[NFC][sanitizer] Refactor Maps into templates

Depends on D111599.

Reviewed By: dvyukov

Differential Revision: https://reviews.llvm.org/D111605
This commit is contained in:
Vitaly Buka 2021-10-10 20:15:45 -07:00
parent c24b2ad0e2
commit 9939e562f7
3 changed files with 98 additions and 60 deletions

View File

@ -199,7 +199,8 @@ class SizeClassAllocator32 {
}
uptr GetSizeClass(const void *p) const {
return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
uptr id = ComputeRegionId(reinterpret_cast<uptr>(p));
return possible_regions.contains(id) ? possible_regions[id] : 0;
}
void *GetBlockBegin(const void *p) {
@ -253,7 +254,7 @@ class SizeClassAllocator32 {
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) const {
for (uptr region = 0; region < kNumPossibleRegions; region++)
if (possible_regions[region]) {
if (possible_regions.contains(region) && possible_regions[region]) {
uptr chunk_size = ClassIdToSize(possible_regions[region]);
uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
uptr region_beg = region * kRegionSize;
@ -305,7 +306,7 @@ class SizeClassAllocator32 {
MapUnmapCallback().OnMap(res, kRegionSize);
stat->Add(AllocatorStatMapped, kRegionSize);
CHECK(IsAligned(res, kRegionSize));
possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
possible_regions[ComputeRegionId(res)] = class_id;
return res;
}

View File

@ -27,8 +27,9 @@ struct NoOpMapUnmapCallback {
void OnUnmap(uptr p, uptr size) const {}
};
// Maps integers in rage [0, kSize) to u8 values.
template <u64 kSize, typename AddressSpaceViewTy = LocalAddressSpaceView>
// Maps integers in rage [0, kSize) to values.
template <typename T, u64 kSize,
typename AddressSpaceViewTy = LocalAddressSpaceView>
class FlatMap {
public:
using AddressSpaceView = AddressSpaceViewTy;
@ -36,43 +37,49 @@ class FlatMap {
constexpr uptr size() const { return kSize; }
void set(uptr idx, u8 val) {
bool contains(uptr idx) const {
CHECK_LT(idx, kSize);
CHECK_EQ(0U, map_[idx]);
map_[idx] = val;
return true;
}
u8 operator[](uptr idx) const {
T &operator[](uptr idx) {
CHECK_LT(idx, kSize);
// FIXME: CHECK may be too expensive here.
return map_[idx];
}
const T &operator[](uptr idx) const {
CHECK_LT(idx, kSize);
// FIXME: CHECK may be too expensive here.
return map_[idx];
}
private:
u8 map_[kSize];
T map_[kSize];
};
// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
// TwoLevelMap maps integers in range [0, kSize1*kSize2) to values.
// It is implemented as a two-dimensional array: array of kSize1 pointers
// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
// Each value is initially zero and can be set to something else only once.
// Setting and getting values from multiple threads is safe w/o extra locking.
template <u64 kSize1, u64 kSize2,
template <typename T, u64 kSize1, u64 kSize2,
typename AddressSpaceViewTy = LocalAddressSpaceView,
class MapUnmapCallback = NoOpMapUnmapCallback>
class TwoLevelMap {
public:
using AddressSpaceView = AddressSpaceViewTy;
void Init() {
internal_memset(map1_, 0, sizeof(map1_));
mu_.Init();
internal_memset(map1_, 0, sizeof(map1_));
}
void TestOnlyUnmap() {
for (uptr i = 0; i < kSize1; i++) {
u8 *p = Get(i);
T *p = Get(i);
if (!p)
continue;
MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2 * sizeof(T));
UnmapOrDie(p, kSize2);
}
}
@ -81,56 +88,61 @@ class TwoLevelMap {
constexpr uptr size1() const { return kSize1; }
constexpr uptr size2() const { return kSize2; }
void set(uptr idx, u8 val) {
bool contains(uptr idx) const {
CHECK_LT(idx, kSize1 * kSize2);
u8 *map2 = GetOrCreate(idx / kSize2);
CHECK_EQ(0U, map2[idx % kSize2]);
map2[idx % kSize2] = val;
return Get(idx / kSize2);
}
u8 operator[](uptr idx) const {
const T &operator[](uptr idx) const {
CHECK_LT(idx, kSize1 * kSize2);
u8 *map2 = Get(idx / kSize2);
if (!map2)
return 0;
auto value_ptr = AddressSpaceView::Load(&map2[idx % kSize2]);
return *value_ptr;
T *map2 = GetOrCreate(idx / kSize2);
return *AddressSpaceView::Load(&map2[idx % kSize2]);
}
T &operator[](uptr idx) {
CHECK_LT(idx, kSize1 * kSize2);
T *map2 = GetOrCreate(idx / kSize2);
return *AddressSpaceView::LoadWritable(&map2[idx % kSize2]);
}
private:
u8 *Get(uptr idx) const {
T *Get(uptr idx) const {
CHECK_LT(idx, kSize1);
return reinterpret_cast<u8 *>(
return reinterpret_cast<T *>(
atomic_load(&map1_[idx], memory_order_acquire));
}
u8 *GetOrCreate(uptr idx) {
u8 *res = Get(idx);
T *GetOrCreate(uptr idx) const {
T *res = Get(idx);
if (LIKELY(res))
return res;
return Create(idx);
}
NOINLINE T *Create(uptr idx) const {
SpinMutexLock l(&mu_);
T *res = Get(idx);
if (!res) {
SpinMutexLock l(&mu_);
if (!(res = Get(idx))) {
res = (u8 *)MmapOrDie(kSize2, "TwoLevelMap");
MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
memory_order_release);
}
res = reinterpret_cast<T *>(MmapOrDie(kSize2 * sizeof(T), "TwoLevelMap"));
MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
memory_order_release);
}
return res;
}
atomic_uintptr_t map1_[kSize1];
StaticSpinMutex mu_;
mutable StaticSpinMutex mu_;
mutable atomic_uintptr_t map1_[kSize1];
};
template <u64 kSize, typename AddressSpaceViewTy = LocalAddressSpaceView>
using FlatByteMap = FlatMap<kSize, AddressSpaceViewTy>;
using FlatByteMap = FlatMap<u8, kSize, AddressSpaceViewTy>;
template <u64 kSize1, u64 kSize2,
typename AddressSpaceViewTy = LocalAddressSpaceView,
class MapUnmapCallback = NoOpMapUnmapCallback>
using TwoLevelByteMap =
TwoLevelMap<kSize1, kSize2, AddressSpaceViewTy, MapUnmapCallback>;
TwoLevelMap<u8, kSize1, kSize2, AddressSpaceViewTy, MapUnmapCallback>;
} // namespace __sanitizer
#endif

View File

@ -22,58 +22,83 @@ struct TestMapUnmapCallback1 {
int TestMapUnmapCallback1::map_count;
int TestMapUnmapCallback1::unmap_count;
TEST(FlatMapTest, TwoLevelByteMap) {
struct TestStruct {
int data[125] = {};
TestStruct(uptr v = 0) { data[11] = v; }
bool operator==(const TestStruct &other) const {
return 0 == memcmp(data, other.data, sizeof(data));
}
};
template <typename T>
class FlatMapTest : public ::testing::Test {};
using FlatMapTestTypes = ::testing::Types<u8, u64, TestStruct>;
TYPED_TEST_SUITE(FlatMapTest, FlatMapTestTypes, );
TYPED_TEST(FlatMapTest, TwoLevelByteMap) {
const u64 kSize1 = 1 << 6, kSize2 = 1 << 12;
const u64 n = kSize1 * kSize2;
TwoLevelByteMap<kSize1, kSize2> m;
TwoLevelMap<TypeParam, kSize1, kSize2> m;
m.Init();
m[7] = {10};
for (u64 i = 0; i < kSize2; ++i) {
EXPECT_TRUE(m.contains(i));
}
EXPECT_FALSE(m.contains(kSize2));
for (u64 i = 0; i < n; i += 7) {
m.set(i, (i % 100) + 1);
m[i] = TypeParam((i % 100) + 1);
}
for (u64 j = 0; j < n; j++) {
EXPECT_TRUE(m.contains(j));
if (j % 7)
EXPECT_EQ(m[j], 0);
EXPECT_EQ(m[j], TypeParam());
else
EXPECT_EQ(m[j], (j % 100) + 1);
EXPECT_EQ(m[j], TypeParam((j % 100) + 1));
}
m.TestOnlyUnmap();
}
template <typename AddressSpaceView>
using TestByteMapASVT =
TwoLevelByteMap<1 << 12, 1 << 13, AddressSpaceView, TestMapUnmapCallback1>;
using TestByteMap = TestByteMapASVT<LocalAddressSpaceView>;
template <typename TypeParam, typename AddressSpaceView>
using TestMapASVT = TwoLevelMap<TypeParam, 1 << 8, 1 << 7, AddressSpaceView,
TestMapUnmapCallback1>;
template <typename TypeParam>
using TestMap = TestMapASVT<TypeParam, LocalAddressSpaceView>;
struct TestByteMapParam {
TestByteMap *m;
template <typename TypeParam>
struct TestMapParam {
TestMap<TypeParam> *m;
size_t shard;
size_t num_shards;
};
static void *TwoLevelByteMapUserThread(void *param) {
TestByteMapParam *p = (TestByteMapParam *)param;
template <typename TypeParam>
static void *TwoLevelMapUserThread(void *param) {
TestMapParam<TypeParam> *p = (TestMapParam<TypeParam> *)param;
for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) {
size_t val = (i % 100) + 1;
p->m->set(i, val);
TypeParam val = (i % 100) + 1;
(*p->m)[i] = val;
EXPECT_EQ((*p->m)[i], val);
}
return 0;
}
TEST(FlatMapTest, ThreadedTwoLevelByteMap) {
TestByteMap m;
TYPED_TEST(FlatMapTest, ThreadedTwoLevelByteMap) {
TestMap<TypeParam> m;
m.Init();
TestMapUnmapCallback1::map_count = 0;
TestMapUnmapCallback1::unmap_count = 0;
static const int kNumThreads = 4;
pthread_t t[kNumThreads];
TestByteMapParam p[kNumThreads];
TestMapParam<TypeParam> p[kNumThreads];
for (int i = 0; i < kNumThreads; i++) {
p[i].m = &m;
p[i].shard = i;
p[i].num_shards = kNumThreads;
PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]);
PTHREAD_CREATE(&t[i], 0, TwoLevelMapUserThread<TypeParam>, &p[i]);
}
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_JOIN(t[i], 0);