NFC: An iterator for stepping through CodeView type stream in llvm-readobj

This is a small refactoring step toward moving CodeView type stream logic from llvm-readobj to a library. It abstracts the logic of stepping through the stream into an iterator class and updates llvm-readobj to use that iterator. This has no functional change; llvm-readobj produces identical output.

The next step is to abstract the parsing of the different leaf types and then move that and the iterator into a library.

Since this is my first contrib outside LLDB, please let me know if I'm messing up on any of the LLVM style guidelines, idioms, or patterns.

Differential Revision: http://reviews.llvm.org/D19746

llvm-svn: 268334
This commit is contained in:
Adrian McCarthy 2016-05-02 23:45:03 +00:00
parent dd368fcb05
commit 963a331a7e
1 changed files with 125 additions and 39 deletions

View File

@ -1866,19 +1866,9 @@ void COFFDumper::printCodeViewInlineeLines(StringRef Subsection) {
}
}
StringRef getRemainingTypeBytes(const TypeRecordPrefix *Rec, const char *Start) {
ptrdiff_t StartOffset = Start - reinterpret_cast<const char *>(Rec);
size_t RecSize = Rec->Len + 2;
assert(StartOffset >= 0 && "negative start-offset!");
assert(static_cast<size_t>(StartOffset) <= RecSize &&
"Start beyond the end of Rec");
return StringRef(Start, RecSize - StartOffset);
}
StringRef getRemainingBytesAsString(const TypeRecordPrefix *Rec, const char *Start) {
StringRef Remaining = getRemainingTypeBytes(Rec, Start);
StringRef Leading, Trailing;
std::tie(Leading, Trailing) = Remaining.split('\0');
StringRef getLeafDataBytesAsString(StringRef LeafData) {
StringRef Leading;
std::tie(Leading, std::ignore) = LeafData.split('\0');
return Leading;
}
@ -1992,47 +1982,148 @@ static StringRef getLeafTypeName(TypeLeafKind LT) {
return "UnknownLeaf";
}
// A const input iterator interface to the CodeView type stream.
class CodeViewTypeIterator {
public:
struct TypeRecord {
std::size_t Length;
TypeLeafKind Leaf;
StringRef LeafData;
};
explicit CodeViewTypeIterator(const StringRef &SectionData)
: Data(SectionData), AtEnd(false) {
if (Data.size() >= 4) {
Magic = *reinterpret_cast<const ulittle32_t *>(Data.data());
Data = Data.drop_front(4);
}
next(); // Prime the pump
}
CodeViewTypeIterator() : AtEnd(true) {}
// For iterators to compare equal, they must both point at the same record
// in the same data stream, or they must both be at the end of a stream.
friend bool operator==(const CodeViewTypeIterator &lhs,
const CodeViewTypeIterator &rhs);
friend bool operator!=(const CodeViewTypeIterator &lhs,
const CodeViewTypeIterator &rhs);
unsigned getMagic() const { return Magic; }
const TypeRecord &operator*() const {
assert(!AtEnd);
return Current;
}
const TypeRecord *operator->() const {
assert(!AtEnd);
return &Current;
}
CodeViewTypeIterator operator++() {
next();
return *this;
}
CodeViewTypeIterator operator++(int) {
CodeViewTypeIterator Original = *this;
++*this;
return Original;
}
private:
void next() {
assert(!AtEnd && "Attempted to advance more than one past the last rec");
if (Data.empty()) {
// We've advanced past the last record.
AtEnd = true;
return;
}
const TypeRecordPrefix *Rec;
if (consumeObject(Data, Rec))
return;
Current.Length = Rec->Len;
Current.Leaf = static_cast<TypeLeafKind>(uint16_t(Rec->Leaf));
Current.LeafData = Data.substr(0, Current.Length - 2);
// The next record starts immediately after this one.
Data = Data.drop_front(Current.LeafData.size());
// FIXME: The stream contains LF_PAD bytes that we need to ignore, but those
// are typically included in LeafData. We may need to call skipPadding() if
// we ever find a record that doesn't count those bytes.
return;
}
StringRef Data;
unsigned Magic = 0;
TypeRecord Current;
bool AtEnd;
};
bool operator==(const CodeViewTypeIterator &lhs,
const CodeViewTypeIterator &rhs) {
return (lhs.Data.begin() == rhs.Data.begin()) || (lhs.AtEnd && rhs.AtEnd);
}
bool operator!=(const CodeViewTypeIterator &lhs,
const CodeViewTypeIterator &rhs) {
return !(lhs == rhs);
}
struct CodeViewTypeStream {
CodeViewTypeIterator begin;
CodeViewTypeIterator end;
unsigned Magic;
};
CodeViewTypeStream CreateCodeViewTypeIter(const StringRef &Data) {
CodeViewTypeStream Stream;
Stream.begin = CodeViewTypeIterator(Data);
Stream.end = CodeViewTypeIterator();
Stream.Magic = Stream.begin.getMagic();
return Stream;
}
void COFFDumper::printCodeViewTypeSection(StringRef SectionName,
const SectionRef &Section) {
ListScope D(W, "CodeViewTypes");
W.printNumber("Section", SectionName, Obj->getSectionID(Section));
StringRef Data;
error(Section.getContents(Data));
if (opts::CodeViewSubsectionBytes)
W.printBinaryBlock("Data", Data);
unsigned Magic = *reinterpret_cast<const ulittle32_t *>(Data.data());
W.printHex("Magic", Magic);
Data = Data.drop_front(4);
CVTD.dump(Data);
}
void CVTypeDumper::dump(StringRef Data) {
while (!Data.empty()) {
const TypeRecordPrefix *Rec;
error(consumeObject(Data, Rec));
auto Leaf = static_cast<TypeLeafKind>(uint16_t(Rec->Leaf));
CodeViewTypeStream Stream = CreateCodeViewTypeIter(Data);
W.printHex("Magic", Stream.Magic);
// This record is 'Len - 2' bytes, and the next one starts immediately
// afterwards.
StringRef LeafData = Data.substr(0, Rec->Len - 2);
StringRef RemainingData = Data.drop_front(LeafData.size());
for (auto Iter = Stream.begin; Iter != Stream.end; ++Iter) {
StringRef LeafData = Iter->LeafData;
// Find the name of this leaf type.
StringRef LeafName = getLeafTypeName(Leaf);
StringRef LeafName = getLeafTypeName(Iter->Leaf);
DictScope S(W, LeafName);
unsigned NextTypeIndex = 0x1000 + CVUDTNames.size();
W.printEnum("TypeLeafKind", unsigned(Leaf), makeArrayRef(LeafTypeNames));
W.printEnum("TypeLeafKind", unsigned(Iter->Leaf),
makeArrayRef(LeafTypeNames));
W.printHex("TypeIndex", NextTypeIndex);
// Fill this in inside the switch to get something in CVUDTNames.
StringRef Name;
switch (Leaf) {
switch (Iter->Leaf) {
default: {
W.printHex("Size", Rec->Len);
W.printHex("Size", Iter->Length);
break;
}
@ -2040,7 +2131,7 @@ void CVTypeDumper::dump(StringRef Data) {
const StringId *String;
error(consumeObject(LeafData, String));
W.printHex("Id", String->id.getIndex());
StringRef StringData = getRemainingBytesAsString(Rec, LeafData.data());
StringRef StringData = getLeafDataBytesAsString(LeafData);
W.printString("StringData", StringData);
// Put this in CVUDTNames so it gets printed with LF_UDT_SRC_LINE.
Name = StringData;
@ -2048,7 +2139,7 @@ void CVTypeDumper::dump(StringRef Data) {
}
case LF_FIELDLIST: {
W.printHex("Size", Rec->Len);
W.printHex("Size", Iter->Length);
// FieldList has no fixed prefix that can be described with a struct. All
// the bytes must be interpreted as more records.
printCodeViewFieldList(LeafData);
@ -2094,7 +2185,7 @@ void CVTypeDumper::dump(StringRef Data) {
std::tie(Name, LinkageName) = LeafData.split('\0');
W.printString("Name", Name);
if (Props & uint16_t(ClassOptions::HasUniqueName)) {
LinkageName = getRemainingBytesAsString(Rec, LinkageName.data());
LinkageName = getLeafDataBytesAsString(LinkageName);
if (LinkageName.empty())
return error(object_error::parse_failed);
W.printString("LinkageName", LinkageName);
@ -2116,7 +2207,7 @@ void CVTypeDumper::dump(StringRef Data) {
std::tie(Name, LinkageName) = LeafData.split('\0');
W.printString("Name", Name);
if (Props & uint16_t(ClassOptions::HasUniqueName)) {
LinkageName = getRemainingBytesAsString(Rec, LinkageName.data());
LinkageName = getLeafDataBytesAsString(LinkageName);
if (LinkageName.empty())
return error(object_error::parse_failed);
W.printString("LinkageName", LinkageName);
@ -2371,11 +2462,6 @@ void CVTypeDumper::dump(StringRef Data) {
W.printBinaryBlock("LeafData", LeafData);
CVUDTNames.push_back(Name);
Data = RemainingData;
// FIXME: The stream contains LF_PAD bytes that we need to ignore, but those
// are typically included in LeafData. We may need to call skipPadding() if
// we ever find a record that doesn't count those bytes.
}
}