowering ::match(vector::ContractionOp op) const {
// TODO(ajcbik): implement masks
// TODO: implement masks
if (llvm::size(op.masks()) != 0)
return failure();
@ -1728,11 +1728,11 @@ void ContractionOpToOuterProductOpLowering::rewrite(
///
/// This only kicks in when VectorTransformsOptions is set to AXPY.
//
// TODO (ajcbik): this is very similar, but not quite the same as
// the outerproduct lowering above; merge the two?
// TODO: this is very similar, but not quite the same as the outerproduct
// lowering above; merge the two?
LogicalResult
ContractionOpToAXPYLowering::match(vector::ContractionOp op) const {
// TODO(ajcbik): implement masks
// TODO: implement masks
if (llvm::size(op.masks()) != 0)
return failure();
@ -1818,23 +1818,23 @@ void ContractionOpToAXPYLowering::rewrite(vector::ContractionOp op,
/// This only kicks in when either VectorTransformsOptions is set
/// to DOT or when other contraction patterns fail.
//
// TODO(ajcbik): break down into transpose/reshape/cast ops
// TODO: break down into transpose/reshape/cast ops
// when they become available to avoid code dup
// TODO(ajcbik): investigate lowering order impact on performance
// TODO: investigate lowering order impact on performance
LogicalResult
ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
PatternRewriter &rewriter) const {
// TODO(ajcbik): implement masks.
// TODO: implement masks.
if (llvm::size(op.masks()) != 0)
return failure();
// TODO(thomasraoux): support mixed mode contract lowering.
// TODO: support mixed mode contract lowering.
if (op.getLhsType().getElementType() !=
getElementTypeOrSelf(op.getAccType()) ||
op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
return failure();
// TODO(ntv, ajcbik): implement benefits, cost models.
// TODO: implement benefits, cost models.
MLIRContext *ctx = op.getContext();
ContractionOpToMatmulOpLowering pat1(vectorTransformsOptions, ctx);
if (succeeded(pat1.match(op)))
@ -1895,7 +1895,7 @@ ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
}
// Lower one parallel dimension.
// TODO(ajcbik): consider reusing existing contract unrolling
// TODO: consider reusing existing contract unrolling
Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
int64_t lhsIndex, int64_t rhsIndex,
PatternRewriter &rewriter) const {
@ -1998,8 +1998,8 @@ Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
} // namespace mlir
// TODO(andydavis) Add pattern to rewrite ExtractSlices(ConstantMaskOp).
// TODO(andydavis) Add this as DRR pattern.
// TODO: Add pattern to rewrite ExtractSlices(ConstantMaskOp).
// TODO: Add this as DRR pattern.
void mlir::vector::populateVectorToVectorTransformationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
// clang-format off

View File

@ -208,7 +208,7 @@ static AffineMap makePermutationMap(
/// Implementation detail that walks up the parents and records the ones with
/// the specified type.
/// TODO(ntv): could also be implemented as a collect parents followed by a
/// TODO: could also be implemented as a collect parents followed by a
/// filter and made available outside this file.
template <typename T>
static SetVector<Operation *> getParentsOfType(Operation *op) {
@ -252,7 +252,7 @@ bool matcher::operatesOnSuperVectorsOf(Operation &op,
// The ops that *may* lower a super-vector only do so if the super-vector to
// sub-vector ratio exists. The ops that *must* lower a super-vector are
// explicitly checked for this property.
/// TODO(ntv): there should be a single function for all ops to do this so we
/// TODO: there should be a single function for all ops to do this so we
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
bool mustDivide = false;
(void)mustDivide;

View File

@ -234,7 +234,7 @@ Expected<std::unique_ptr<ExecutionEngine>> ExecutionEngine::create(
// Clone module in a new LLVMContext since translateModuleToLLVMIR buries
// ownership too deeply.
// TODO(zinenko): Reevaluate model of ownership of LLVMContext in LLVMDialect.
// TODO: Reevaluate model of ownership of LLVMContext in LLVMDialect.
std::unique_ptr<Module> deserModule =
LLVM::cloneModuleIntoNewContext(ctx.get(), llvmModule.get());
auto dataLayout = deserModule->getDataLayout();

View File

@ -703,7 +703,7 @@ void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
// TODO(bondhugula): handle modulo by zero case when this issue is fixed
// TODO: handle modulo by zero case when this issue is fixed
// at the other places in the IR.
assert(rhsConst > 0 && "RHS constant has to be positive");
@ -791,7 +791,7 @@ void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
// This is a pure affine expr; the RHS is a positive constant.
int64_t rhsConst = operandExprStack.back()[getConstantIndex()];
// TODO(bondhugula): handle division by zero at the same time the issue is
// TODO: handle division by zero at the same time the issue is
// fixed at other places.
assert(rhsConst > 0 && "RHS constant has to be positive");
operandExprStack.pop_back();
@ -870,7 +870,7 @@ int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
/// Simplify the affine expression by flattening it and reconstructing it.
AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols) {
// TODO(bondhugula): only pure affine for now. The simplification here can
// TODO: only pure affine for now. The simplification here can
// be extended to semi-affine maps in the future.
if (!expr.isPureAffine())
return expr;

View File

@ -444,7 +444,7 @@ bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx].isMultipleOf(factor))
return true;
// TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
// TODO: use simplifyAffineExpr and FlatAffineConstraints to
// complete this (for a more powerful analysis).
return false;
}
@ -453,7 +453,7 @@ bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO(ntv): functional-style map
// TODO: functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}

View File

@ -284,7 +284,7 @@ private:
// Utility to generate a function to register a symbol alias.
static bool canRegisterAlias(StringRef name, llvm::StringSet<> &usedAliases) {
assert(!name.empty() && "expected alias name to be non-empty");
// TODO(riverriddle) Assert that the provided alias name can be lexed as
// TODO: Assert that the provided alias name can be lexed as
// an identifier.
// Check that the alias doesn't contain a '.' character and the name is not
@ -431,7 +431,7 @@ void AliasState::recordAttributeReference(Attribute attr) {
/// Record a reference to the given type.
void AliasState::recordTypeReference(Type ty) { usedTypes.insert(ty); }
// TODO Support visiting other types/operations when implemented.
// TODO: Support visiting other types/operations when implemented.
void AliasState::visitType(Type type) {
recordTypeReference(type);
@ -2442,7 +2442,7 @@ void Value::dump() {
}
void Value::printAsOperand(raw_ostream &os, AsmState &state) {
// TODO(riverriddle) This doesn't necessarily capture all potential cases.
// TODO: This doesn't necessarily capture all potential cases.
// Currently, region arguments can be shadowed when printing the main
// operation. If the IR hasn't been printed, this will produce the old SSA
// name and not the shadowed name.

View File

@ -658,7 +658,7 @@ struct OpaqueElementsAttributeStorage : public AttributeStorage {
/// Construct a new storage instance.
static OpaqueElementsAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
// TODO(b/131468830): Provide a way to avoid copying content of large opaque
// TODO: Provide a way to avoid copying content of large opaque
// tensors This will likely require a new reference attribute kind.
return new (allocator.allocate<OpaqueElementsAttributeStorage>())
OpaqueElementsAttributeStorage(std::get<0>(key), std::get<1>(key),

View File

@ -280,7 +280,7 @@ InFlightDiagnostic Operation::emitError(const Twine &message) {
if (getContext()->shouldPrintOpOnDiagnostic()) {
// Print out the operation explicitly here so that we can print the generic
// form.
// TODO(riverriddle) It would be nice if we could instead provide the
// TODO: It would be nice if we could instead provide the
// specific printing flags when adding the operation as an argument to the
// diagnostic.
std::string printedOp;

Some files were not shown because too many files have changed in this diff Show More