Land support for ARM EHABI unwinding for libunwind.

This was written by:
Albert Wong <ajwong@chromium.org>
Antoine Labour <piman@chromium.org>
Dana Jansen <danakj@chromium.org
Jonathan Roelofs <jonathan@codesourcery.com>
Nico Weber <thakis@chromium.org>

llvm-svn: 211743
This commit is contained in:
Nico Weber 2014-06-25 23:39:00 +00:00
parent e44fd66f8c
commit 97080e0c5e
10 changed files with 1636 additions and 83 deletions

View File

@ -100,6 +100,12 @@ extern int unw_set_reg(unw_cursor_t *, unw_regnum_t, unw_word_t) LIBUNWIND_AVAIL
extern int unw_set_fpreg(unw_cursor_t *, unw_regnum_t, unw_fpreg_t) LIBUNWIND_AVAIL;
extern int unw_resume(unw_cursor_t *) LIBUNWIND_AVAIL;
#if __arm__
/* Save VFP registers in FSTMX format (instead of FSTMD). */
extern void unw_save_vfp_as_X(unw_cursor_t *) LIBUNWIND_AVAIL;
#endif
extern const char *unw_regname(unw_cursor_t *, unw_regnum_t) LIBUNWIND_AVAIL;
extern int unw_get_proc_info(unw_cursor_t *, unw_proc_info_t *) LIBUNWIND_AVAIL;
extern int unw_is_fpreg(unw_cursor_t *, unw_regnum_t) LIBUNWIND_AVAIL;

View File

@ -55,6 +55,7 @@ typedef enum {
_UA_END_OF_STACK = 16 // gcc extension to C++ ABI
} _Unwind_Action;
typedef struct _Unwind_Context _Unwind_Context; // opaque
#if LIBCXXABI_ARM_EHABI
typedef uint32_t _Unwind_State;
@ -73,26 +74,30 @@ struct _Unwind_Control_Block {
uint64_t exception_class;
void (*exception_cleanup)(_Unwind_Reason_Code, _Unwind_Control_Block*);
/* Unwinder cache, private fields for the unwinder's use */
struct {
uint32_t reserved1;
uint32_t reserved1; /* init reserved1 to 0, then don't touch */
uint32_t reserved2;
uint32_t reserved3;
uint32_t reserved4;
uint32_t reserved5;
} unwinder_cache;
/* Propagation barrier cache (valid after phase 1): */
struct {
uint32_t sp;
uint32_t bitpattern[5];
} barrier_cache;
/* Cleanup cache (preserved over cleanup): */
struct {
uint32_t bitpattern[4];
} cleanup_cache;
/* Pr cache (for pr's benefit): */
struct {
uint32_t fnstart;
_Unwind_EHT_Header* ehtp;
uint32_t fnstart; /* function start address */
_Unwind_EHT_Header* ehtp; /* pointer to EHT entry header word */
uint32_t additional;
uint32_t reserved1;
} pr_cache;
@ -165,10 +170,10 @@ extern void _Unwind_DeleteException(_Unwind_Exception *exception_object);
#if LIBCXXABI_ARM_EHABI
typedef enum {
_UVRSC_CORE = 0,
_UVRSC_VFP = 1,
_UVRSC_WMMXD = 3,
_UVRSC_WMMXC = 4
_UVRSC_CORE = 0, /* integer register */
_UVRSC_VFP = 1, /* vfp */
_UVRSC_WMMXD = 3, /* Intel WMMX data register */
_UVRSC_WMMXC = 4 /* Intel WMMX control register */
} _Unwind_VRS_RegClass;
typedef enum {
@ -185,17 +190,26 @@ typedef enum {
_UVRSR_FAILED = 2
} _Unwind_VRS_Result;
extern _Unwind_VRS_Result _Unwind_VRS_Get(_Unwind_Context* context,
_Unwind_VRS_RegClass regclass,
uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep);
extern void _Unwind_Complete(_Unwind_Exception* exception_object);
extern _Unwind_VRS_Result _Unwind_VRS_Set(_Unwind_Context* context,
_Unwind_VRS_RegClass regclass,
uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep);
extern _Unwind_VRS_Result
_Unwind_VRS_Get(_Unwind_Context *context, _Unwind_VRS_RegClass regclass,
uint32_t regno, _Unwind_VRS_DataRepresentation representation,
void *valuep);
extern _Unwind_VRS_Result
_Unwind_VRS_Set(_Unwind_Context *context, _Unwind_VRS_RegClass regclass,
uint32_t regno, _Unwind_VRS_DataRepresentation representation,
void *valuep);
extern _Unwind_VRS_Result
_Unwind_VRS_Pop(_Unwind_Context *context, _Unwind_VRS_RegClass regclass,
uint32_t discriminator,
_Unwind_VRS_DataRepresentation representation);
extern _Unwind_Reason_Code _Unwind_VRS_Interpret(_Unwind_Context *context,
uint32_t *data, size_t offset,
size_t len);
static inline uintptr_t _Unwind_GetGR(struct _Unwind_Context* context,
int index) {
@ -276,9 +290,9 @@ extern uintptr_t _Unwind_GetCFA(struct _Unwind_Context *);
// _Unwind_GetIPInfo is a gcc extension that can be called from within a
// personality handler. Similar to _Unwind_GetIP() but also returns in
// *ipBefore a non-zero value if the instruction pointer is at or before the
// instruction causing the unwind. Normally, in a function call, the IP returned
// personality handler. Similar to _Unwind_GetIP() but also returns in
// *ipBefore a non-zero value if the instruction pointer is at or before the
// instruction causing the unwind. Normally, in a function call, the IP returned
// is the return address which is after the call instruction and may be past the
// end of the function containing the call instruction.
extern uintptr_t _Unwind_GetIPInfo(struct _Unwind_Context *context,

View File

@ -1283,39 +1283,51 @@ inline void Registers_arm64::setVectorRegister(int, v128) {
///
/// NOTE: Assumes VFPv3. On ARM processors without a floating point unit,
/// this uses more memory than required.
///
/// FIXME: Support MMX Data Registers, Control registers, and load/stores
/// for different representations in the VFP registers as listed in
/// Table 1 of EHABI #7.5.2
class _LIBUNWIND_HIDDEN Registers_arm {
public:
Registers_arm();
Registers_arm(const void *registers);
bool validRegister(int num) const;
uint32_t getRegister(int num) const;
uint32_t getRegister(int num);
void setRegister(int num, uint32_t value);
// FIXME: Due to ARM VRS's support for reading/writing different
// representations into the VFP registers this set of accessors seem wrong.
// If {get,set}FloatRegister() is the backing store for
// _Unwind_VRS_{Get,Set} then it might be best to return a tagged union
// with types for each representation in _Unwind_VRS_DataRepresentation.
// Similarly, unw_{get,set}_fpreg in the public libunwind API may want to
// use a similar tagged union to back the unw_fpreg_t output parameter type.
bool validFloatRegister(int num) const;
unw_fpreg_t getFloatRegister(int num) const;
unw_fpreg_t getFloatRegister(int num);
void setFloatRegister(int num, unw_fpreg_t value);
bool validVectorRegister(int num) const;
v128 getVectorRegister(int num) const;
void setVectorRegister(int num, v128 value);
const char *getRegisterName(int num);
void jumpto();
void jumpto() {
restoreSavedFloatRegisters();
restoreCoreAndJumpTo();
}
uint32_t getSP() const { return _registers.__sp; }
void setSP(uint32_t value) { _registers.__sp = value; }
uint32_t getIP() const { return _registers.__pc; }
void setIP(uint32_t value) { _registers.__pc = value; }
void saveVFPAsX() {
assert(_use_X_for_vfp_save || !_saved_vfp_d0_d15);
_use_X_for_vfp_save = true;
}
void restoreSavedFloatRegisters() {
if (_saved_vfp_d0_d15) {
if (_use_X_for_vfp_save)
restoreVFPWithFLDMX(_vfp_d0_d15_pad);
else
restoreVFPWithFLDMD(_vfp_d0_d15_pad);
}
if (_saved_vfp_d16_d31)
restoreVFPv3(_vfp_d16_d31);
if (_saved_iwmmx)
restoreiWMMX(_iwmmx);
if (_saved_iwmmx_control)
restoreiWMMXControl(_iwmmx_control);
}
private:
struct GPRs {
uint32_t __r[13]; // r0-r12
@ -1324,17 +1336,74 @@ private:
uint32_t __pc; // Program counter r15
};
GPRs _registers;
static void saveVFPWithFSTMD(unw_fpreg_t*);
static void saveVFPWithFSTMX(unw_fpreg_t*);
static void saveVFPv3(unw_fpreg_t*);
static void saveiWMMX(unw_fpreg_t*);
static void saveiWMMXControl(uint32_t*);
static void restoreVFPWithFLDMD(unw_fpreg_t*);
static void restoreVFPWithFLDMX(unw_fpreg_t*);
static void restoreVFPv3(unw_fpreg_t*);
static void restoreiWMMX(unw_fpreg_t*);
static void restoreiWMMXControl(uint32_t*);
void restoreCoreAndJumpTo();
// ARM registers
GPRs _registers;
// We save floating point registers lazily because we can't know ahead of
// time which ones are used. See EHABI #4.7.
// Whether D0-D15 are saved in the FTSMX instead of FSTMD format.
//
// See EHABI #7.5 that explains how matching instruction sequences for load
// and store need to be used to correctly restore the exact register bits.
bool _use_X_for_vfp_save;
// Whether VFP D0-D15 are saved.
bool _saved_vfp_d0_d15;
// Whether VFPv3 D16-D31 are saved.
bool _saved_vfp_d16_d31;
// Whether iWMMX data registers are saved.
bool _saved_iwmmx;
// Whether iWMMX control registers are saved.
bool _saved_iwmmx_control;
// VFP registers D0-D15, + padding if saved using FSTMX
unw_fpreg_t _vfp_d0_d15_pad[17];
// VFPv3 registers D16-D31, always saved using FSTMD
unw_fpreg_t _vfp_d16_d31[16];
// iWMMX registers
unw_fpreg_t _iwmmx[16];
// iWMMX control registers
uint32_t _iwmmx_control[4];
};
inline Registers_arm::Registers_arm(const void *registers) {
inline Registers_arm::Registers_arm(const void *registers)
: _use_X_for_vfp_save(false),
_saved_vfp_d0_d15(false),
_saved_vfp_d16_d31(false),
_saved_iwmmx(false),
_saved_iwmmx_control(false) {
static_assert(sizeof(Registers_arm) < sizeof(unw_context_t),
"arm registers do not fit into unw_context_t");
// See unw_getcontext() note about data.
memcpy(&_registers, registers, sizeof(_registers));
memset(&_vfp_d0_d15_pad, 0, sizeof(_vfp_d0_d15_pad));
memset(&_vfp_d16_d31, 0, sizeof(_vfp_d16_d31));
memset(&_iwmmx, 0, sizeof(_iwmmx));
memset(&_iwmmx_control, 0, sizeof(_iwmmx_control));
}
inline Registers_arm::Registers_arm() {
inline Registers_arm::Registers_arm()
: _use_X_for_vfp_save(false),
_saved_vfp_d0_d15(false),
_saved_vfp_d16_d31(false),
_saved_iwmmx(false),
_saved_iwmmx_control(false) {
memset(&_registers, 0, sizeof(_registers));
memset(&_vfp_d0_d15_pad, 0, sizeof(_vfp_d0_d15_pad));
memset(&_vfp_d16_d31, 0, sizeof(_vfp_d16_d31));
memset(&_iwmmx, 0, sizeof(_iwmmx));
memset(&_iwmmx_control, 0, sizeof(_iwmmx_control));
}
inline bool Registers_arm::validRegister(int regNum) const {
@ -1344,20 +1413,29 @@ inline bool Registers_arm::validRegister(int regNum) const {
return true;
if (regNum == UNW_REG_SP)
return true;
if ((regNum >= UNW_ARM_R0) && (regNum <= UNW_ARM_R15))
if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15)
return true;
if (regNum >= UNW_ARM_WC0 && regNum <= UNW_ARM_WC3)
return true;
return false;
}
inline uint32_t Registers_arm::getRegister(int regNum) const {
inline uint32_t Registers_arm::getRegister(int regNum) {
if (regNum == UNW_REG_SP || regNum == UNW_ARM_SP)
return _registers.__sp;
if (regNum == UNW_ARM_LR)
return _registers.__lr;
if (regNum == UNW_REG_IP || regNum == UNW_ARM_IP)
return _registers.__pc;
if ((regNum >= UNW_ARM_R0) && (regNum <= UNW_ARM_R12))
if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R12)
return _registers.__r[regNum];
if (regNum >= UNW_ARM_WC0 && regNum <= UNW_ARM_WC3) {
if (!_saved_iwmmx_control) {
_saved_iwmmx_control = true;
saveiWMMXControl(_iwmmx_control);
}
return _iwmmx_control[regNum - UNW_ARM_WC0];
}
_LIBUNWIND_ABORT("unsupported arm register");
}
@ -1368,9 +1446,15 @@ inline void Registers_arm::setRegister(int regNum, uint32_t value) {
_registers.__lr = value;
else if (regNum == UNW_REG_IP || regNum == UNW_ARM_IP)
_registers.__pc = value;
else if ((regNum >= UNW_ARM_R0) && (regNum <= UNW_ARM_R12))
else if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R12)
_registers.__r[regNum] = value;
else
else if (regNum >= UNW_ARM_WC0 && regNum <= UNW_ARM_WC3) {
if (!_saved_iwmmx_control) {
_saved_iwmmx_control = true;
saveiWMMXControl(_iwmmx_control);
}
_iwmmx_control[regNum - UNW_ARM_WC0] = value;
} else
_LIBUNWIND_ABORT("unsupported arm register");
}
@ -1543,17 +1627,65 @@ inline const char *Registers_arm::getRegisterName(int regNum) {
}
}
inline bool Registers_arm::validFloatRegister(int) const {
// FIXME: Implement float register support.
return false;
inline bool Registers_arm::validFloatRegister(int regNum) const {
// NOTE: Consider the intel MMX registers floating points so the
// unw_get_fpreg can be used to transmit the 64-bit data back.
return ((regNum >= UNW_ARM_D0) && (regNum <= UNW_ARM_D31))
|| ((regNum >= UNW_ARM_WR0) && (regNum <= UNW_ARM_WR15));
}
inline unw_fpreg_t Registers_arm::getFloatRegister(int) const {
_LIBUNWIND_ABORT("ARM float register support not yet implemented");
inline unw_fpreg_t Registers_arm::getFloatRegister(int regNum) {
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D15) {
if (!_saved_vfp_d0_d15) {
_saved_vfp_d0_d15 = true;
if (_use_X_for_vfp_save)
saveVFPWithFSTMX(_vfp_d0_d15_pad);
else
saveVFPWithFSTMD(_vfp_d0_d15_pad);
}
return _vfp_d0_d15_pad[regNum - UNW_ARM_D0];
} else if (regNum >= UNW_ARM_D16 && regNum <= UNW_ARM_D31) {
if (!_saved_vfp_d16_d31) {
_saved_vfp_d16_d31 = true;
saveVFPv3(_vfp_d16_d31);
}
return _vfp_d16_d31[regNum - UNW_ARM_D16];
} else if (regNum >= UNW_ARM_WR0 && regNum <= UNW_ARM_WR15) {
if (!_saved_iwmmx) {
_saved_iwmmx = true;
saveiWMMX(_iwmmx);
}
return _iwmmx[regNum - UNW_ARM_WR0];
} else {
_LIBUNWIND_ABORT("Unknown ARM float register");
}
}
inline void Registers_arm::setFloatRegister(int, unw_fpreg_t) {
_LIBUNWIND_ABORT("ARM float register support not yet implemented");
inline void Registers_arm::setFloatRegister(int regNum, unw_fpreg_t value) {
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D15) {
if (!_saved_vfp_d0_d15) {
_saved_vfp_d0_d15 = true;
if (_use_X_for_vfp_save)
saveVFPWithFSTMX(_vfp_d0_d15_pad);
else
saveVFPWithFSTMD(_vfp_d0_d15_pad);
}
_vfp_d0_d15_pad[regNum - UNW_ARM_D0] = value;
} else if (regNum >= UNW_ARM_D16 && regNum <= UNW_ARM_D31) {
if (!_saved_vfp_d16_d31) {
_saved_vfp_d16_d31 = true;
saveVFPv3(_vfp_d16_d31);
}
_vfp_d16_d31[regNum - UNW_ARM_D0] = value;
} else if (regNum >= UNW_ARM_WR0 && regNum <= UNW_ARM_WR15) {
if (!_saved_iwmmx) {
_saved_iwmmx = true;
saveiWMMX(_iwmmx);
}
_iwmmx[regNum - UNW_ARM_WR0] = value;
} else {
_LIBUNWIND_ABORT("Unknown ARM float register");
}
}
inline bool Registers_arm::validVectorRegister(int) const {

View File

@ -0,0 +1,952 @@
//===--------------------------- Unwind-EHABI.cpp -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// Implements ARM zero-cost C++ exceptions
//
//===----------------------------------------------------------------------===//
#include <unwind.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "libunwind.h"
#include "unwind.h"
#include "../private_typeinfo.h"
#if LIBCXXABI_ARM_EHABI
namespace {
// Strange order: take words in order, but inside word, take from most to least
// signinficant byte.
uint8_t getByte(uint32_t* data, size_t offset) {
uint8_t* byteData = reinterpret_cast<uint8_t*>(data);
return byteData[(offset & ~0x03) + (3 - (offset&0x03))];
}
const char* getNextWord(const char* data, uint32_t* out) {
*out = *reinterpret_cast<const uint32_t*>(data);
return data + 4;
}
const char* getNextNibble(const char* data, uint32_t* out) {
*out = *reinterpret_cast<const uint16_t*>(data);
return data + 2;
}
static inline uint32_t signExtendPrel31(uint32_t data) {
return data | ((data & 0x40000000u) << 1);
}
struct Descriptor {
// See # 9.2
typedef enum {
SU16 = 0, // Short descriptor, 16-bit entries
LU16 = 1, // Long descriptor, 16-bit entries
LU32 = 3, // Long descriptor, 32-bit entries
RESERVED0 = 4, RESERVED1 = 5, RESERVED2 = 6, RESERVED3 = 7,
RESERVED4 = 8, RESERVED5 = 9, RESERVED6 = 10, RESERVED7 = 11,
RESERVED8 = 12, RESERVED9 = 13, RESERVED10 = 14, RESERVED11 = 15
} Format;
// See # 9.2
typedef enum {
CLEANUP = 0x0,
FUNC = 0x1,
CATCH = 0x2,
INVALID = 0x4
} Kind;
};
_Unwind_Reason_Code ProcessDescriptors(
_Unwind_State state,
_Unwind_Control_Block* ucbp,
struct _Unwind_Context* context,
Descriptor::Format format,
const char* descriptorStart,
int flags) {
// EHT is inlined in the index using compact form. No descriptors. #5
if (flags & 0x1)
return _URC_CONTINUE_UNWIND;
const char* descriptor = descriptorStart;
uint32_t descriptorWord;
getNextWord(descriptor, &descriptorWord);
while (descriptorWord) {
// Read descriptor based on # 9.2.
uint32_t length;
uint32_t offset;
switch (format) {
case Descriptor::LU32:
descriptor = getNextWord(descriptor, &length);
descriptor = getNextWord(descriptor, &offset);
case Descriptor::LU16:
descriptor = getNextNibble(descriptor, &length);
descriptor = getNextNibble(descriptor, &offset);
default:
assert(false);
return _URC_FAILURE;
}
// See # 9.2 table for decoding the kind of descriptor. It's a 2-bit value.
Descriptor::Kind kind =
static_cast<Descriptor::Kind>((length & 0x1) | ((offset & 0x1) << 1));
// Clear off flag from last bit.
length &= ~1;
offset &= ~1;
uintptr_t scopeStart = ucbp->pr_cache.fnstart + offset;
uintptr_t scopeEnd = scopeStart + length;
uintptr_t pc = _Unwind_GetIP(context);
bool isInScope = (scopeStart <= pc) && (pc < scopeEnd);
switch (kind) {
case Descriptor::CLEANUP: {
// TODO(ajwong): Handle cleanup descriptors.
break;
}
case Descriptor::FUNC: {
// TODO(ajwong): Handle function descriptors.
break;
}
case Descriptor::CATCH: {
// Catch descriptors require gobbling one more word.
uint32_t landing_pad;
descriptor = getNextWord(descriptor, &landing_pad);
if (isInScope) {
// TODO(ajwong): This is only phase1 compatible logic. Implement
// phase2.
bool is_reference_type = landing_pad & 0x80000000;
landing_pad = signExtendPrel31(landing_pad & ~0x80000000);
if (landing_pad == 0xffffffff) {
return _URC_HANDLER_FOUND;
} else if (landing_pad == 0xfffffffe ) {
return _URC_FAILURE;
} else {
void* matched_object;
/*
if (__cxxabiv1::__cxa_type_match(
ucbp, reinterpret_cast<const std::type_info *>(landing_pad),
is_reference_type,
&matched_object) != __cxxabiv1::ctm_failed)
return _URC_HANDLER_FOUND;
*/
_LIBUNWIND_ABORT("Type matching not implemented");
}
}
break;
}
default:
_LIBUNWIND_ABORT("Invalid descriptor kind found.");
};
getNextWord(descriptor, &descriptorWord);
}
return _URC_CONTINUE_UNWIND;
}
_Unwind_Reason_Code unwindOneFrame(
_Unwind_State state,
_Unwind_Control_Block* ucbp,
struct _Unwind_Context* context) {
// Read the compact model EHT entry's header # 6.3
uint32_t* unwindingData = ucbp->pr_cache.ehtp;
uint32_t unwindInfo = *unwindingData;
assert((unwindInfo & 0xf0000000) == 0x80000000 && "Must be a compact entry");
Descriptor::Format format =
static_cast<Descriptor::Format>((unwindInfo & 0x0f000000) >> 24);
size_t len = 0;
size_t startOffset = 0;
switch (format) {
case Descriptor::SU16:
len = 4;
startOffset = 1;
break;
case Descriptor::LU16:
case Descriptor::LU32:
len = 4 + 4 * ((unwindInfo & 0x00ff0000) >> 16);
startOffset = 2;
break;
default:
return _URC_FAILURE;
}
// Handle descriptors before unwinding so they are processed in the context
// of the correct stack frame.
_Unwind_Reason_Code result =
ProcessDescriptors(
state, ucbp, context, format,
reinterpret_cast<const char*>(ucbp->pr_cache.ehtp) + len,
ucbp->pr_cache.additional);
if (result != _URC_CONTINUE_UNWIND)
return result;
return _Unwind_VRS_Interpret(context, unwindingData, startOffset, len);
}
// Generates mask discriminator for _Unwind_VRS_Pop, e.g. for _UVRSC_CORE /
// _UVRSD_UINT32.
uint32_t RegisterMask(uint8_t start, uint8_t count_minus_one) {
return ((1U << (count_minus_one + 1)) - 1) << start;
}
// Generates mask discriminator for _Unwind_VRS_Pop, e.g. for _UVRSC_VFP /
// _UVRSD_DOUBLE.
uint32_t RegisterRange(uint8_t start, uint8_t count_minus_one) {
return (start << 16) | (count_minus_one + 1);
}
} // end anonymous namespace
_Unwind_Reason_Code _Unwind_VRS_Interpret(
_Unwind_Context* context,
uint32_t* data,
size_t offset,
size_t len) {
bool wrotePC = false;
bool finish = false;
while (offset < len && !finish) {
uint8_t byte = getByte(data, offset++);
if ((byte & 0x80) == 0) {
uint32_t sp;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp);
if (byte & 0x40)
sp -= ((byte & 0x3f) << 2) + 4;
else
sp += (byte << 2) + 4;
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp);
} else {
switch (byte & 0xf0) {
case 0x80: {
if (offset >= len)
return _URC_FAILURE;
uint16_t registers =
((byte & 0x0f) << 12) | (getByte(data, offset++) << 4);
if (!registers)
return _URC_FAILURE;
if (registers & (1<<15))
wrotePC = true;
_Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32);
break;
}
case 0x90: {
uint8_t reg = byte & 0x0f;
if (reg == 13 || reg == 15)
return _URC_FAILURE;
uint32_t sp;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_R0 + reg,
_UVRSD_UINT32, &sp);
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
break;
}
case 0xa0: {
uint32_t registers = RegisterMask(4, byte & 0x07);
if (byte & 0x08)
registers |= 1<<14;
_Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32);
break;
}
case 0xb0: {
switch (byte) {
case 0xb0:
finish = true;
break;
case 0xb1: {
if (offset >= len)
return _URC_FAILURE;
uint8_t registers = getByte(data, offset++);
if (registers & 0xf0 || !registers)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32);
break;
}
case 0xb2: {
uint32_t addend = 0;
uint32_t shift = 0;
// This decodes a uleb128 value.
while (true) {
if (offset >= len)
return _URC_FAILURE;
uint32_t v = getByte(data, offset++);
addend |= (v & 0x7f) << shift;
if ((v & 0x80) == 0)
break;
shift += 7;
}
uint32_t sp;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
sp += 0x204 + (addend << 2);
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
break;
}
case 0xb3: {
uint8_t v = getByte(data, offset++);
_Unwind_VRS_Pop(context, _UVRSC_VFP,
RegisterRange(v >> 4, v & 0x0f), _UVRSD_VFPX);
break;
}
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
return _URC_FAILURE;
default:
_Unwind_VRS_Pop(context, _UVRSC_VFP,
RegisterRange(8, byte & 0x07), _UVRSD_VFPX);
break;
}
break;
}
case 0xc0: {
switch (byte) {
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
_Unwind_VRS_Pop(context, _UVRSC_WMMXD,
RegisterRange(10, byte & 0x7), _UVRSD_DOUBLE);
break;
case 0xc6: {
uint8_t v = getByte(data, offset++);
uint8_t start = v >> 4;
uint8_t count_minus_one = v & 0xf;
if (start + count_minus_one >= 16)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_WMMXD,
RegisterRange(start, count_minus_one),
_UVRSD_DOUBLE);
break;
}
case 0xc7: {
uint8_t v = getByte(data, offset++);
if (!v || v & 0xf0)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_WMMXC, v, _UVRSD_DOUBLE);
break;
}
case 0xc8:
case 0xc9: {
uint8_t v = getByte(data, offset++);
uint8_t start = ((byte == 0xc8) ? 16 : 0) + (v >> 4);
uint8_t count_minus_one = v & 0xf;
if (start + count_minus_one >= 32)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_VFP,
RegisterRange(start, count_minus_one),
_UVRSD_DOUBLE);
break;
}
default:
return _URC_FAILURE;
}
break;
}
case 0xd0: {
if (byte & 0x08)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_VFP, RegisterRange(8, byte & 0x7),
_UVRSD_DOUBLE);
break;
}
default:
return _URC_FAILURE;
}
}
}
if (!wrotePC) {
uint32_t lr;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_LR, _UVRSD_UINT32, &lr);
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_IP, _UVRSD_UINT32, &lr);
}
return _URC_CONTINUE_UNWIND;
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr0(
_Unwind_State state,
_Unwind_Control_Block *ucbp,
_Unwind_Context *context) {
return unwindOneFrame(state, ucbp, context);
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr1(
_Unwind_State state,
_Unwind_Control_Block *ucbp,
_Unwind_Context *context) {
return unwindOneFrame(state, ucbp, context);
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr2(
_Unwind_State state,
_Unwind_Control_Block *ucbp,
_Unwind_Context *context) {
return unwindOneFrame(state, ucbp, context);
}
static _Unwind_Reason_Code
unwind_phase1(unw_context_t *uc, _Unwind_Exception *exception_object) {
// EHABI #7.3 discusses preserving the VRS in a "temporary VRS" during
// phase 1 and then restoring it to the "primary VRS" for phase 2. The
// effect is phase 2 doesn't see any of the VRS manipulations from phase 1.
// In this implementation, the phases don't share the VRS backing store.
// Instead, they are passed the original |uc| and they create a new VRS
// from scratch thus achieving the same effect.
unw_cursor_t cursor1;
unw_init_local(&cursor1, uc);
// Walk each frame looking for a place to stop.
for (bool handlerNotFound = true; handlerNotFound;) {
// Ask libuwind to get next frame (skip over first which is
// _Unwind_RaiseException).
int stepResult = unw_step(&cursor1);
if (stepResult == 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_step() reached "
"bottom => _URC_END_OF_STACK\n",
exception_object);
return _URC_END_OF_STACK;
} else if (stepResult < 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_step failed => "
"_URC_FATAL_PHASE1_ERROR\n",
exception_object);
return _URC_FATAL_PHASE1_ERROR;
}
// See if frame has code to run (has personality routine).
unw_proc_info_t frameInfo;
unw_word_t sp;
if (unw_get_proc_info(&cursor1, &frameInfo) != UNW_ESUCCESS) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_get_proc_info "
"failed => _URC_FATAL_PHASE1_ERROR\n",
exception_object);
return _URC_FATAL_PHASE1_ERROR;
}
// When tracing, print state information.
if (_LIBUNWIND_TRACING_UNWINDING) {
char functionName[512];
unw_word_t offset;
if ((unw_get_proc_name(&cursor1, functionName, 512, &offset) !=
UNW_ESUCCESS) || (frameInfo.start_ip + offset > frameInfo.end_ip))
strcpy(functionName, ".anonymous.");
unw_word_t pc;
unw_get_reg(&cursor1, UNW_REG_IP, &pc);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): pc=0x%llX, start_ip=0x%llX, func=%s, "
"lsda=0x%llX, personality=0x%llX\n",
exception_object, (long long)pc, (long long)frameInfo.start_ip,
functionName, (long long)frameInfo.lsda,
(long long)frameInfo.handler);
}
// If there is a personality routine, ask it if it will want to stop at
// this frame.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(long)(frameInfo.handler);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): calling personality function %p\n",
exception_object, p);
struct _Unwind_Context *context = (struct _Unwind_Context *)(&cursor1);
exception_object->pr_cache.fnstart = frameInfo.start_ip;
exception_object->pr_cache.ehtp =
(_Unwind_EHT_Header *)frameInfo.unwind_info;
exception_object->pr_cache.additional = frameInfo.flags;
_Unwind_Reason_Code personalityResult =
(*p)(_US_VIRTUAL_UNWIND_FRAME, exception_object, context);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): personality result %d "
"start_ip %x ehtp %p additional %x\n",
exception_object, personalityResult,
exception_object->pr_cache.fnstart, exception_object->pr_cache.ehtp,
exception_object->pr_cache.additional);
switch (personalityResult) {
case _URC_HANDLER_FOUND:
// found a catch clause or locals that need destructing in this frame
// stop search and remember stack pointer at the frame
handlerNotFound = false;
// p should have initialized barrier_cache. EHABI #7.3.5
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): "
"_URC_HANDLER_FOUND \n",
exception_object);
return _URC_NO_REASON;
case _URC_CONTINUE_UNWIND:
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): _URC_CONTINUE_UNWIND\n",
exception_object);
// continue unwinding
break;
// EHABI #7.3.3
case _URC_FAILURE:
return _URC_FAILURE;
default:
// something went wrong
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): _URC_FATAL_PHASE1_ERROR\n",
exception_object);
return _URC_FATAL_PHASE1_ERROR;
}
}
}
return _URC_NO_REASON;
}
static _Unwind_Reason_Code unwind_phase2(unw_context_t *uc,
_Unwind_Exception *exception_object,
bool resume) {
// See comment at the start of unwind_phase1 regarding VRS integrity.
unw_cursor_t cursor2;
unw_init_local(&cursor2, uc);
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p)\n", exception_object);
int frame_count = 0;
// Walk each frame until we reach where search phase said to stop.
while (true) {
// Ask libuwind to get next frame (skip over first which is
// _Unwind_RaiseException or _Unwind_Resume).
//
// Resume only ever makes sense for 1 frame.
_Unwind_State state =
resume ? _US_UNWIND_FRAME_RESUME : _US_UNWIND_FRAME_STARTING;
if (resume && frame_count == 1) {
// On a resume, first unwind the _Unwind_Resume() frame. The next frame
// is now the landing pad for the cleanup from a previous execution of
// phase2. To continue unwindingly correctly, replace VRS[15] with the
// IP of the frame that the previous run of phase2 installed the context
// for. After this, continue unwinding as if normal.
//
// See #7.4.6 for details.
unw_set_reg(&cursor2, UNW_REG_IP,
exception_object->unwinder_cache.reserved2);
resume = false;
}
int stepResult = unw_step(&cursor2);
if (stepResult == 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_step() reached "
"bottom => _URC_END_OF_STACK\n",
exception_object);
return _URC_END_OF_STACK;
} else if (stepResult < 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_step failed => "
"_URC_FATAL_PHASE1_ERROR\n",
exception_object);
return _URC_FATAL_PHASE2_ERROR;
}
// Get info about this frame.
unw_word_t sp;
unw_proc_info_t frameInfo;
unw_get_reg(&cursor2, UNW_REG_SP, &sp);
if (unw_get_proc_info(&cursor2, &frameInfo) != UNW_ESUCCESS) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_get_proc_info "
"failed => _URC_FATAL_PHASE1_ERROR\n",
exception_object);
return _URC_FATAL_PHASE2_ERROR;
}
// When tracing, print state information.
if (_LIBUNWIND_TRACING_UNWINDING) {
char functionName[512];
unw_word_t offset;
if ((unw_get_proc_name(&cursor2, functionName, 512, &offset) !=
UNW_ESUCCESS) || (frameInfo.start_ip + offset > frameInfo.end_ip))
strcpy(functionName, ".anonymous.");
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2(ex_ojb=%p): start_ip=0x%llX, func=%s, sp=0x%llX, "
"lsda=0x%llX, personality=0x%llX\n",
exception_object, (long long)frameInfo.start_ip, functionName,
(long long)sp, (long long)frameInfo.lsda,
(long long)frameInfo.handler);
}
// If there is a personality routine, tell it we are unwinding.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(long)(frameInfo.handler);
struct _Unwind_Context *context = (struct _Unwind_Context *)(&cursor2);
// EHABI #7.2
exception_object->pr_cache.fnstart = frameInfo.start_ip;
exception_object->pr_cache.ehtp =
(_Unwind_EHT_Header *)frameInfo.unwind_info;
exception_object->pr_cache.additional = frameInfo.flags;
_Unwind_Reason_Code personalityResult =
(*p)(state, exception_object, context);
switch (personalityResult) {
case _URC_CONTINUE_UNWIND:
// Continue unwinding
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2(ex_ojb=%p): _URC_CONTINUE_UNWIND\n",
exception_object);
// EHABI #7.2
if (sp == exception_object->barrier_cache.sp) {
// Phase 1 said we would stop at this frame, but we did not...
_LIBUNWIND_ABORT("during phase1 personality function said it would "
"stop here, but now in phase2 it did not stop here");
}
break;
case _URC_INSTALL_CONTEXT:
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2(ex_ojb=%p): _URC_INSTALL_CONTEXT\n",
exception_object);
// Personality routine says to transfer control to landing pad.
// We may get control back if landing pad calls _Unwind_Resume().
if (_LIBUNWIND_TRACING_UNWINDING) {
unw_word_t pc;
unw_get_reg(&cursor2, UNW_REG_IP, &pc);
unw_get_reg(&cursor2, UNW_REG_SP, &sp);
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): re-entering "
"user code with ip=0x%llX, sp=0x%llX\n",
exception_object, (long long)pc,
(long long)sp);
}
{
// EHABI #7.4.1 says we need to preserve pc for when _Unwind_Resume
// is called back, to find this same frame.
unw_word_t pc;
unw_get_reg(&cursor2, UNW_REG_IP, &pc);
exception_object->unwinder_cache.reserved2 = (uint32_t)pc;
}
unw_resume(&cursor2);
// unw_resume() only returns if there was an error.
return _URC_FATAL_PHASE2_ERROR;
// # EHABI #7.4.3
case _URC_FAILURE:
abort();
default:
// Personality routine returned an unknown result code.
_LIBUNWIND_DEBUG_LOG("personality function returned unknown result %d",
personalityResult);
return _URC_FATAL_PHASE2_ERROR;
}
}
frame_count++;
}
// Clean up phase did not resume at the frame that the search phase
// said it would...
return _URC_FATAL_PHASE2_ERROR;
}
/// Called by __cxa_throw. Only returns if there is a fatal error.
_LIBUNWIND_EXPORT _Unwind_Reason_Code
_Unwind_RaiseException(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_RaiseException(ex_obj=%p)\n",
exception_object);
unw_context_t uc;
unw_getcontext(&uc);
// This field for is for compatibility with GCC to say this isn't a forced
// unwind. EHABI #7.2
exception_object->unwinder_cache.reserved1 = 0;
// phase 1: the search phase
_Unwind_Reason_Code phase1 = unwind_phase1(&uc, exception_object);
if (phase1 != _URC_NO_REASON)
return phase1;
// phase 2: the clean up phase
return unwind_phase2(&uc, exception_object, false);
}
_LIBUNWIND_EXPORT void _Unwind_Complete(_Unwind_Exception* exception_object) {
// This is to be called when exception handling completes to give us a chance
// to perform any housekeeping. EHABI #7.2. But we have nothing to do here.
}
/// When _Unwind_RaiseException() is in phase2, it hands control
/// to the personality function at each frame. The personality
/// may force a jump to a landing pad in that function, the landing
/// pad code may then call _Unwind_Resume() to continue with the
/// unwinding. Note: the call to _Unwind_Resume() is from compiler
/// geneated user code. All other _Unwind_* routines are called
/// by the C++ runtime __cxa_* routines.
///
/// Note: re-throwing an exception (as opposed to continuing the unwind)
/// is implemented by having the code call __cxa_rethrow() which
/// in turn calls _Unwind_Resume_or_Rethrow().
_LIBUNWIND_EXPORT void
_Unwind_Resume(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_Resume(ex_obj=%p)\n", exception_object);
unw_context_t uc;
unw_getcontext(&uc);
// _Unwind_RaiseException on EHABI will always set the reserved1 field to 0,
// which is in the same position as private_1 below.
// TODO(ajwong): Who wronte the above? Why is it true?
unwind_phase2(&uc, exception_object, true);
// Clients assume _Unwind_Resume() does not return, so all we can do is abort.
_LIBUNWIND_ABORT("_Unwind_Resume() can't return");
}
/// Called by personality handler during phase 2 to get LSDA for current frame.
_LIBUNWIND_EXPORT uintptr_t
_Unwind_GetLanguageSpecificData(struct _Unwind_Context *context) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
unw_proc_info_t frameInfo;
uintptr_t result = 0;
if (unw_get_proc_info(cursor, &frameInfo) == UNW_ESUCCESS)
result = (uintptr_t)frameInfo.lsda;
_LIBUNWIND_TRACE_API("_Unwind_GetLanguageSpecificData(context=%p)"
"=> 0x%llx\n", context, (long long)result);
if (result != 0) {
if (*((uint8_t *)result) != 0xFF)
_LIBUNWIND_DEBUG_LOG("lsda at 0x%llx does not start with 0xFF\n",
(long long)result);
}
return result;
}
static uint64_t ValueAsBitPattern(_Unwind_VRS_DataRepresentation representation,
void* valuep) {
uint64_t value = 0;
switch (representation) {
case _UVRSD_UINT32:
case _UVRSD_FLOAT:
memcpy(&value, valuep, sizeof(uint32_t));
break;
case _UVRSD_VFPX:
case _UVRSD_UINT64:
case _UVRSD_DOUBLE:
memcpy(&value, valuep, sizeof(uint64_t));
break;
}
return value;
}
_Unwind_VRS_Result _Unwind_VRS_Set(
_Unwind_Context *context,
_Unwind_VRS_RegClass regclass,
uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep) {
_LIBUNWIND_TRACE_API("_Unwind_VRS_Set(context=%p, regclass=%d, reg=%d, "
"rep=%d, value=0x%llX)\n", context, regclass,
regno, representation,
ValueAsBitPattern(representation, valuep));
unw_cursor_t *cursor = (unw_cursor_t *)context;
switch (regclass) {
case _UVRSC_CORE:
if (representation != _UVRSD_UINT32 || regno > 15)
return _UVRSR_FAILED;
return unw_set_reg(cursor, UNW_ARM_R0 + regno, *(unw_word_t *)valuep) ==
UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXC:
if (representation != _UVRSD_UINT32 || regno > 3)
return _UVRSR_FAILED;
return unw_set_reg(cursor, UNW_ARM_WC0 + regno, *(unw_word_t *)valuep) ==
UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_VFP:
if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE)
return _UVRSR_FAILED;
if (representation == _UVRSD_VFPX) {
// Can only touch d0-15 with FSTMFDX.
if (regno > 15)
return _UVRSR_FAILED;
unw_save_vfp_as_X(cursor);
} else {
if (regno > 31)
return _UVRSR_FAILED;
}
return unw_set_fpreg(cursor, UNW_ARM_D0 + regno,
*(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXD:
if (representation != _UVRSD_DOUBLE || regno > 31)
return _UVRSR_FAILED;
return unw_set_fpreg(cursor, UNW_ARM_WR0 + regno,
*(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
}
}
static _Unwind_VRS_Result _Unwind_VRS_Get_Internal(
_Unwind_Context *context,
_Unwind_VRS_RegClass regclass,
uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
switch (regclass) {
case _UVRSC_CORE:
if (representation != _UVRSD_UINT32 || regno > 15)
return _UVRSR_FAILED;
return unw_get_reg(cursor, UNW_ARM_R0 + regno, (unw_word_t *)valuep) ==
UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXC:
if (representation != _UVRSD_UINT32 || regno > 3)
return _UVRSR_FAILED;
return unw_get_reg(cursor, UNW_ARM_WC0 + regno, (unw_word_t *)valuep) ==
UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_VFP:
if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE)
return _UVRSR_FAILED;
if (representation == _UVRSD_VFPX) {
// Can only touch d0-15 with FSTMFDX.
if (regno > 15)
return _UVRSR_FAILED;
unw_save_vfp_as_X(cursor);
} else {
if (regno > 31)
return _UVRSR_FAILED;
}
return unw_get_fpreg(cursor, UNW_ARM_D0 + regno, (unw_fpreg_t *)valuep) ==
UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXD:
if (representation != _UVRSD_DOUBLE || regno > 31)
return _UVRSR_FAILED;
return unw_get_fpreg(cursor, UNW_ARM_WR0 + regno,
(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
}
}
_Unwind_VRS_Result _Unwind_VRS_Get(
_Unwind_Context *context,
_Unwind_VRS_RegClass regclass,
uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep) {
_Unwind_VRS_Result result =
_Unwind_VRS_Get_Internal(context, regclass, regno, representation,
valuep);
_LIBUNWIND_TRACE_API("_Unwind_VRS_Get(context=%p, regclass=%d, reg=%d, "
"rep=%d, value=0x%llX, result = %d)\n",
context, regclass, regno, representation,
ValueAsBitPattern(representation, valuep), result);
return result;
}
_Unwind_VRS_Result _Unwind_VRS_Pop(
_Unwind_Context *context,
_Unwind_VRS_RegClass regclass,
uint32_t discriminator,
_Unwind_VRS_DataRepresentation representation) {
_LIBUNWIND_TRACE_API("_Unwind_VRS_Pop(context=%p, regclass=%d, "
"discriminator=%d, representation=%d)\n",
context, regclass, discriminator, representation);
switch (regclass) {
case _UVRSC_CORE:
case _UVRSC_WMMXC: {
if (representation != _UVRSD_UINT32)
return _UVRSR_FAILED;
// When popping SP from the stack, we don't want to override it from the
// computed new stack location. See EHABI #7.5.4 table 3.
bool poppedSP = false;
uint32_t* sp;
if (_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP,
_UVRSD_UINT32, &sp) != _UVRSR_OK) {
return _UVRSR_FAILED;
}
for (int i = 0; i < 16; ++i) {
if (!(discriminator & (1<<i)))
continue;
uint32_t value = *sp++;
if (regclass == _UVRSC_CORE && i == 13)
poppedSP = true;
if (_Unwind_VRS_Set(context, regclass, i,
_UVRSD_UINT32, &value) != _UVRSR_OK) {
return _UVRSR_FAILED;
}
}
if (!poppedSP) {
return _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP,
_UVRSD_UINT32, &sp);
}
return _UVRSR_OK;
}
case _UVRSC_VFP:
case _UVRSC_WMMXD: {
if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE)
return _UVRSR_FAILED;
uint32_t first = discriminator >> 16;
uint32_t count = discriminator & 0xffff;
uint32_t end = first+count;
uint32_t* sp;
if (_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP,
_UVRSD_UINT32, &sp) != _UVRSR_OK) {
return _UVRSR_FAILED;
}
// For _UVRSD_VFPX, we're assuming the data is stored in FSTMX "standard
// format 1", which is equivalent to FSTMD + a padding word.
for (uint32_t i = first; i < end; ++i) {
// SP is only 32-bit aligned so don't copy 64-bit at a time.
uint64_t value = *sp++;
value |= ((uint64_t)(*sp++)) << 32;
if (_Unwind_VRS_Set(context, regclass, i, representation, &value) !=
_UVRSR_OK)
return _UVRSR_FAILED;
}
if (representation == _UVRSD_VFPX)
++sp;
return _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
}
};
}
/// Called by personality handler during phase 2 to find the start of the
/// function.
_LIBUNWIND_EXPORT uintptr_t
_Unwind_GetRegionStart(struct _Unwind_Context *context) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
unw_proc_info_t frameInfo;
uintptr_t result = 0;
if (unw_get_proc_info(cursor, &frameInfo) == UNW_ESUCCESS)
result = (uintptr_t)frameInfo.start_ip;
_LIBUNWIND_TRACE_API("_Unwind_GetRegionStart(context=%p) => 0x%llX\n",
context, (long long)result);
return result;
}
/// Called by personality handler during phase 2 if a foreign exception
// is caught.
_LIBUNWIND_EXPORT void
_Unwind_DeleteException(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_DeleteException(ex_obj=%p)\n",
exception_object);
if (exception_object->exception_cleanup != NULL)
(*exception_object->exception_cleanup)(_URC_FOREIGN_EXCEPTION_CAUGHT,
exception_object);
}
#endif // LIBCXXABI_ARM_EHABI

View File

@ -12,10 +12,12 @@
#ifndef __UNWINDCURSOR_HPP__
#define __UNWINDCURSOR_HPP__
#include <algorithm>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unwind.h>
#if __APPLE__
#include <mach-o/dyld.h>
@ -370,8 +372,8 @@ public:
virtual unw_word_t getReg(int) = 0;
virtual void setReg(int, unw_word_t) = 0;
virtual bool validFloatReg(int) = 0;
virtual double getFloatReg(int) = 0;
virtual void setFloatReg(int, double) = 0;
virtual unw_fpreg_t getFloatReg(int) = 0;
virtual void setFloatReg(int, unw_fpreg_t) = 0;
virtual int step() = 0;
virtual void getInfo(unw_proc_info_t *) = 0;
virtual void jumpto() = 0;
@ -379,6 +381,9 @@ public:
virtual bool getFunctionName(char *bf, size_t ln, unw_word_t *off) = 0;
virtual void setInfoBasedOnIPRegister(bool isReturnAddr = false) = 0;
virtual const char *getRegisterName(int num) = 0;
#if __arm__
virtual void saveVFPAsX() = 0;
#endif
};
@ -395,8 +400,8 @@ public:
virtual unw_word_t getReg(int);
virtual void setReg(int, unw_word_t);
virtual bool validFloatReg(int);
virtual double getFloatReg(int);
virtual void setFloatReg(int, double);
virtual unw_fpreg_t getFloatReg(int);
virtual void setFloatReg(int, unw_fpreg_t);
virtual int step();
virtual void getInfo(unw_proc_info_t *);
virtual void jumpto();
@ -404,11 +409,18 @@ public:
virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off);
virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false);
virtual const char *getRegisterName(int num);
#if __arm__
virtual void saveVFPAsX();
#endif
void operator delete(void *, size_t) {}
private:
#if LIBCXXABI_ARM_EHABI
bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
#endif
#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
uint32_t fdeSectionOffsetHint=0);
@ -486,7 +498,9 @@ private:
}
return false;
}
#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
compact_unwind_encoding_t dwarfEncoding() const {
R dummy;
return dwarfEncoding(dummy);
@ -507,7 +521,7 @@ private:
compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
return UNWIND_ARM64_MODE_DWARF;
}
#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
A &_addressSpace;
@ -524,14 +538,13 @@ UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
_isSignalFrame(false) {
static_assert(sizeof(UnwindCursor<A, R>) < sizeof(unw_cursor_t),
"UnwindCursor<> does not fit in unw_cursor_t");
bzero(&_info, sizeof(_info));
memset(&_info, 0, sizeof(_info));
}
template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(A &as, void *)
: _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
bzero(&_info, sizeof(_info));
memset(&_info, 0, sizeof(_info));
// FIXME
// fill in _registers from thread arg
}
@ -558,12 +571,12 @@ bool UnwindCursor<A, R>::validFloatReg(int regNum) {
}
template <typename A, typename R>
double UnwindCursor<A, R>::getFloatReg(int regNum) {
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
return _registers.getFloatRegister(regNum);
}
template <typename A, typename R>
void UnwindCursor<A, R>::setFloatReg(int regNum, double value) {
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
_registers.setFloatRegister(regNum, value);
}
@ -571,6 +584,12 @@ template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
_registers.jumpto();
}
#if __arm__
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
_registers.saveVFPAsX();
}
#endif
template <typename A, typename R>
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
return _registers.getRegisterName(regNum);
@ -580,6 +599,212 @@ template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
return _isSignalFrame;
}
#if LIBCXXABI_ARM_EHABI
struct EHABIIndexEntry {
uint32_t functionOffset;
uint32_t data;
};
// Unable to unwind in the ARM index table (section 5 EHABI).
#define UNW_EXIDX_CANTUNWIND 0x1
static inline uint32_t signExtendPrel31(uint32_t data) {
return data | ((data & 0x40000000u) << 1);
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr0(
_Unwind_State state, _Unwind_Control_Block *ucbp, _Unwind_Context *context);
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr1(
_Unwind_State state, _Unwind_Control_Block *ucbp, _Unwind_Context *context);
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr2(
_Unwind_State state, _Unwind_Control_Block *ucbp, _Unwind_Context *context);
template<typename A>
struct EHABISectionIterator {
typedef EHABISectionIterator _Self;
typedef std::random_access_iterator_tag iterator_category;
typedef typename A::pint_t value_type;
typedef typename A::pint_t* pointer;
typedef typename A::pint_t& reference;
typedef size_t size_type;
typedef size_t difference_type;
static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
return _Self(addressSpace, sects, 0);
}
static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
return _Self(addressSpace, sects, sects.arm_section_length);
}
EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
: _addressSpace(&addressSpace), _sects(&sects), _i(i) {}
_Self& operator++() { ++_i; return *this; }
_Self& operator+=(size_t a) { _i += a; return *this; }
_Self& operator--() { assert(_i > 0); --_i; return *this; }
_Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
_Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
_Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
size_t operator-(const _Self& other) { return _i - other._i; }
bool operator==(const _Self& other) const {
assert(_addressSpace == other._addressSpace);
assert(_sects == other._sects);
return _i == other._i;
}
typename A::pint_t operator*() const { return functionAddress(); }
typename A::pint_t functionAddress() const {
typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
EHABIIndexEntry, _i, functionOffset);
return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
}
typename A::pint_t dataAddress() {
typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
EHABIIndexEntry, _i, data);
return indexAddr;
}
private:
size_t _i;
A* _addressSpace;
const UnwindInfoSections* _sects;
};
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromEHABISection(
pint_t pc,
const UnwindInfoSections &sects) {
EHABISectionIterator<A> begin =
EHABISectionIterator<A>::begin(_addressSpace, sects);
EHABISectionIterator<A> end =
EHABISectionIterator<A>::end(_addressSpace, sects);
EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc);
if (itNextPC == begin || itNextPC == end)
return false;
EHABISectionIterator<A> itThisPC = itNextPC - 1;
pint_t thisPC = itThisPC.functionAddress();
pint_t nextPC = itNextPC.functionAddress();
pint_t indexDataAddr = itThisPC.dataAddress();
if (indexDataAddr == 0)
return false;
uint32_t indexData = _addressSpace.get32(indexDataAddr);
if (indexData == UNW_EXIDX_CANTUNWIND)
return false;
// If the high bit is set, the exception handling table entry is inline inside
// the index table entry on the second word (aka |indexDataAddr|). Otherwise,
// the table points at an offset in the exception handling table (section 5 EHABI).
pint_t exceptionTableAddr;
uint32_t exceptionTableData;
bool isSingleWordEHT;
if (indexData & 0x80000000) {
exceptionTableAddr = indexDataAddr;
// TODO(ajwong): Should this data be 0?
exceptionTableData = indexData;
isSingleWordEHT = true;
} else {
exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
exceptionTableData = _addressSpace.get32(exceptionTableAddr);
isSingleWordEHT = false;
}
// Now we know the 3 things:
// exceptionTableAddr -- exception handler table entry.
// exceptionTableData -- the data inside the first word of the eht entry.
// isSingleWordEHT -- whether the entry is in the index.
unw_word_t personalityRoutine = 0xbadf00d;
bool scope32 = false;
uintptr_t lsda = 0xbadf00d;
// If the high bit in the exception handling table entry is set, the entry is
// in compact form (section 6.3 EHABI).
if (exceptionTableData & 0x80000000) {
// Grab the index of the personality routine from the compact form.
int choice = (exceptionTableData & 0x0f000000) >> 24;
int extraWords = 0;
switch (choice) {
case 0:
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
extraWords = 0;
scope32 = false;
break;
case 1:
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
extraWords = (exceptionTableData & 0x00ff0000) >> 16;
scope32 = false;
break;
case 2:
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
extraWords = (exceptionTableData & 0x00ff0000) >> 16;
scope32 = true;
break;
default:
_LIBUNWIND_ABORT("unknown personality routine");
return false;
}
if (isSingleWordEHT) {
if (extraWords != 0) {
_LIBUNWIND_ABORT("index inlined table detected but pr function "
"requires extra words");
return false;
}
}
} else {
pint_t personalityAddr =
exceptionTableAddr + signExtendPrel31(exceptionTableData);
personalityRoutine = personalityAddr;
// ARM EHABI # 6.2, # 9.2
//
// +---- ehtp
// v
// +--------------------------------------+
// | +--------+--------+--------+-------+ |
// | |0| prel31 to personalityRoutine | |
// | +--------+--------+--------+-------+ |
// | | N | unwind opcodes | | <-- UnwindData
// | +--------+--------+--------+-------+ |
// | | Word 2 unwind opcodes | |
// | +--------+--------+--------+-------+ |
// | ... |
// | +--------+--------+--------+-------+ |
// | | Word N unwind opcodes | |
// | +--------+--------+--------+-------+ |
// | | LSDA | | <-- lsda
// | | ... | |
// | +--------+--------+--------+-------+ |
// +--------------------------------------+
uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
uint32_t FirstDataWord = *UnwindData;
size_t N = ((FirstDataWord >> 24) & 0xff);
size_t NDataWords = N + 1;
lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
}
_info.start_ip = thisPC;
_info.end_ip = nextPC;
_info.handler = personalityRoutine;
_info.unwind_info = exceptionTableAddr;
_info.lsda = lsda;
// flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
_info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum?
return true;
}
#endif
#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
@ -913,6 +1138,11 @@ bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
template <typename A, typename R>
void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
pint_t pc = (pint_t)this->getReg(UNW_REG_IP);
#if LIBCXXABI_ARM_EHABI
// Remove the thumb bit so the IP represents the actual instruction address.
// This matches the behaviour of _Unwind_GetIP on arm.
pc &= (pint_t)~0x1;
#endif
// If the last line of a function is a "throw" the compiler sometimes
// emits no instructions after the call to __cxa_throw. This means
@ -957,6 +1187,12 @@ void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
}
}
#endif
#if LIBCXXABI_ARM_EHABI
// If there is ARM EHABI unwind info, look there next.
if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
return;
#endif
}
#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
@ -1026,7 +1262,7 @@ void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
template <typename A, typename R>
int UnwindCursor<A, R>::step() {
// Bottom of stack is defined is when no unwind info cannot be found.
// Bottom of stack is defined is when unwind info cannot be found.
if (_unwindInfoMissing)
return UNW_STEP_END;
@ -1036,8 +1272,12 @@ int UnwindCursor<A, R>::step() {
result = this->stepWithCompactEncoding();
#elif _LIBUNWIND_SUPPORT_DWARF_UNWIND
result = this->stepWithDwarfFDE();
#elif LIBCXXABI_ARM_EHABI
result = UNW_STEP_SUCCESS;
#else
#error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or _LIBUNWIND_SUPPORT_DWARF_UNWIND
#error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
_LIBUNWIND_SUPPORT_DWARF_UNWIND or \
LIBCXXABI_ARM_EHABI
#endif
// update info based on new PC

View File

@ -24,10 +24,21 @@
/// Called by __cxa_rethrow().
_LIBUNWIND_EXPORT _Unwind_Reason_Code
_Unwind_Resume_or_Rethrow(struct _Unwind_Exception *exception_object) {
_Unwind_Resume_or_Rethrow(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_Resume_or_Rethrow(ex_obj=%p), "
"private_1=%ld\n",
exception_object, exception_object->private_1);
"private_1=%ld\n",
exception_object,
#if LIBCXXABI_ARM_EHABI
(long)exception_object->unwinder_cache.reserved1);
#else
(long)exception_object->private_1);
#endif
#if LIBCXXABI_ARM_EHABI
// _Unwind_RaiseException on EHABI will always set the reserved1 field to 0,
// which is in the same position as private_1 below.
return _Unwind_RaiseException(exception_object);
#else
// If this is non-forced and a stopping place was found, then this is a
// re-throw.
// Call _Unwind_RaiseException() as if this was a new exception
@ -42,6 +53,7 @@ _Unwind_Resume_or_Rethrow(struct _Unwind_Exception *exception_object) {
_Unwind_Resume(exception_object);
_LIBUNWIND_ABORT("_Unwind_Resume_or_Rethrow() called _Unwind_RaiseException()"
" which unexpectedly returned");
#endif
}
@ -116,7 +128,8 @@ _Unwind_Backtrace(_Unwind_Trace_Fn callback, void *ref) {
unw_get_proc_info(&cursor, &frameInfo);
_LIBUNWIND_TRACE_UNWINDING(
" _backtrace: start_ip=0x%llX, func=%s, lsda=0x%llX, context=%p\n",
frameInfo.start_ip, functionName, frameInfo.lsda, &cursor);
(long long)frameInfo.start_ip, functionName, (long long)frameInfo.lsda,
&cursor);
}
// call trace function with this frame

View File

@ -22,10 +22,10 @@
#include "unwind.h"
#include "config.h"
#if _LIBUNWIND_BUILD_ZERO_COST_APIS
#if _LIBUNWIND_BUILD_ZERO_COST_APIS && !LIBCXXABI_ARM_EHABI
static _Unwind_Reason_Code
unwind_phase1(unw_context_t *uc, struct _Unwind_Exception *exception_object) {
unwind_phase1(unw_context_t *uc, _Unwind_Exception *exception_object) {
unw_cursor_t cursor1;
unw_init_local(&cursor1, uc);
@ -117,7 +117,7 @@ unwind_phase1(unw_context_t *uc, struct _Unwind_Exception *exception_object) {
static _Unwind_Reason_Code
unwind_phase2(unw_context_t *uc, struct _Unwind_Exception *exception_object) {
unwind_phase2(unw_context_t *uc, _Unwind_Exception *exception_object) {
unw_cursor_t cursor2;
unw_init_local(&cursor2, uc);
@ -187,7 +187,7 @@ unwind_phase2(unw_context_t *uc, struct _Unwind_Exception *exception_object) {
if (sp == exception_object->private_2) {
// Phase 1 said we would stop at this frame, but we did not...
_LIBUNWIND_ABORT("during phase1 personality function said it would "
"stop here, but now if phase2 it did not stop here");
"stop here, but now in phase2 it did not stop here");
}
break;
case _URC_INSTALL_CONTEXT:
@ -202,7 +202,7 @@ unwind_phase2(unw_context_t *uc, struct _Unwind_Exception *exception_object) {
unw_get_reg(&cursor2, UNW_REG_SP, &sp);
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): re-entering "
"user code with ip=0x%llX, sp=0x%llX\n",
exception_object, pc, sp);
exception_object, pc, sp);
}
unw_resume(&cursor2);
// unw_resume() only returns if there was an error.
@ -223,7 +223,7 @@ unwind_phase2(unw_context_t *uc, struct _Unwind_Exception *exception_object) {
static _Unwind_Reason_Code
unwind_phase2_forced(unw_context_t *uc,
struct _Unwind_Exception *exception_object,
_Unwind_Exception *exception_object,
_Unwind_Stop_Fn stop, void *stop_parameter) {
unw_cursor_t cursor2;
unw_init_local(&cursor2, uc);
@ -237,7 +237,7 @@ unwind_phase2_forced(unw_context_t *uc,
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2_forced(ex_ojb=%p): unw_step "
"failed => _URC_END_OF_STACK\n",
exception_object);
return _URC_FATAL_PHASE1_ERROR;
return _URC_FATAL_PHASE2_ERROR;
}
// When tracing, print state information.
@ -324,7 +324,7 @@ unwind_phase2_forced(unw_context_t *uc,
/// Called by __cxa_throw. Only returns if there is a fatal error.
_LIBUNWIND_EXPORT _Unwind_Reason_Code
_Unwind_RaiseException(struct _Unwind_Exception *exception_object) {
_Unwind_RaiseException(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_RaiseException(ex_obj=%p)\n",
exception_object);
unw_context_t uc;
@ -358,7 +358,7 @@ _Unwind_RaiseException(struct _Unwind_Exception *exception_object) {
/// is implemented by having the code call __cxa_rethrow() which
/// in turn calls _Unwind_Resume_or_Rethrow().
_LIBUNWIND_EXPORT void
_Unwind_Resume(struct _Unwind_Exception *exception_object) {
_Unwind_Resume(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_Resume(ex_obj=%p)\n", exception_object);
unw_context_t uc;
unw_getcontext(&uc);
@ -380,7 +380,7 @@ _Unwind_Resume(struct _Unwind_Exception *exception_object) {
/// Unwinds stack, calling "stop" function at each frame.
/// Could be used to implement longjmp().
_LIBUNWIND_EXPORT _Unwind_Reason_Code
_Unwind_ForcedUnwind(struct _Unwind_Exception *exception_object,
_Unwind_ForcedUnwind(_Unwind_Exception *exception_object,
_Unwind_Stop_Fn stop, void *stop_parameter) {
_LIBUNWIND_TRACE_API("_Unwind_ForcedUnwind(ex_obj=%p, stop=%p)\n",
exception_object, stop);
@ -484,7 +484,7 @@ _Unwind_GetRegionStart(struct _Unwind_Context *context) {
/// Called by personality handler during phase 2 if a foreign exception
// is caught.
_LIBUNWIND_EXPORT void
_Unwind_DeleteException(struct _Unwind_Exception *exception_object) {
_Unwind_DeleteException(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_DeleteException(ex_obj=%p)\n",
exception_object);
if (exception_object->exception_cleanup != NULL)
@ -492,4 +492,4 @@ _Unwind_DeleteException(struct _Unwind_Exception *exception_object) {
exception_object);
}
#endif // _LIBUNWIND_BUILD_ZERO_COST_APIS
#endif // _LIBUNWIND_BUILD_ZERO_COST_APIS && !LIBCXXABI_ARM_EHABI

View File

@ -311,13 +311,13 @@ DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind15Registers_arm646jumptoEv)
#elif __arm__
@
@ void libunwind::Registers_arm::jumpto()
@ void libunwind::Registers_arm::restoreCoreAndJumpTo()
@
@ On entry:
@ thread_state pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm6jumptoEv)
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm20restoreCoreAndJumpToEv)
@ Use lr as base so that r0 can be restored.
mov lr, r0
@ 32bit thumb-2 restrictions for ldm:
@ -326,6 +326,90 @@ DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm6jumptoEv)
ldm lr, {r0-r12}
ldr sp, [lr, #52]
ldr lr, [lr, #60] @ restore pc into lr
#if _ARM_ARCH > 4
bx lr
#else
mov pc, lr
#endif
@
@ static void libunwind::Registers_arm::restoreVFPWithFLDMD(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm19restoreVFPWithFLDMDEPy)
@ VFP and iwMMX instructions are only available when compiling with the flags
@ that enable them. We don't want to do that in the library (because we don't
@ want the compiler to generate instructions that access those) but this is
@ only accessed if the personality routine needs these registers. Use of
@ these registers implies they are, actually, available on the target, so
@ it's ok to execute.
@ So, generate the instruction using the corresponding coprocessor mnemonic.
ldc p11, cr0, [r0], {#0x20} @ fldmiad r0, {d0-d15}
mov pc, lr
@
@ static void libunwind::Registers_arm::restoreVFPWithFLDMX(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm19restoreVFPWithFLDMXEPy)
ldc p11, cr0, [r0], {#0x21} @ fldmiax r0, {d0-d15}
mov pc, lr
@
@ static void libunwind::Registers_arm::restoreVFPv3(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm12restoreVFPv3EPy)
ldcl p11, cr0, [r0], {#0x20} @ vldm r0, {d16-d31}
mov pc, lr
@
@ static void libunwind::Registers_arm::restoreiWMMX(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm12restoreiWMMXEPy)
ldcl p1, cr0, [r0], #8 @ wldrd wR0, [r0], #8
ldcl p1, cr1, [r0], #8 @ wldrd wR1, [r0], #8
ldcl p1, cr2, [r0], #8 @ wldrd wR2, [r0], #8
ldcl p1, cr3, [r0], #8 @ wldrd wR3, [r0], #8
ldcl p1, cr4, [r0], #8 @ wldrd wR4, [r0], #8
ldcl p1, cr5, [r0], #8 @ wldrd wR5, [r0], #8
ldcl p1, cr6, [r0], #8 @ wldrd wR6, [r0], #8
ldcl p1, cr7, [r0], #8 @ wldrd wR7, [r0], #8
ldcl p1, cr8, [r0], #8 @ wldrd wR8, [r0], #8
ldcl p1, cr9, [r0], #8 @ wldrd wR9, [r0], #8
ldcl p1, cr10, [r0], #8 @ wldrd wR10, [r0], #8
ldcl p1, cr11, [r0], #8 @ wldrd wR11, [r0], #8
ldcl p1, cr12, [r0], #8 @ wldrd wR12, [r0], #8
ldcl p1, cr13, [r0], #8 @ wldrd wR13, [r0], #8
ldcl p1, cr14, [r0], #8 @ wldrd wR14, [r0], #8
ldcl p1, cr15, [r0], #8 @ wldrd wR15, [r0], #8
mov pc, lr
@
@ static void libunwind::Registers_arm::restoreiWMMXControl(unw_uint32_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm19restoreiWMMXControlEPj)
ldc2 p1, cr8, [r0], #4 @ wldrw wCGR0, [r0], #4
ldc2 p1, cr9, [r0], #4 @ wldrw wCGR1, [r0], #4
ldc2 p1, cr10, [r0], #4 @ wldrw wCGR2, [r0], #4
ldc2 p1, cr11, [r0], #4 @ wldrw wCGR3, [r0], #4
mov pc, lr
#endif

View File

@ -287,6 +287,12 @@ DEFINE_LIBUNWIND_FUNCTION(unw_getcontext)
@
@ On entry:
@ thread_state pointer is in r0
@
@ Per EHABI #4.7 this only saves the core integer registers.
@ EHABI #7.4.5 notes that in general all VRS registers should be restored
@ however this is very hard to do for VFP registers because it is unknown
@ to the lbirary how many registers are implemented by the architecture.
@ Instead, VFP registers are demand saved by logic external to unw_getcontext.
@
.p2align 2
DEFINE_LIBUNWIND_FUNCTION(unw_getcontext)
@ -297,7 +303,91 @@ DEFINE_LIBUNWIND_FUNCTION(unw_getcontext)
str sp, [r0, #52]
str lr, [r0, #56]
str lr, [r0, #60] @ store return address as pc
mov r0, #0 @ return UNW_ESUCCESS
mov r0, #0 @ return UNW_ESUCCESS
#if _ARM_ARCH > 4
bx lr
#else
mov pc, lr
#endif
@
@ static void libunwind::Registers_arm::saveVFPWithFSTMD(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm16saveVFPWithFSTMDEPy)
stc p11, cr0, [r0], {#0x20} @ fstmiad r0, {d0-d15}
mov pc, lr
@
@ static void libunwind::Registers_arm::saveVFPWithFSTMX(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm16saveVFPWithFSTMXEPy)
stc p11, cr0, [r0], {#0x21} @ fstmiax r0, {d0-d15}
mov pc, lr
@
@ static void libunwind::Registers_arm::saveVFPv3(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm9saveVFPv3EPy)
@ VFP and iwMMX instructions are only available when compiling with the flags
@ that enable them. We don't want to do that in the library (because we don't
@ want the compiler to generate instructions that access those) but this is
@ only accessed if the personality routine needs these registers. Use of
@ these registers implies they are, actually, available on the target, so
@ it's ok to execute.
@ So, generate the instructions using the corresponding coprocessor mnemonic.
stcl p11, cr0, [r0], {#0x20} @ vldm r0, {d16-d31}
mov pc, lr
@
@ static void libunwind::Registers_arm::saveiWMMX(unw_fpreg_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm9saveiWMMXEPy)
stcl p1, cr0, [r0], #8 @ wstrd wR0, [r0], #8
stcl p1, cr1, [r0], #8 @ wstrd wR1, [r0], #8
stcl p1, cr2, [r0], #8 @ wstrd wR2, [r0], #8
stcl p1, cr3, [r0], #8 @ wstrd wR3, [r0], #8
stcl p1, cr4, [r0], #8 @ wstrd wR4, [r0], #8
stcl p1, cr5, [r0], #8 @ wstrd wR5, [r0], #8
stcl p1, cr6, [r0], #8 @ wstrd wR6, [r0], #8
stcl p1, cr7, [r0], #8 @ wstrd wR7, [r0], #8
stcl p1, cr8, [r0], #8 @ wstrd wR8, [r0], #8
stcl p1, cr9, [r0], #8 @ wstrd wR9, [r0], #8
stcl p1, cr10, [r0], #8 @ wstrd wR10, [r0], #8
stcl p1, cr11, [r0], #8 @ wstrd wR11, [r0], #8
stcl p1, cr12, [r0], #8 @ wstrd wR12, [r0], #8
stcl p1, cr13, [r0], #8 @ wstrd wR13, [r0], #8
stcl p1, cr14, [r0], #8 @ wstrd wR14, [r0], #8
stcl p1, cr15, [r0], #8 @ wstrd wR15, [r0], #8
mov pc, lr
@
@ static void libunwind::Registers_arm::saveiWMMXControl(unw_uint32_t* values)
@
@ On entry:
@ values pointer is in r0
@
.p2align 2
DEFINE_LIBUNWIND_PRIVATE_FUNCTION(_ZN9libunwind13Registers_arm16saveiWMMXControlEPj)
stc2 p1, cr8, [r0], #4 @ wstrw wCGR0, [r0], #4
stc2 p1, cr9, [r0], #4 @ wstrw wCGR1, [r0], #4
stc2 p1, cr10, [r0], #4 @ wstrw wCGR2, [r0], #4
stc2 p1, cr11, [r0], #4 @ wstrw wCGR3, [r0], #4
mov pc, lr
#endif

View File

@ -12,11 +12,16 @@
#include <libunwind.h>
#ifndef NDEBUG
#include <cstdlib> // getenv
#endif
#include <new>
#include "libunwind_ext.h"
#include "config.h"
#include <stdlib.h>
#if _LIBUNWIND_BUILD_ZERO_COST_APIS
@ -50,6 +55,9 @@ _LIBUNWIND_EXPORT int unw_init_local(unw_cursor_t *cursor,
#elif __arm64__
new ((void *)cursor) UnwindCursor<LocalAddressSpace, Registers_arm64>(
context, LocalAddressSpace::sThisAddressSpace);
#elif LIBCXXABI_ARM_EHABI
new ((void *)cursor) UnwindCursor<LocalAddressSpace, Registers_arm>(
context, LocalAddressSpace::sThisAddressSpace);
#endif
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
co->setInfoBasedOnIPRegister();
@ -161,7 +169,7 @@ _LIBUNWIND_EXPORT int unw_get_reg(unw_cursor_t *cursor, unw_regnum_t regNum,
_LIBUNWIND_EXPORT int unw_set_reg(unw_cursor_t *cursor, unw_regnum_t regNum,
unw_word_t value) {
_LIBUNWIND_TRACE_API("unw_set_reg(cursor=%p, regNum=%d, value=0x%llX)\n",
cursor, regNum, value);
cursor, regNum, (long long)value);
typedef LocalAddressSpace::pint_t pint_t;
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
if (co->validReg(regNum)) {
@ -193,8 +201,13 @@ _LIBUNWIND_EXPORT int unw_get_fpreg(unw_cursor_t *cursor, unw_regnum_t regNum,
/// Set value of specified float register at cursor position in stack frame.
_LIBUNWIND_EXPORT int unw_set_fpreg(unw_cursor_t *cursor, unw_regnum_t regNum,
unw_fpreg_t value) {
#if LIBCXXABI_ARM_EHABI
_LIBUNWIND_TRACE_API("unw_set_fpreg(cursor=%p, regNum=%d, value=%llX)\n",
cursor, regNum, value);
#else
_LIBUNWIND_TRACE_API("unw_set_fpreg(cursor=%p, regNum=%d, value=%g)\n",
cursor, regNum, value);
cursor, regNum, value);
#endif
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
if (co->validFloatReg(regNum)) {
co->setFloatReg(regNum, value);
@ -239,7 +252,7 @@ _LIBUNWIND_EXPORT int unw_resume(unw_cursor_t *cursor) {
_LIBUNWIND_EXPORT int unw_get_proc_name(unw_cursor_t *cursor, char *buf,
size_t bufLen, unw_word_t *offset) {
_LIBUNWIND_TRACE_API("unw_get_proc_name(cursor=%p, &buf=%p,"
"bufLen=%ld)\n", cursor, buf, bufLen);
"bufLen=%zu)\n", cursor, buf, bufLen);
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
if (co->getFunctionName(buf, bufLen, offset))
return UNW_ESUCCESS;
@ -274,6 +287,15 @@ _LIBUNWIND_EXPORT int unw_is_signal_frame(unw_cursor_t *cursor) {
return co->isSignalFrame();
}
#if __arm__
// Save VFP registers d0-d15 using FSTMIADX instead of FSTMIADD
_LIBUNWIND_EXPORT void unw_save_vfp_as_X(unw_cursor_t *cursor) {
_LIBUNWIND_TRACE_API("unw_fpreg_save_vfp_as_X(cursor=%p)\n", cursor);
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
return co->saveVFPAsX();
}
#endif
#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
/// SPI: walks cached dwarf entries