[InstCombine] clean up foldICmpWithConstant(); NFC

1. Early exit to reduce indent
2. Rename variables
3. Add local 'Pred' variable

llvm-svn: 281615
This commit is contained in:
Sanjay Patel 2016-09-15 15:11:12 +00:00
parent 06b127a771
commit 9745983a4d
1 changed files with 115 additions and 112 deletions

View File

@ -1374,128 +1374,131 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
}
// Fold icmp Pred X, C.
Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Value *A = nullptr, *B = nullptr;
Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
CmpInst::Predicate Pred = Cmp.getPredicate();
Value *X = Cmp.getOperand(0), *C = Cmp.getOperand(1);
// Match the following pattern, which is a common idiom when writing
// overflow-safe integer arithmetic function. The source performs an
// addition in wider type, and explicitly checks for overflow using
// comparisons against INT_MIN and INT_MAX. Simplify this by using the
// sadd_with_overflow intrinsic.
//
// TODO: This could probably be generalized to handle other overflow-safe
// operations if we worked out the formulas to compute the appropriate
// magic constants.
//
// sum = a + b
// if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
{
ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
if (I.getPredicate() == ICmpInst::ICMP_UGT &&
match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
return Res;
}
// FIXME: Use m_APInt to allow folds for splat constants.
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI)
return nullptr;
// (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
if (auto *SI = dyn_cast<SelectInst>(Op0)) {
SelectPatternResult SPR = matchSelectPattern(SI, A, B);
if (SPR.Flavor == SPF_SMIN) {
if (isKnownPositive(A, DL))
return new ICmpInst(I.getPredicate(), B, CI);
if (isKnownPositive(B, DL))
return new ICmpInst(I.getPredicate(), A, CI);
}
}
Value *A = nullptr, *B = nullptr;
// The following transforms are only 'worth it' if the only user of the
// subtraction is the icmp.
if (Op0->hasOneUse()) {
// (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
if (I.isEquality() && CI->isZero() &&
match(Op0, m_Sub(m_Value(A), m_Value(B))))
return new ICmpInst(I.getPredicate(), A, B);
// Match the following pattern, which is a common idiom when writing
// overflow-safe integer arithmetic functions. The source performs an addition
// in wider type and explicitly checks for overflow using comparisons against
// INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
//
// TODO: This could probably be generalized to handle other overflow-safe
// operations if we worked out the formulas to compute the appropriate magic
// constants.
//
// sum = a + b
// if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
{
ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
if (Pred == ICmpInst::ICMP_UGT &&
match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
if (Instruction *Res = ProcessUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
return Res;
}
// (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
// (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
// (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
// (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
}
if (I.isEquality()) {
ConstantInt *CI2;
if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
// (icmp eq/ne (ashr/lshr const2, A), const1)
if (Instruction *Inst = foldICmpCstShrConst(I, Op0, A, CI, CI2))
return Inst;
}
if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
// (icmp eq/ne (shl const2, A), const1)
if (Instruction *Inst = foldICmpCstShlConst(I, Op0, A, CI, CI2))
return Inst;
// (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
if (CI->isZero() && Pred == ICmpInst::ICMP_SGT)
if (auto *SI = dyn_cast<SelectInst>(X)) {
SelectPatternResult SPR = matchSelectPattern(SI, A, B);
if (SPR.Flavor == SPF_SMIN) {
if (isKnownPositive(A, DL))
return new ICmpInst(Pred, B, CI);
if (isKnownPositive(B, DL))
return new ICmpInst(Pred, A, CI);
}
}
// Canonicalize icmp instructions based on dominating conditions.
BasicBlock *Parent = I.getParent();
BasicBlock *Dom = Parent->getSinglePredecessor();
auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
ICmpInst::Predicate Pred;
BasicBlock *TrueBB, *FalseBB;
// The following transforms are only worth it if the only user of the subtract
// is the icmp.
if (X->hasOneUse()) {
// (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
if (Cmp.isEquality() && CI->isZero() &&
match(X, m_Sub(m_Value(A), m_Value(B))))
return new ICmpInst(Pred, A, B);
// (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
if (Pred == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
match(X, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
// (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
if (Pred == ICmpInst::ICMP_SGT && CI->isZero() &&
match(X, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
// (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
if (Pred == ICmpInst::ICMP_SLT && CI->isZero() &&
match(X, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
// (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
if (Pred == ICmpInst::ICMP_SLT && CI->isOne() &&
match(X, m_NSWSub(m_Value(A), m_Value(B))))
return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
}
if (Cmp.isEquality()) {
ConstantInt *CI2;
if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)),
TrueBB, FalseBB)) &&
TrueBB != FalseBB) {
ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(),
CI->getValue());
ConstantRange DominatingCR =
(Parent == TrueBB)
? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue())
: ConstantRange::makeExactICmpRegion(
CmpInst::getInversePredicate(Pred), CI2->getValue());
ConstantRange Intersection = DominatingCR.intersectWith(CR);
ConstantRange Difference = DominatingCR.difference(CR);
if (Intersection.isEmptySet())
return replaceInstUsesWith(I, Builder->getFalse());
if (Difference.isEmptySet())
return replaceInstUsesWith(I, Builder->getTrue());
if (match(X, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
match(X, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
// (icmp eq/ne (ashr/lshr const2, A), const1)
if (Instruction *Inst = foldICmpCstShrConst(Cmp, X, A, CI, CI2))
return Inst;
}
if (match(X, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
// (icmp eq/ne (shl const2, A), const1)
if (Instruction *Inst = foldICmpCstShlConst(Cmp, X, A, CI, CI2))
return Inst;
}
}
// If this is a normal comparison, it demands all bits. If it is a sign
// bit comparison, it only demands the sign bit.
bool UnusedBit;
bool IsSignBit =
isSignBitCheck(I.getPredicate(), CI->getValue(), UnusedBit);
// Canonicalize icmp instructions based on dominating conditions.
BasicBlock *Parent = Cmp.getParent();
BasicBlock *Dom = Parent->getSinglePredecessor();
auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
ICmpInst::Predicate Pred2;
BasicBlock *TrueBB, *FalseBB;
ConstantInt *CI2;
if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
TrueBB, FalseBB)) &&
TrueBB != FalseBB) {
ConstantRange CR =
ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
ConstantRange DominatingCR =
(Parent == TrueBB)
? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
: ConstantRange::makeExactICmpRegion(
CmpInst::getInversePredicate(Pred2), CI2->getValue());
ConstantRange Intersection = DominatingCR.intersectWith(CR);
ConstantRange Difference = DominatingCR.difference(CR);
if (Intersection.isEmptySet())
return replaceInstUsesWith(Cmp, Builder->getFalse());
if (Difference.isEmptySet())
return replaceInstUsesWith(Cmp, Builder->getTrue());
// Canonicalizing a sign bit comparison that gets used in a branch,
// pessimizes codegen by generating branch on zero instruction instead
// of a test and branch. So we avoid canonicalizing in such situations
// because test and branch instruction has better branch displacement
// than compare and branch instruction.
if (!isBranchOnSignBitCheck(I, IsSignBit) && !I.isEquality()) {
if (auto *AI = Intersection.getSingleElement())
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI));
if (auto *AD = Difference.getSingleElement())
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD));
}
// If this is a normal comparison, it demands all bits. If it is a sign
// bit comparison, it only demands the sign bit.
bool UnusedBit;
bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
// Canonicalizing a sign bit comparison that gets used in a branch,
// pessimizes codegen by generating branch on zero instruction instead
// of a test and branch. So we avoid canonicalizing in such situations
// because test and branch instruction has better branch displacement
// than compare and branch instruction.
if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
if (auto *AI = Intersection.getSingleElement())
return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
if (auto *AD = Difference.getSingleElement())
return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
}
}