forked from OSchip/llvm-project
[mlir][linalg] Add a new pattern to handle folding unit reduction dims.
The output operands will be added to input operands if the generic op (on tensors) becomes an elementwise operation. The outputs of the generic op is still the same. They will be cleaned up by ReplaceWithEmptyTensorIfUnused pattern. This is https://reviews.llvm.org/D138251, plus a cmake dep fix. Reviewed By: mravishankar Differential Revision: https://reviews.llvm.org/D138843
This commit is contained in:
parent
eac90d1236
commit
9b16d9d271
|
@ -52,6 +52,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
|
|||
MLIRInferTypeOpInterface
|
||||
MLIRIR
|
||||
MLIRMemRefDialect
|
||||
MLIRMemRefTransforms
|
||||
MLIRLinalgDialect
|
||||
MLIRLinalgAnalysis
|
||||
MLIRLinalgUtils
|
||||
|
|
|
@ -19,12 +19,15 @@
|
|||
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
||||
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
||||
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
|
||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||
#include "mlir/Dialect/Tensor/Utils/Utils.h"
|
||||
#include "mlir/IR/AffineExpr.h"
|
||||
#include "mlir/IR/AffineMap.h"
|
||||
#include "mlir/IR/BuiltinTypes.h"
|
||||
#include "mlir/Transforms/FoldUtils.h"
|
||||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
|
||||
|
@ -225,6 +228,125 @@ struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
|
|||
}
|
||||
};
|
||||
|
||||
/// Pattern to add init operands to ins when all the loops are parallel and
|
||||
/// blockArgument corresponding to init is used in the region. This is a fix-up
|
||||
/// when unit reduction dimensions are all folded away. In this context, it
|
||||
/// becomes a elementwise generic op. E.g., it converts
|
||||
///
|
||||
/// %0 = tensor.empty() : tensor<1x1xf32>
|
||||
/// %1 = linalg.fill
|
||||
/// ins(%cst : f32)
|
||||
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
|
||||
/// %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
|
||||
/// affine_map<(d0) -> (0, d0)>],
|
||||
/// iterator_types = ["parallel"]}
|
||||
/// ins(%arg0 : tensor<1x?x1x1xf32>)
|
||||
/// outs(%1 : tensor<1x1xf32>) {
|
||||
/// ^bb0(%in: f32, %out: f32):
|
||||
/// %3 = arith.addf %in, %out : f32
|
||||
/// linalg.yield %3 : f32
|
||||
/// } -> tensor<1x1xf32>
|
||||
///
|
||||
/// into
|
||||
///
|
||||
/// %0 = tensor.empty() : tensor<1x1xf32>
|
||||
/// %1 = linalg.fill
|
||||
/// ins(%cst : f32)
|
||||
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
|
||||
/// %2 = tensor.empty() : tensor<1x1xf32>
|
||||
/// %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
|
||||
/// affine_map<(d0) -> (0, d0)>,
|
||||
/// affine_map<(d0) -> (0, d0)>],
|
||||
/// iterator_types = ["parallel"]}
|
||||
/// ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
|
||||
/// outs(%2 : tensor<1x1xf32>) {
|
||||
/// ^bb0(%in: f32, %in_0: f32, %out: f32):
|
||||
/// %4 = arith.addf %in, %in_0 : f32
|
||||
/// linalg.yield %4 : f32
|
||||
/// } -> tensor<1x1xf32>
|
||||
struct AddInitOperandsToInput : public OpRewritePattern<GenericOp> {
|
||||
using OpRewritePattern<GenericOp>::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(GenericOp genericOp,
|
||||
PatternRewriter &rewriter) const override {
|
||||
if (!genericOp.hasTensorSemantics())
|
||||
return failure();
|
||||
if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
|
||||
return failure();
|
||||
|
||||
auto outputOperands = genericOp.getDpsInitOperands();
|
||||
SetVector<OpOperand *> candidates;
|
||||
for (OpOperand *op : outputOperands) {
|
||||
if (genericOp.getMatchingBlockArgument(op).use_empty())
|
||||
continue;
|
||||
candidates.insert(op);
|
||||
}
|
||||
|
||||
if (candidates.empty())
|
||||
return failure();
|
||||
|
||||
// Compute the modified indexing maps.
|
||||
int64_t origNumInput = genericOp.getNumDpsInputs();
|
||||
SmallVector<Value> newInputOperands = genericOp.getDpsInputOperands();
|
||||
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
|
||||
SmallVector<AffineMap> newIndexingMaps;
|
||||
newIndexingMaps.append(indexingMaps.begin(),
|
||||
std::next(indexingMaps.begin(), origNumInput));
|
||||
for (OpOperand *op : candidates) {
|
||||
newInputOperands.push_back(op->get());
|
||||
newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
|
||||
}
|
||||
newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
|
||||
indexingMaps.end());
|
||||
|
||||
Location loc = genericOp.getLoc();
|
||||
SmallVector<Value> newOutputOperands = outputOperands;
|
||||
for (OpOperand *op : candidates) {
|
||||
OpBuilder::InsertionGuard guard(rewriter);
|
||||
rewriter.setInsertionPointAfterValue(op->get());
|
||||
auto elemType = op->get().getType().cast<ShapedType>().getElementType();
|
||||
auto empty = rewriter.create<tensor::EmptyOp>(
|
||||
loc, tensor::createDimValues(rewriter, loc, op->get()), elemType);
|
||||
|
||||
auto [start, end] = genericOp.getDpsInitsPositionRange();
|
||||
newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
|
||||
}
|
||||
|
||||
auto newOp = rewriter.create<GenericOp>(
|
||||
loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
|
||||
newIndexingMaps, genericOp.getIteratorTypesArray(),
|
||||
/*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
|
||||
|
||||
Region ®ion = newOp.getRegion();
|
||||
Block *block = new Block();
|
||||
region.push_back(block);
|
||||
BlockAndValueMapping mapper;
|
||||
OpBuilder::InsertionGuard guard(rewriter);
|
||||
rewriter.setInsertionPointToStart(block);
|
||||
for (auto bbarg : genericOp.getRegionInputArgs())
|
||||
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
|
||||
|
||||
for (OpOperand *op : candidates) {
|
||||
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
|
||||
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
|
||||
}
|
||||
|
||||
for (OpOperand *op : outputOperands) {
|
||||
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
|
||||
if (candidates.count(op))
|
||||
block->addArgument(bbarg.getType(), loc);
|
||||
else
|
||||
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
|
||||
}
|
||||
|
||||
for (auto &op : genericOp.getBody()->getOperations()) {
|
||||
rewriter.clone(op, mapper);
|
||||
}
|
||||
rewriter.replaceOp(genericOp, newOp.getResults());
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct UnitExtentReplacementInfo {
|
||||
Type type;
|
||||
AffineMap indexMap;
|
||||
|
@ -536,7 +658,8 @@ struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
|
|||
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
|
||||
RewritePatternSet &patterns) {
|
||||
auto *context = patterns.getContext();
|
||||
patterns.add<FoldUnitDimLoops, ReplaceUnitExtents, RankReducedExtractSliceOp,
|
||||
patterns.add<FoldUnitDimLoops, AddInitOperandsToInput, ReplaceUnitExtents,
|
||||
RankReducedExtractSliceOp,
|
||||
RankReducedInsertSliceOp<tensor::InsertSliceOp>,
|
||||
RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
|
||||
context);
|
||||
|
@ -544,6 +667,8 @@ void mlir::linalg::populateFoldUnitExtentDimsPatterns(
|
|||
tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
|
||||
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
|
||||
tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
|
||||
memref::populateResolveRankedShapeTypeResultDimsPatterns(patterns);
|
||||
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
@ -555,7 +680,7 @@ struct LinalgFoldUnitExtentDimsPass
|
|||
MLIRContext *context = op->getContext();
|
||||
RewritePatternSet patterns(context);
|
||||
if (foldOneTripLoopsOnly)
|
||||
patterns.add<FoldUnitDimLoops>(context);
|
||||
patterns.add<FoldUnitDimLoops, AddInitOperandsToInput>(context);
|
||||
else
|
||||
populateFoldUnitExtentDimsPatterns(patterns);
|
||||
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
|
||||
|
|
|
@ -384,11 +384,12 @@ func.func @unit_dim_for_both_reduction(%arg0: tensor<1x?x1x1xf32>) -> tensor<1x1
|
|||
// CHECK-DAG: %[[RESHAPE:.+]] = tensor.collapse_shape %[[ARG0]] {{\[}}[0, 1, 2, 3]
|
||||
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1xf32>
|
||||
// CHECK: %[[FILL:.+]] = linalg.fill ins(%{{.+}}{{.*}}outs(%[[INIT]]
|
||||
// CHECK: %[[INIT2:.+]] = tensor.empty() : tensor<1xf32>
|
||||
// CHECK: %[[RESULT:.+]] = linalg.generic
|
||||
// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]]]
|
||||
// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]], #[[MAP2]]]
|
||||
// CHECK-SAME: iterator_types = ["parallel"]
|
||||
// CHECK-SAME: ins(%[[RESHAPE]] : tensor<?xf32>)
|
||||
// CHECK-SAME: outs(%[[FILL]] : tensor<1xf32>)
|
||||
// CHECK-SAME: ins(%[[RESHAPE]], %[[FILL]] : tensor<?xf32>, tensor<1xf32>)
|
||||
// CHECK-SAME: outs(%[[INIT2]] : tensor<1xf32>)
|
||||
// CHECK: %[[RESULT_RESHAPE:.+]] = tensor.expand_shape %[[RESULT]] {{\[}}[0, 1]]
|
||||
// CHECK: return %[[RESULT_RESHAPE]]
|
||||
|
||||
|
|
|
@ -8331,6 +8331,7 @@ cc_library(
|
|||
":LinalgUtils",
|
||||
":MathDialect",
|
||||
":MemRefDialect",
|
||||
":MemRefTransforms",
|
||||
":Pass",
|
||||
":SCFDialect",
|
||||
":SCFTransforms",
|
||||
|
|
Loading…
Reference in New Issue