[VE] Support fneg and frem

VE doesn't have fneg or frem instruction, so change them to expand.  Add
regression tests also.

Reviewed By: simoll

Differential Revision: https://reviews.llvm.org/D89205
This commit is contained in:
Kazushi (Jam) Marukawa 2020-10-11 17:33:47 +09:00
parent 6c32bc4875
commit 9d6d4b07a2
3 changed files with 246 additions and 0 deletions

View File

@ -740,6 +740,14 @@ VETargetLowering::VETargetLowering(const TargetMachine &TM,
/// } Conversion
/// Floating-point Ops {
/// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem,
/// and fcmp.
// VE doesn't have following floating point operations.
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
}
// VE doesn't have fdiv of f128.
setOperationAction(ISD::FDIV, MVT::f128, Expand);

View File

@ -0,0 +1,67 @@
; RUN: llc < %s -mtriple=ve | FileCheck %s
;;; Test fneg Instruction
;;;
;;; Syntax:
;;; <result> = fneg [fast-math flags]* <ty> <op1> ; yields ty:result
;;;
;;; Overview:
;;; The fneg instruction returns the negation of its operand.
;;;
;;; Arguments:
;;; The argument to the fneg instruction must be a floating-point or
;;; vector of floating-point values.
;;;
;;; Semantics:
;;;
;;; The value produced is a copy of the operand with its sign bit flipped.
;;; This instruction can also take any number of fast-math flags, which are
;;; optimization hints to enable otherwise unsafe floating-point
;;; optimizations.
;;;
;;; Example:
;;; <result> = fneg float %val ; yields float:result = -%var
;;;
;;; Note:
;;; We test only float/double/fp128.
; Function Attrs: norecurse nounwind readnone
define float @fneg_float(float %0) {
; CHECK-LABEL: fneg_float:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: sra.l %s0, %s0, 32
; CHECK-NEXT: lea %s1, -2147483648
; CHECK-NEXT: and %s1, %s1, (32)0
; CHECK-NEXT: xor %s0, %s0, %s1
; CHECK-NEXT: sll %s0, %s0, 32
; CHECK-NEXT: or %s11, 0, %s9
%2 = fneg float %0
ret float %2
}
; Function Attrs: norecurse nounwind readnone
define double @fneg_double(double %0) {
; CHECK-LABEL: fneg_double:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: xor %s0, %s0, (1)1
; CHECK-NEXT: or %s11, 0, %s9
%2 = fneg double %0
ret double %2
}
; Function Attrs: norecurse nounwind readnone
define fp128 @fneg_quad(fp128 %0) {
; CHECK-LABEL: fneg_quad:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: st %s1, 176(, %s11)
; CHECK-NEXT: st %s0, 184(, %s11)
; CHECK-NEXT: ld1b.zx %s0, 191(, %s11)
; CHECK-NEXT: lea %s1, 128
; CHECK-NEXT: xor %s0, %s0, %s1
; CHECK-NEXT: st1b %s0, 191(, %s11)
; CHECK-NEXT: ld %s1, 176(, %s11)
; CHECK-NEXT: ld %s0, 184(, %s11)
; CHECK-NEXT: or %s11, 0, %s9
%2 = fneg fp128 %0
ret fp128 %2
}

View File

@ -0,0 +1,171 @@
; RUN: llc < %s -mtriple=ve | FileCheck %s
;;; Test frem Instruction
;;;
;;; Syntax:
;;; <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
;;;
;;; Overview:
;;; The frem instruction returns the remainder from the division of its two
;;; operands.
;;;
;;; Arguments:
;;; The two arguments to the frem instruction must be floating-point or
;;; vector of floating-point values. Both arguments must have identical types.
;;;
;;; Semantics:
;;; The value produced is the floating-point remainder of the two operands.
;;; This is the same output as a libm fmod function, but without any
;;; possibility of setting errno. The remainder has the same sign as the
;;; dividend. This instruction is assumed to execute in the default
;;; floating-point environment. This instruction can also take any number
;;; of fast-math flags, which are optimization hints to enable otherwise
;;; unsafe floating-point optimizations:
;;;
;;; Example:
;;;
;;; <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
;;;
;;; Note:
;;; We test only float/double/fp128.
;;; We have no way to generated frem from C source code, so convert fdiv
;;; to frem by using sed program.
; Function Attrs: norecurse nounwind readnone
define float @frem_float_var(float %0, float %1) {
; CHECK-LABEL: frem_float_var:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: lea %s2, fmodf@lo
; CHECK-NEXT: and %s2, %s2, (32)0
; CHECK-NEXT: lea.sl %s12, fmodf@hi(, %s2)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%3 = frem float %0, %1
ret float %3
}
; Function Attrs: norecurse nounwind readnone
define double @frem_double_var(double %0, double %1) {
; CHECK-LABEL: frem_double_var:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: lea %s2, fmod@lo
; CHECK-NEXT: and %s2, %s2, (32)0
; CHECK-NEXT: lea.sl %s12, fmod@hi(, %s2)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%3 = frem double %0, %1
ret double %3
}
; Function Attrs: norecurse nounwind readnone
define fp128 @frem_quad_var(fp128 %0, fp128 %1) {
; CHECK-LABEL: frem_quad_var:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: lea %s4, fmodl@lo
; CHECK-NEXT: and %s4, %s4, (32)0
; CHECK-NEXT: lea.sl %s12, fmodl@hi(, %s4)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%3 = frem fp128 %0, %1
ret fp128 %3
}
; Function Attrs: norecurse nounwind readnone
define float @frem_float_zero(float %0) {
; CHECK-LABEL: frem_float_zero:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: or %s1, 0, %s0
; CHECK-NEXT: lea.sl %s0, 0
; CHECK-NEXT: lea %s2, fmodf@lo
; CHECK-NEXT: and %s2, %s2, (32)0
; CHECK-NEXT: lea.sl %s12, fmodf@hi(, %s2)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%2 = frem float 0.000000e+00, %0
ret float %2
}
; Function Attrs: norecurse nounwind readnone
define double @frem_double_zero(double %0) {
; CHECK-LABEL: frem_double_zero:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: or %s1, 0, %s0
; CHECK-NEXT: lea %s0, fmod@lo
; CHECK-NEXT: and %s0, %s0, (32)0
; CHECK-NEXT: lea.sl %s12, fmod@hi(, %s0)
; CHECK-NEXT: lea.sl %s0, 0
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%2 = frem double 0.000000e+00, %0
ret double %2
}
; Function Attrs: norecurse nounwind readnone
define fp128 @frem_quad_zero(fp128 %0) {
; CHECK-LABEL: frem_quad_zero:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: or %s2, 0, %s0
; CHECK-NEXT: or %s3, 0, %s1
; CHECK-NEXT: lea %s0, .LCPI{{[0-9]+}}_0@lo
; CHECK-NEXT: and %s0, %s0, (32)0
; CHECK-NEXT: lea.sl %s4, .LCPI{{[0-9]+}}_0@hi(, %s0)
; CHECK-NEXT: ld %s0, 8(, %s4)
; CHECK-NEXT: ld %s1, (, %s4)
; CHECK-NEXT: lea %s4, fmodl@lo
; CHECK-NEXT: and %s4, %s4, (32)0
; CHECK-NEXT: lea.sl %s12, fmodl@hi(, %s4)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%2 = frem fp128 0xL00000000000000000000000000000000, %0
ret fp128 %2
}
; Function Attrs: norecurse nounwind readnone
define float @frem_float_cont(float %0) {
; CHECK-LABEL: frem_float_cont:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: or %s1, 0, %s0
; CHECK-NEXT: lea.sl %s0, -1073741824
; CHECK-NEXT: lea %s2, fmodf@lo
; CHECK-NEXT: and %s2, %s2, (32)0
; CHECK-NEXT: lea.sl %s12, fmodf@hi(, %s2)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%2 = frem float -2.000000e+00, %0
ret float %2
}
; Function Attrs: norecurse nounwind readnone
define double @frem_double_cont(double %0) {
; CHECK-LABEL: frem_double_cont:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: or %s1, 0, %s0
; CHECK-NEXT: lea %s0, fmod@lo
; CHECK-NEXT: and %s0, %s0, (32)0
; CHECK-NEXT: lea.sl %s12, fmod@hi(, %s0)
; CHECK-NEXT: lea.sl %s0, -1073741824
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%2 = frem double -2.000000e+00, %0
ret double %2
}
; Function Attrs: norecurse nounwind readnone
define fp128 @frem_quad_cont(fp128 %0) {
; CHECK-LABEL: frem_quad_cont:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: or %s2, 0, %s0
; CHECK-NEXT: or %s3, 0, %s1
; CHECK-NEXT: lea %s0, .LCPI{{[0-9]+}}_0@lo
; CHECK-NEXT: and %s0, %s0, (32)0
; CHECK-NEXT: lea.sl %s4, .LCPI{{[0-9]+}}_0@hi(, %s0)
; CHECK-NEXT: ld %s0, 8(, %s4)
; CHECK-NEXT: ld %s1, (, %s4)
; CHECK-NEXT: lea %s4, fmodl@lo
; CHECK-NEXT: and %s4, %s4, (32)0
; CHECK-NEXT: lea.sl %s12, fmodl@hi(, %s4)
; CHECK-NEXT: bsic %s10, (, %s12)
; CHECK-NEXT: or %s11, 0, %s9
%2 = frem fp128 0xL0000000000000000C000000000000000, %0
ret fp128 %2
}