[analyzer] Refactor and simplify SimpleConstraintManager

Summary: SimpleConstraintManager is difficult to use, and makes assumptions about capabilities of the constraint manager. This patch refactors out those portions into a new RangedConstraintManager, and also fixes some issues with camel case, formatting, and confusing naming.

Reviewers: zaks.anna, dcoughlin

Subscribers: mgorny, xazax.hun, NoQ, rgov, cfe-commits

Differential Revision: https://reviews.llvm.org/D26061

llvm-svn: 296242
This commit is contained in:
Dominic Chen 2017-02-25 04:51:31 +00:00
parent 9488560bb8
commit 9bc02cee8d
8 changed files with 416 additions and 290 deletions

View File

@ -139,6 +139,8 @@ public:
return nullptr;
}
/// Scan all symbols referenced by the constraints. If the symbol is not
/// alive, remove it.
virtual ProgramStateRef removeDeadBindings(ProgramStateRef state,
SymbolReaper& SymReaper) = 0;

View File

@ -0,0 +1,92 @@
//== SimpleConstraintManager.h ----------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Simplified constraint manager backend.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SIMPLECONSTRAINTMANAGER_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SIMPLECONSTRAINTMANAGER_H
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
namespace clang {
namespace ento {
class SimpleConstraintManager : public ConstraintManager {
SubEngine *SU;
SValBuilder &SVB;
public:
SimpleConstraintManager(SubEngine *subengine, SValBuilder &SB)
: SU(subengine), SVB(SB) {}
~SimpleConstraintManager() override;
//===------------------------------------------------------------------===//
// Implementation for interface from ConstraintManager.
//===------------------------------------------------------------------===//
/// Ensures that the DefinedSVal conditional is expressed as a NonLoc by
/// creating boolean casts to handle Loc's.
ProgramStateRef assume(ProgramStateRef State, DefinedSVal Cond,
bool Assumption) override;
ProgramStateRef assumeInclusiveRange(ProgramStateRef State, NonLoc Value,
const llvm::APSInt &From,
const llvm::APSInt &To,
bool InRange) override;
protected:
//===------------------------------------------------------------------===//
// Interface that subclasses must implement.
//===------------------------------------------------------------------===//
/// Given a symbolic expression that can be reasoned about, assume that it is
/// true/false and generate the new program state.
virtual ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym,
bool Assumption) = 0;
/// Given a symbolic expression within the range [From, To], assume that it is
/// true/false and generate the new program state.
/// This function is used to handle case ranges produced by a language
/// extension for switch case statements.
virtual ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State,
SymbolRef Sym,
const llvm::APSInt &From,
const llvm::APSInt &To,
bool InRange) = 0;
/// Given a symbolic expression that cannot be reasoned about, assume that
/// it is zero/nonzero and add it directly to the solver state.
virtual ProgramStateRef assumeSymUnsupported(ProgramStateRef State,
SymbolRef Sym,
bool Assumption) = 0;
//===------------------------------------------------------------------===//
// Internal implementation.
//===------------------------------------------------------------------===//
BasicValueFactory &getBasicVals() const { return SVB.getBasicValueFactory(); }
SymbolManager &getSymbolManager() const { return SVB.getSymbolManager(); }
private:
ProgramStateRef assume(ProgramStateRef State, NonLoc Cond, bool Assumption);
ProgramStateRef assumeAux(ProgramStateRef State, NonLoc Cond,
bool Assumption);
};
} // end GR namespace
} // end clang namespace
#endif

View File

@ -34,6 +34,7 @@ add_clang_library(clangStaticAnalyzerCore
PlistDiagnostics.cpp
ProgramState.cpp
RangeConstraintManager.cpp
RangedConstraintManager.cpp
RegionStore.cpp
SValBuilder.cpp
SVals.cpp

View File

@ -20,8 +20,8 @@ ConstraintManager::~ConstraintManager() {}
static DefinedSVal getLocFromSymbol(const ProgramStateRef &State,
SymbolRef Sym) {
const MemRegion *R = State->getStateManager().getRegionManager()
.getSymbolicRegion(Sym);
const MemRegion *R =
State->getStateManager().getRegionManager().getSymbolicRegion(Sym);
return loc::MemRegionVal(R);
}

View File

@ -12,7 +12,7 @@
//
//===----------------------------------------------------------------------===//
#include "SimpleConstraintManager.h"
#include "RangedConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
@ -282,12 +282,31 @@ REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
RangeSet))
namespace {
class RangeConstraintManager : public SimpleConstraintManager {
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
class RangeConstraintManager : public RangedConstraintManager {
public:
RangeConstraintManager(SubEngine *SE, SValBuilder &SVB)
: SimpleConstraintManager(SE, SVB) {}
: RangedConstraintManager(SE, SVB) {}
//===------------------------------------------------------------------===//
// Implementation for interface from ConstraintManager.
//===------------------------------------------------------------------===//
bool canReasonAbout(SVal X) const override;
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
const llvm::APSInt *getSymVal(ProgramStateRef State,
SymbolRef Sym) const override;
ProgramStateRef removeDeadBindings(ProgramStateRef State,
SymbolReaper &SymReaper) override;
void print(ProgramStateRef State, raw_ostream &Out, const char *nl,
const char *sep) override;
//===------------------------------------------------------------------===//
// Implementation for interface from RangedConstraintManager.
//===------------------------------------------------------------------===//
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
@ -313,26 +332,19 @@ public:
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymbolWithinInclusiveRange(
ProgramStateRef assumeSymWithinInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymbolOutOfInclusiveRange(
ProgramStateRef assumeSymOutsideInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
const llvm::APSInt *getSymVal(ProgramStateRef St,
SymbolRef Sym) const override;
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
ProgramStateRef removeDeadBindings(ProgramStateRef St,
SymbolReaper &SymReaper) override;
void print(ProgramStateRef St, raw_ostream &Out, const char *nl,
const char *sep) override;
private:
RangeSet::Factory F;
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment);
@ -356,10 +368,46 @@ ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
}
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
SymbolRef Sym) const {
const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
return T ? T->getConcreteValue() : nullptr;
bool RangeConstraintManager::canReasonAbout(SVal X) const {
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
const SymExpr *SE = SymVal->getSymbol();
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
switch (SIE->getOpcode()) {
// We don't reason yet about bitwise-constraints on symbolic values.
case BO_And:
case BO_Or:
case BO_Xor:
return false;
// We don't reason yet about these arithmetic constraints on
// symbolic values.
case BO_Mul:
case BO_Div:
case BO_Rem:
case BO_Shl:
case BO_Shr:
return false;
// All other cases.
default:
return true;
}
}
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
if (Loc::isLocType(SSE->getLHS()->getType())) {
assert(Loc::isLocType(SSE->getRHS()->getType()));
return true;
}
}
}
return false;
}
return true;
}
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
@ -386,6 +434,12 @@ ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
return ConditionTruthVal();
}
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
SymbolRef Sym) const {
const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
return T ? T->getConcreteValue() : nullptr;
}
/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef
@ -429,7 +483,7 @@ RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
}
//===------------------------------------------------------------------------===
// assumeSymX methods: public interface for RangeConstraintManager.
// assumeSymX methods: protected interface for RangeConstraintManager.
//===------------------------------------------------------------------------===/
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
@ -646,7 +700,7 @@ RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
ProgramStateRef RangeConstraintManager::assumeSymbolWithinInclusiveRange(
ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
RangeSet New = getSymGERange(State, Sym, From, Adjustment);
@ -656,7 +710,7 @@ ProgramStateRef RangeConstraintManager::assumeSymbolWithinInclusiveRange(
return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
}
ProgramStateRef RangeConstraintManager::assumeSymbolOutOfInclusiveRange(
ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);

View File

@ -0,0 +1,204 @@
//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines RangedConstraintManager, a class that provides a
// range-based constraint manager interface.
//
//===----------------------------------------------------------------------===//
#include "RangedConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
namespace clang {
namespace ento {
RangedConstraintManager::~RangedConstraintManager() {}
ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
SymbolRef Sym,
bool Assumption) {
// Handle SymbolData.
if (isa<SymbolData>(Sym)) {
return assumeSymUnsupported(State, Sym, Assumption);
// Handle symbolic expression.
} else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
// We can only simplify expressions whose RHS is an integer.
BinaryOperator::Opcode op = SIE->getOpcode();
if (BinaryOperator::isComparisonOp(op)) {
if (!Assumption)
op = BinaryOperator::negateComparisonOp(op);
return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
}
} else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
// Translate "a != b" to "(b - a) != 0".
// We invert the order of the operands as a heuristic for how loop
// conditions are usually written ("begin != end") as compared to length
// calculations ("end - begin"). The more correct thing to do would be to
// canonicalize "a - b" and "b - a", which would allow us to treat
// "a != b" and "b != a" the same.
SymbolManager &SymMgr = getSymbolManager();
BinaryOperator::Opcode Op = SSE->getOpcode();
assert(BinaryOperator::isComparisonOp(Op));
// For now, we only support comparing pointers.
assert(Loc::isLocType(SSE->getLHS()->getType()));
assert(Loc::isLocType(SSE->getRHS()->getType()));
QualType DiffTy = SymMgr.getContext().getPointerDiffType();
SymbolRef Subtraction =
SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
Op = BinaryOperator::reverseComparisonOp(Op);
if (!Assumption)
Op = BinaryOperator::negateComparisonOp(Op);
return assumeSymRel(State, Subtraction, Op, Zero);
}
// If we get here, there's nothing else we can do but treat the symbol as
// opaque.
return assumeSymUnsupported(State, Sym, Assumption);
}
ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, bool InRange) {
// Get the type used for calculating wraparound.
BasicValueFactory &BVF = getBasicVals();
APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
SymbolRef AdjustedSym = Sym;
computeAdjustment(AdjustedSym, Adjustment);
// Convert the right-hand side integer as necessary.
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
llvm::APSInt ConvertedTo = ComparisonType.convert(To);
// Prefer unsigned comparisons.
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
Adjustment.setIsSigned(false);
if (InRange)
return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
ConvertedTo, Adjustment);
return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
ConvertedTo, Adjustment);
}
ProgramStateRef
RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
SymbolRef Sym, bool Assumption) {
BasicValueFactory &BVF = getBasicVals();
QualType T = Sym->getType();
// Non-integer types are not supported.
if (!T->isIntegralOrEnumerationType())
return State;
// Reverse the operation and add directly to state.
const llvm::APSInt &Zero = BVF.getValue(0, T);
if (Assumption)
return assumeSymNE(State, Sym, Zero, Zero);
else
return assumeSymEQ(State, Sym, Zero, Zero);
}
ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
SymbolRef Sym,
BinaryOperator::Opcode Op,
const llvm::APSInt &Int) {
assert(BinaryOperator::isComparisonOp(Op) &&
"Non-comparison ops should be rewritten as comparisons to zero.");
// Simplification: translate an assume of a constraint of the form
// "(exp comparison_op expr) != 0" to true into an assume of
// "exp comparison_op expr" to true. (And similarly, an assume of the form
// "(exp comparison_op expr) == 0" to true into an assume of
// "exp comparison_op expr" to false.)
if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
if (BinaryOperator::isComparisonOp(SE->getOpcode()))
return assumeSym(State, Sym, (Op == BO_NE ? true : false));
}
// Get the type used for calculating wraparound.
BasicValueFactory &BVF = getBasicVals();
APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
// We only handle simple comparisons of the form "$sym == constant"
// or "($sym+constant1) == constant2".
// The adjustment is "constant1" in the above expression. It's used to
// "slide" the solution range around for modular arithmetic. For example,
// x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
// in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
// the subclasses of SimpleConstraintManager to handle the adjustment.
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
computeAdjustment(Sym, Adjustment);
// Convert the right-hand side integer as necessary.
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
// Prefer unsigned comparisons.
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
Adjustment.setIsSigned(false);
switch (Op) {
default:
llvm_unreachable("invalid operation not caught by assertion above");
case BO_EQ:
return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
case BO_NE:
return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
case BO_GT:
return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
case BO_GE:
return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
case BO_LT:
return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
case BO_LE:
return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
} // end switch
}
void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
llvm::APSInt &Adjustment) {
// Is it a "($sym+constant1)" expression?
if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
BinaryOperator::Opcode Op = SE->getOpcode();
if (Op == BO_Add || Op == BO_Sub) {
Sym = SE->getLHS();
Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
// Don't forget to negate the adjustment if it's being subtracted.
// This should happen /after/ promotion, in case the value being
// subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
if (Op == BO_Sub)
Adjustment = -Adjustment;
}
}
}
} // end of namespace ento
} // end of namespace clang

View File

@ -1,4 +1,4 @@
//== SimpleConstraintManager.h ----------------------------------*- C++ -*--==//
//== RangedConstraintManager.h ----------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
@ -7,59 +7,55 @@
//
//===----------------------------------------------------------------------===//
//
// Code shared between BasicConstraintManager and RangeConstraintManager.
// Ranged constraint manager, built on SimpleConstraintManager.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_STATICANALYZER_CORE_SIMPLECONSTRAINTMANAGER_H
#define LLVM_CLANG_LIB_STATICANALYZER_CORE_SIMPLECONSTRAINTMANAGER_H
#ifndef LLVM_CLANG_LIB_STATICANALYZER_CORE_RANGEDCONSTRAINTMANAGER_H
#define LLVM_CLANG_LIB_STATICANALYZER_CORE_RANGEDCONSTRAINTMANAGER_H
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h"
namespace clang {
namespace ento {
class SimpleConstraintManager : public ConstraintManager {
SubEngine *SU;
SValBuilder &SVB;
class RangedConstraintManager : public SimpleConstraintManager {
public:
SimpleConstraintManager(SubEngine *SE, SValBuilder &SB) : SU(SE), SVB(SB) {}
~SimpleConstraintManager() override;
RangedConstraintManager(SubEngine *SE, SValBuilder &SB)
: SimpleConstraintManager(SE, SB) {}
~RangedConstraintManager() override;
//===------------------------------------------------------------------===//
// Common implementation for the interface provided by ConstraintManager.
// Implementation for interface from SimpleConstraintManager.
//===------------------------------------------------------------------===//
ProgramStateRef assume(ProgramStateRef State, DefinedSVal Cond,
bool Assumption) override;
ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym,
bool Assumption) override;
ProgramStateRef assume(ProgramStateRef State, NonLoc Cond, bool Assumption);
ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &From,
const llvm::APSInt &To,
bool InRange) override;
ProgramStateRef assumeInclusiveRange(ProgramStateRef State, NonLoc Value,
const llvm::APSInt &From,
const llvm::APSInt &To,
bool InRange) override;
ProgramStateRef assumeSymRel(ProgramStateRef State, const SymExpr *LHS,
BinaryOperator::Opcode Op,
const llvm::APSInt &Int);
ProgramStateRef assumeSymWithinInclusiveRange(ProgramStateRef State,
SymbolRef Sym,
const llvm::APSInt &From,
const llvm::APSInt &To,
bool InRange);
ProgramStateRef assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym,
bool Assumption) override;
protected:
/// Assume a constraint between a symbolic expression and a concrete integer.
virtual ProgramStateRef assumeSymRel(ProgramStateRef State, SymbolRef Sym,
BinaryOperator::Opcode op,
const llvm::APSInt &Int);
//===------------------------------------------------------------------===//
// Interface that subclasses must implement.
//===------------------------------------------------------------------===//
// Each of these is of the form "$Sym+Adj <> V", where "<>" is the comparison
// operation for the method being invoked.
virtual ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) = 0;
@ -84,28 +80,19 @@ protected:
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) = 0;
virtual ProgramStateRef assumeSymbolWithinInclusiveRange(
virtual ProgramStateRef assumeSymWithinInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0;
virtual ProgramStateRef assumeSymbolOutOfInclusiveRange(
virtual ProgramStateRef assumeSymOutsideInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0;
//===------------------------------------------------------------------===//
// Internal implementation.
//===------------------------------------------------------------------===//
BasicValueFactory &getBasicVals() const { return SVB.getBasicValueFactory(); }
SymbolManager &getSymbolManager() const { return SVB.getSymbolManager(); }
bool canReasonAbout(SVal X) const override;
ProgramStateRef assumeAux(ProgramStateRef State, NonLoc Cond,
bool Assumption);
ProgramStateRef assumeAuxForSymbol(ProgramStateRef State, SymbolRef Sym,
bool Assumption);
private:
static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment);
};
} // end GR namespace

View File

@ -7,12 +7,12 @@
//
//===----------------------------------------------------------------------===//
//
// This file defines SimpleConstraintManager, a class that holds code shared
// between BasicConstraintManager and RangeConstraintManager.
// This file defines SimpleConstraintManager, a class that provides a
// simplified constraint manager interface, compared to ConstraintManager.
//
//===----------------------------------------------------------------------===//
#include "SimpleConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
@ -23,48 +23,6 @@ namespace ento {
SimpleConstraintManager::~SimpleConstraintManager() {}
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
const SymExpr *SE = SymVal->getSymbol();
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
switch (SIE->getOpcode()) {
// We don't reason yet about bitwise-constraints on symbolic values.
case BO_And:
case BO_Or:
case BO_Xor:
return false;
// We don't reason yet about these arithmetic constraints on
// symbolic values.
case BO_Mul:
case BO_Div:
case BO_Rem:
case BO_Shl:
case BO_Shr:
return false;
// All other cases.
default:
return true;
}
}
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
if (Loc::isLocType(SSE->getLHS()->getType())) {
assert(Loc::isLocType(SSE->getRHS()->getType()));
return true;
}
}
}
return false;
}
return true;
}
ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef State,
DefinedSVal Cond,
bool Assumption) {
@ -92,23 +50,6 @@ ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef State,
return State;
}
ProgramStateRef
SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
SymbolRef Sym, bool Assumption) {
BasicValueFactory &BVF = getBasicVals();
QualType T = Sym->getType();
// None of the constraint solvers currently support non-integer types.
if (!T->isIntegralOrEnumerationType())
return State;
const llvm::APSInt &zero = BVF.getValue(0, T);
if (Assumption)
return assumeSymNE(State, Sym, zero, zero);
else
return assumeSymEQ(State, Sym, zero, zero);
}
ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef State,
NonLoc Cond,
bool Assumption) {
@ -118,7 +59,8 @@ ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef State,
if (!canReasonAbout(Cond)) {
// Just add the constraint to the expression without trying to simplify.
SymbolRef Sym = Cond.getAsSymExpr();
return assumeAuxForSymbol(State, Sym, Assumption);
assert(Sym);
return assumeSymUnsupported(State, Sym, Assumption);
}
switch (Cond.getSubKind()) {
@ -129,51 +71,7 @@ ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef State,
nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
SymbolRef Sym = SV.getSymbol();
assert(Sym);
// Handle SymbolData.
if (!SV.isExpression()) {
return assumeAuxForSymbol(State, Sym, Assumption);
// Handle symbolic expression.
} else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
// We can only simplify expressions whose RHS is an integer.
BinaryOperator::Opcode Op = SE->getOpcode();
if (BinaryOperator::isComparisonOp(Op)) {
if (!Assumption)
Op = BinaryOperator::negateComparisonOp(Op);
return assumeSymRel(State, SE->getLHS(), Op, SE->getRHS());
}
} else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
// Translate "a != b" to "(b - a) != 0".
// We invert the order of the operands as a heuristic for how loop
// conditions are usually written ("begin != end") as compared to length
// calculations ("end - begin"). The more correct thing to do would be to
// canonicalize "a - b" and "b - a", which would allow us to treat
// "a != b" and "b != a" the same.
SymbolManager &SymMgr = getSymbolManager();
BinaryOperator::Opcode Op = SSE->getOpcode();
assert(BinaryOperator::isComparisonOp(Op));
// For now, we only support comparing pointers.
assert(Loc::isLocType(SSE->getLHS()->getType()));
assert(Loc::isLocType(SSE->getRHS()->getType()));
QualType DiffTy = SymMgr.getContext().getPointerDiffType();
SymbolRef Subtraction =
SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
Op = BinaryOperator::reverseComparisonOp(Op);
if (!Assumption)
Op = BinaryOperator::negateComparisonOp(Op);
return assumeSymRel(State, Subtraction, Op, Zero);
}
// If we get here, there's nothing else we can do but treat the symbol as
// opaque.
return assumeAuxForSymbol(State, Sym, Assumption);
return assumeSym(State, Sym, Assumption);
}
case nonloc::ConcreteIntKind: {
@ -206,7 +104,7 @@ ProgramStateRef SimpleConstraintManager::assumeInclusiveRange(
// Just add the constraint to the expression without trying to simplify.
SymbolRef Sym = Value.getAsSymExpr();
assert(Sym);
return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
return assumeSymInclusiveRange(State, Sym, From, To, InRange);
}
switch (Value.getSubKind()) {
@ -217,7 +115,7 @@ ProgramStateRef SimpleConstraintManager::assumeInclusiveRange(
case nonloc::LocAsIntegerKind:
case nonloc::SymbolValKind: {
if (SymbolRef Sym = Value.getAsSymbol())
return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
return assumeSymInclusiveRange(State, Sym, From, To, InRange);
return State;
} // end switch
@ -230,118 +128,6 @@ ProgramStateRef SimpleConstraintManager::assumeInclusiveRange(
} // end switch
}
static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
// Is it a "($sym+constant1)" expression?
if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
BinaryOperator::Opcode Op = SE->getOpcode();
if (Op == BO_Add || Op == BO_Sub) {
Sym = SE->getLHS();
Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
// Don't forget to negate the adjustment if it's being subtracted.
// This should happen /after/ promotion, in case the value being
// subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
if (Op == BO_Sub)
Adjustment = -Adjustment;
}
}
}
ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef State,
const SymExpr *LHS,
BinaryOperator::Opcode Op,
const llvm::APSInt &Int) {
assert(BinaryOperator::isComparisonOp(Op) &&
"Non-comparison ops should be rewritten as comparisons to zero.");
SymbolRef Sym = LHS;
// Simplification: translate an assume of a constraint of the form
// "(exp comparison_op expr) != 0" to true into an assume of
// "exp comparison_op expr" to true. (And similarly, an assume of the form
// "(exp comparison_op expr) == 0" to true into an assume of
// "exp comparison_op expr" to false.)
if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
if (BinaryOperator::isComparisonOp(SE->getOpcode()))
return assume(State, nonloc::SymbolVal(Sym), (Op == BO_NE ? true : false));
}
// Get the type used for calculating wraparound.
BasicValueFactory &BVF = getBasicVals();
APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
// We only handle simple comparisons of the form "$sym == constant"
// or "($sym+constant1) == constant2".
// The adjustment is "constant1" in the above expression. It's used to
// "slide" the solution range around for modular arithmetic. For example,
// x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
// in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
// the subclasses of SimpleConstraintManager to handle the adjustment.
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
computeAdjustment(Sym, Adjustment);
// Convert the right-hand side integer as necessary.
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
// Prefer unsigned comparisons.
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
Adjustment.setIsSigned(false);
switch (Op) {
default:
llvm_unreachable("invalid operation not caught by assertion above");
case BO_EQ:
return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
case BO_NE:
return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
case BO_GT:
return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
case BO_GE:
return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
case BO_LT:
return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
case BO_LE:
return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
} // end switch
}
ProgramStateRef SimpleConstraintManager::assumeSymWithinInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, bool InRange) {
// Get the type used for calculating wraparound.
BasicValueFactory &BVF = getBasicVals();
APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
SymbolRef AdjustedSym = Sym;
computeAdjustment(AdjustedSym, Adjustment);
// Convert the right-hand side integer as necessary.
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
llvm::APSInt ConvertedTo = ComparisonType.convert(To);
// Prefer unsigned comparisons.
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
Adjustment.setIsSigned(false);
if (InRange)
return assumeSymbolWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
ConvertedTo, Adjustment);
return assumeSymbolOutOfInclusiveRange(State, AdjustedSym, ConvertedFrom,
ConvertedTo, Adjustment);
}
} // end of namespace ento
} // end of namespace clang