[mlir][linalg] Fix pad tensor cast folding with changed type

`PadTensorOp` has verification logic to make sure
result dim must be static if all the padding values are static.
Cast folding might add more static information for the src operand
of `PadTensorOp` which might change a valid operation to be invalid.
Change the canonicalizing pattern to fix this.
This commit is contained in:
Yi Zhang 2021-07-24 21:38:02 -04:00
parent b06426da76
commit 9a82482313
2 changed files with 69 additions and 3 deletions

View File

@ -1229,9 +1229,26 @@ struct FoldSourceTensorCast : public OpRewritePattern<PadTensorOp> {
if (!tensor::canFoldIntoConsumerOp(castOp))
return failure();
rewriter.updateRootInPlace(padTensorOp, [&]() {
padTensorOp.sourceMutable().assign(castOp.source());
});
auto newResultType = PadTensorOp::inferResultType(
castOp.source().getType().cast<RankedTensorType>(),
extractFromI64ArrayAttr(padTensorOp.static_low()),
extractFromI64ArrayAttr(padTensorOp.static_high()));
if (newResultType == padTensorOp.getResultType()) {
rewriter.updateRootInPlace(padTensorOp, [&]() {
padTensorOp.sourceMutable().assign(castOp.source());
});
} else {
auto newOp = rewriter.create<PadTensorOp>(
padTensorOp->getLoc(), newResultType, padTensorOp.source(),
padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(),
padTensorOp.static_high(), /*output=*/nullptr);
BlockAndValueMapping mapper;
padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
rewriter.replaceOpWithNewOp<tensor::CastOp>(
padTensorOp, padTensorOp.getResultType(), newOp);
}
return success();
}
};

View File

@ -627,6 +627,55 @@ func @pad_tensor_same_static_shape(%arg0: tensor<5x6xf32>, %a: index)
} : tensor<5x6xf32> to tensor<5x6xf32>
return %0 : tensor<5x6xf32>
}
// -----
// CHECK-LABEL: func @pad_tensor_after_cast_differnt_shape(
// CHECK-SAME: %[[INPUT:.*]]: tensor<?x64x?x?xf32>) -> tensor<?x?x?x?xf32> {
// CHECK: %[[CST:.*]] = constant 0.000000e+00 : f32
// CHECK: %[[PADDED:.*]] = linalg.pad_tensor %[[INPUT]]
// CHECK-SAME: low[0, 0, 1, 1] high[0, 0, 1, 1] {
// CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index):
// CHECK: linalg.yield %[[CST]] : f32
// CHECK: } : tensor<?x64x?x?xf32> to tensor<?x64x?x?xf32>
// CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[PADDED:.*]] :
// CHECK-SAME: tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
// CHECK: return %[[DYNAMIC]] : tensor<?x?x?x?xf32>
// CHECK: }
func @pad_tensor_after_cast_differnt_shape(%arg0: tensor<?x64x?x?xf32>)
-> tensor<?x?x?x?xf32> {
%cst = constant 0.000000e+00 : f32
%dynamic = tensor.cast %arg0 : tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
%padded = linalg.pad_tensor %dynamic low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): // no predecessors
linalg.yield %cst: f32
} : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
return %padded: tensor<?x?x?x?xf32>
}
// -----
// CHECK-LABEL: func @pad_tensor_after_cast_same_shape(
// CHECK-SAME: %[[INPUT:.*]]: tensor<?x64x?x?xf32>,
// CHECK-SAME: %[[PADDING:.*]]: index) -> tensor<?x?x?x?xf32> {
// CHECK: %[[CST:.*]] = constant 0.000000e+00 : f32
// CHECK: %[[PADDED:.*]] = linalg.pad_tensor %[[INPUT]]
// CHECK-SAME: low[0, %[[PADDING]], 1, 1] high[0, %[[PADDING]], 1, 1] {
// CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index):
// CHECK: linalg.yield %[[CST]] : f32
// CHECK: } : tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
// CHECK: return %[[PADDED:.*]] : tensor<?x?x?x?xf32>
// CHECK: }
func @pad_tensor_after_cast_same_shape(%arg0: tensor<?x64x?x?xf32>, %padding : index)
-> tensor<?x?x?x?xf32> {
%cst = constant 0.000000e+00 : f32
%dynamic = tensor.cast %arg0 : tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
%padded = linalg.pad_tensor %dynamic low[0, %padding, 1, 1] high[0, %padding, 1, 1] {
^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): // no predecessors
linalg.yield %cst: f32
} : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
return %padded: tensor<?x?x?x?xf32>
}
// -----
func @propogate_casts(%arg0 : tensor<?x?xf32>, %arg1 : f32, %arg2 : index,
%arg3 : index) -> tensor<?x?xf32> {
%c0 = constant 0 : index