Add a -lint pass which checks for common sources of undefined or likely

unintended behavior.

llvm-svn: 100798
This commit is contained in:
Dan Gohman 2010-04-08 18:47:09 +00:00
parent 359b013129
commit 98bc4371c7
4 changed files with 453 additions and 0 deletions

View File

@ -0,0 +1,52 @@
//===-- llvm/Analysis/Lint.h - LLVM IR Lint ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines lint interfaces that can be used for some sanity checking
// of input to the system, and for checking that transformations
// haven't done something bad. In contrast to the Verifier, the Lint checker
// checks for undefined behavior or constructions with likely unintended
// behavior.
//
// To see what specifically is checked, look at Lint.cpp
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LINT_H
#define LLVM_ANALYSIS_LINT_H
#include <string>
namespace llvm {
class FunctionPass;
class Module;
class Function;
/// @brief Create a lint pass.
///
/// Check a module or function.
FunctionPass *createLintPass();
/// @brief Check a module.
///
/// This should only be used for debugging, because it plays games with
/// PassManagers and stuff.
void lintModule(
const Module &M, ///< The module to be checked
std::string *ErrorInfo = 0 ///< Information about failures.
);
// lintFunction - Check a function.
void lintFunction(
const Function &F ///< The function to be checked
);
} // End llvm namespace
#endif

View File

@ -23,6 +23,7 @@
#include "llvm/Analysis/PointerTracking.h" #include "llvm/Analysis/PointerTracking.h"
#include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/Lint.h"
#include "llvm/Assembly/PrintModulePass.h" #include "llvm/Assembly/PrintModulePass.h"
#include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h" #include "llvm/Function.h"
@ -137,6 +138,7 @@ namespace {
(void) llvm::createGEPSplitterPass(); (void) llvm::createGEPSplitterPass();
(void) llvm::createSCCVNPass(); (void) llvm::createSCCVNPass();
(void) llvm::createABCDPass(); (void) llvm::createABCDPass();
(void) llvm::createLintPass();
(void)new llvm::IntervalPartition(); (void)new llvm::IntervalPartition();
(void)new llvm::FindUsedTypes(); (void)new llvm::FindUsedTypes();

368
llvm/lib/Analysis/Lint.cpp Normal file
View File

@ -0,0 +1,368 @@
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass statically checks for common and easily-identified constructs
// which produce undefined or likely unintended behavior in LLVM IR.
//
// It is not a guarantee of correctness, in two ways. First, it isn't
// comprehensive. There are checks which could be done statically which are
// not yet implemented. Some of these are indicated by TODO comments, but
// those aren't comprehensive either. Second, many conditions cannot be
// checked statically. This pass does no dynamic instrumentation, so it
// can't check for all possible problems.
//
// Another limitation is that it assumes all code will be executed. A store
// through a null pointer in a basic block which is never reached is harmless,
// but this pass will warn about it anyway.
// Optimization passes may make conditions that this pass checks for more or
// less obvious. If an optimization pass appears to be introducing a warning,
// it may be that the optimization pass is merely exposing an existing
// condition in the code.
//
// This code may be run before instcombine. In many cases, instcombine checks
// for the same kinds of things and turns instructions with undefined behavior
// into unreachable (or equivalent). Because of this, this pass makes some
// effort to look through bitcasts and so on.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Lint.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Function.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class Lint : public FunctionPass, public InstVisitor<Lint> {
friend class InstVisitor<Lint>;
void visitCallSite(CallSite CS);
void visitMemoryReference(Instruction &I, Value *Ptr, unsigned Align,
const Type *Ty);
void visitInstruction(Instruction &I);
void visitCallInst(CallInst &I);
void visitInvokeInst(InvokeInst &I);
void visitReturnInst(ReturnInst &I);
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitSDiv(BinaryOperator &I);
void visitUDiv(BinaryOperator &I);
void visitSRem(BinaryOperator &I);
void visitURem(BinaryOperator &I);
void visitAllocaInst(AllocaInst &I);
void visitVAArgInst(VAArgInst &I);
void visitIndirectBrInst(IndirectBrInst &I);
public:
Module *Mod;
AliasAnalysis *AA;
TargetData *TD;
std::string Messages;
raw_string_ostream MessagesStr;
static char ID; // Pass identification, replacement for typeid
Lint() : FunctionPass(&ID), MessagesStr(Messages) {}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<AliasAnalysis>();
}
virtual void print(raw_ostream &O, const Module *M) const {}
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
MessagesStr << *V << '\n';
} else {
WriteAsOperand(MessagesStr, V, true, Mod);
MessagesStr << '\n';
}
}
void WriteType(const Type *T) {
if (!T) return;
MessagesStr << ' ';
WriteTypeSymbolic(MessagesStr, T, Mod);
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const Twine &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
}
void CheckFailed(const Twine &Message, const Value *V1,
const Type *T2, const Value *V3 = 0) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
}
void CheckFailed(const Twine &Message, const Type *T1,
const Type *T2 = 0, const Type *T3 = 0) {
MessagesStr << Message.str() << "\n";
WriteType(T1);
WriteType(T2);
WriteType(T3);
}
};
}
char Lint::ID = 0;
static RegisterPass<Lint>
X("lint", "Statically lint-checks LLVM IR", false, true);
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
// Lint::run - This is the main Analysis entry point for a
// function.
//
bool Lint::runOnFunction(Function &F) {
Mod = F.getParent();
AA = &getAnalysis<AliasAnalysis>();
TD = getAnalysisIfAvailable<TargetData>();
visit(F);
dbgs() << MessagesStr.str();
return false;
}
void Lint::visitInstruction(Instruction &I) {
}
void Lint::visitCallSite(CallSite CS) {
Instruction &I = *CS.getInstruction();
Value *Callee = CS.getCalledValue();
// TODO: Check function alignment?
visitMemoryReference(I, Callee, 0, 0);
if (Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) {
Assert1(CS.getCallingConv() == F->getCallingConv(),
"Caller and callee calling convention differ", &I);
const FunctionType *FT = F->getFunctionType();
unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
Assert1(FT->isVarArg() ?
FT->getNumParams() <= NumActualArgs :
FT->getNumParams() == NumActualArgs,
"Call argument count mismatches callee argument count", &I);
// TODO: Check argument types (in case the callee was casted)
// TODO: Check ABI-significant attributes.
// TODO: Check noalias attribute.
// TODO: Check sret attribute.
}
// TODO: Check the "tail" keyword constraints.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
switch (II->getIntrinsicID()) {
default: break;
// TODO: Check more intrinsics
case Intrinsic::memcpy: {
MemCpyInst *MCI = cast<MemCpyInst>(&I);
visitMemoryReference(I, MCI->getSource(), MCI->getAlignment(), 0);
visitMemoryReference(I, MCI->getDest(), MCI->getAlignment(), 0);
unsigned Size = 0;
if (const ConstantInt *Len =
dyn_cast<ConstantInt>(MCI->getLength()->stripPointerCasts()))
if (Len->getValue().isIntN(32))
Size = Len->getValue().getZExtValue();
Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
AliasAnalysis::MustAlias,
"memcpy source and destination overlap", &I);
break;
}
case Intrinsic::memmove: {
MemMoveInst *MMI = cast<MemMoveInst>(&I);
visitMemoryReference(I, MMI->getSource(), MMI->getAlignment(), 0);
visitMemoryReference(I, MMI->getDest(), MMI->getAlignment(), 0);
break;
}
case Intrinsic::memset: {
MemSetInst *MSI = cast<MemSetInst>(&I);
visitMemoryReference(I, MSI->getDest(), MSI->getAlignment(), 0);
break;
}
case Intrinsic::vastart:
visitMemoryReference(I, CS.getArgument(0), 0, 0);
break;
case Intrinsic::vacopy:
visitMemoryReference(I, CS.getArgument(0), 0, 0);
visitMemoryReference(I, CS.getArgument(1), 0, 0);
break;
case Intrinsic::vaend:
visitMemoryReference(I, CS.getArgument(0), 0, 0);
break;
case Intrinsic::stackrestore:
visitMemoryReference(I, CS.getArgument(0), 0, 0);
break;
}
}
void Lint::visitCallInst(CallInst &I) {
return visitCallSite(&I);
}
void Lint::visitInvokeInst(InvokeInst &I) {
return visitCallSite(&I);
}
void Lint::visitReturnInst(ReturnInst &I) {
Function *F = I.getParent()->getParent();
Assert1(!F->doesNotReturn(),
"Return statement in function with noreturn attribute", &I);
}
// TODO: Add a length argument and check that the reference is in bounds
// TODO: Add read/write/execute flags and check for writing to read-only
// memory or jumping to suspicious writeable memory
void Lint::visitMemoryReference(Instruction &I,
Value *Ptr, unsigned Align, const Type *Ty) {
Assert1(!isa<ConstantPointerNull>(Ptr->getUnderlyingObject()),
"Null pointer dereference", &I);
Assert1(!isa<UndefValue>(Ptr->getUnderlyingObject()),
"Undef pointer dereference", &I);
if (TD) {
if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
if (Align != 0) {
unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
APInt Mask = APInt::getAllOnesValue(BitWidth),
KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD);
Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
"Memory reference address is misaligned", &I);
}
}
}
void Lint::visitLoadInst(LoadInst &I) {
visitMemoryReference(I, I.getPointerOperand(), I.getAlignment(), I.getType());
}
void Lint::visitStoreInst(StoreInst &I) {
visitMemoryReference(I, I.getPointerOperand(), I.getAlignment(),
I.getOperand(0)->getType());
}
static bool isZero(Value *V, TargetData *TD) {
unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
APInt Mask = APInt::getAllOnesValue(BitWidth),
KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
return KnownZero.isAllOnesValue();
}
void Lint::visitSDiv(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), TD), "Division by zero", &I);
}
void Lint::visitUDiv(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), TD), "Division by zero", &I);
}
void Lint::visitSRem(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), TD), "Division by zero", &I);
}
void Lint::visitURem(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), TD), "Division by zero", &I);
}
void Lint::visitAllocaInst(AllocaInst &I) {
if (isa<ConstantInt>(I.getArraySize()))
// This isn't undefined behavior, it's just an obvious pessimization.
Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
"Static alloca outside of entry block", &I);
}
void Lint::visitVAArgInst(VAArgInst &I) {
visitMemoryReference(I, I.getOperand(0), 0, 0);
}
void Lint::visitIndirectBrInst(IndirectBrInst &I) {
visitMemoryReference(I, I.getAddress(), 0, 0);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createLintPass() {
return new Lint();
}
/// lintFunction - Check a function for errors, printing messages on stderr.
///
void llvm::lintFunction(const Function &f) {
Function &F = const_cast<Function&>(f);
assert(!F.isDeclaration() && "Cannot lint external functions");
FunctionPassManager FPM(F.getParent());
Lint *V = new Lint();
FPM.add(V);
FPM.run(F);
}
/// lintModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
void llvm::lintModule(const Module &M, std::string *ErrorInfo) {
PassManager PM;
Lint *V = new Lint();
PM.add(V);
PM.run(const_cast<Module&>(M));
if (ErrorInfo)
*ErrorInfo = V->MessagesStr.str();
}

31
llvm/test/Other/lint.ll Normal file
View File

@ -0,0 +1,31 @@
; RUN: opt -lint -disable-output < %s |& FileCheck %s
target datalayout = "e-p:64:64:64"
declare fastcc void @bar()
define i32 @foo() noreturn {
; CHECK: Caller and callee calling convention differ
call void @bar()
; CHECK: Null pointer dereference
store i32 0, i32* null
; CHECK: Null pointer dereference
%t = load i32* null
; CHECK: Memory reference address is misaligned
%x = inttoptr i32 1 to i32*
load i32* %x, align 4
; CHECK: Division by zero
%sd = sdiv i32 2, 0
; CHECK: Division by zero
%ud = udiv i32 2, 0
; CHECK: Division by zero
%sr = srem i32 2, 0
; CHECK: Division by zero
%ur = urem i32 2, 0
br label %next
next:
; CHECK: Static alloca outside of entry block
%a = alloca i32
; CHECK: Return statement in function with noreturn attribute
ret i32 0
}