forked from OSchip/llvm-project
Sorry about the churn. One more change to getOptimalMemOpType() hook. Did I
mention the inline memcpy / memset expansion code is a mess? This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset. The first indicates whether it is expanding a memset or a memcpy / memmove. The later is whether the memset is a memset of zero. It's totally possible (likely even) that targets may want to do different things for memcpy and memset of zero. llvm-svn: 169959
This commit is contained in:
parent
a3f24b3cec
commit
962711ee71
|
@ -701,16 +701,16 @@ public:
|
|||
/// lowering. If DstAlign is zero that means it's safe to destination
|
||||
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
||||
/// means there isn't a need to check it against alignment requirement,
|
||||
/// probably because the source does not need to be loaded. If
|
||||
/// 'ZeroOrLdSrc' is true, that means it's safe to return a
|
||||
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
||||
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
||||
/// constant so it does not need to be loaded.
|
||||
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
||||
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
||||
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
||||
/// source is constant so it does not need to be loaded.
|
||||
/// It returns EVT::Other if the type should be determined using generic
|
||||
/// target-independent logic.
|
||||
virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
|
||||
unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
|
||||
bool /*ZeroOrLdSrc*/,
|
||||
bool /*IsMemset*/,
|
||||
bool /*ZeroMemset*/,
|
||||
bool /*MemcpyStrSrc*/,
|
||||
MachineFunction &/*MF*/) const {
|
||||
return MVT::Other;
|
||||
|
|
|
@ -3426,7 +3426,8 @@ static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
|
|||
static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
|
||||
unsigned Limit, uint64_t Size,
|
||||
unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc,
|
||||
bool IsMemset,
|
||||
bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
bool AllowOverlap,
|
||||
SelectionDAG &DAG,
|
||||
|
@ -3441,7 +3442,7 @@ static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
|
|||
// 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
|
||||
// not need to be loaded.
|
||||
EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
|
||||
ZeroOrLdSrc, MemcpyStrSrc,
|
||||
IsMemset, ZeroMemset, MemcpyStrSrc,
|
||||
DAG.getMachineFunction());
|
||||
|
||||
if (VT == MVT::Other) {
|
||||
|
@ -3559,7 +3560,7 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
|
|||
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
|
||||
(DstAlignCanChange ? 0 : Align),
|
||||
(isZeroStr ? 0 : SrcAlign),
|
||||
true, CopyFromStr, true, DAG, TLI))
|
||||
false, false, CopyFromStr, true, DAG, TLI))
|
||||
return SDValue();
|
||||
|
||||
if (DstAlignCanChange) {
|
||||
|
@ -3660,8 +3661,8 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
|
|||
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
|
||||
|
||||
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
|
||||
(DstAlignCanChange ? 0 : Align),
|
||||
SrcAlign, true, false, false, DAG, TLI))
|
||||
(DstAlignCanChange ? 0 : Align), SrcAlign,
|
||||
false, false, false, false, DAG, TLI))
|
||||
return SDValue();
|
||||
|
||||
if (DstAlignCanChange) {
|
||||
|
@ -3737,7 +3738,7 @@ static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
|
|||
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
|
||||
if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
|
||||
Size, (DstAlignCanChange ? 0 : Align), 0,
|
||||
IsZeroVal, false, true, DAG, TLI))
|
||||
true, IsZeroVal, false, true, DAG, TLI))
|
||||
return SDValue();
|
||||
|
||||
if (DstAlignCanChange) {
|
||||
|
|
|
@ -9450,13 +9450,13 @@ static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
|
|||
|
||||
EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
|
||||
unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc,
|
||||
bool IsMemset, bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const {
|
||||
const Function *F = MF.getFunction();
|
||||
|
||||
// See if we can use NEON instructions for this...
|
||||
if (ZeroOrLdSrc &&
|
||||
if ((!IsMemset || ZeroMemset) &&
|
||||
Subtarget->hasNEON() &&
|
||||
!F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
|
||||
bool Fast;
|
||||
|
|
|
@ -292,7 +292,7 @@ namespace llvm {
|
|||
|
||||
virtual EVT getOptimalMemOpType(uint64_t Size,
|
||||
unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc,
|
||||
bool IsMemset, bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const;
|
||||
|
||||
|
|
|
@ -3476,7 +3476,8 @@ MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|||
}
|
||||
|
||||
EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
||||
unsigned SrcAlign, bool ZeroOrLdSrc,
|
||||
unsigned SrcAlign,
|
||||
bool IsMemset, bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const {
|
||||
if (Subtarget->hasMips64())
|
||||
|
|
|
@ -362,7 +362,8 @@ namespace llvm {
|
|||
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
|
||||
|
||||
virtual EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
||||
unsigned SrcAlign, bool ZeroOrLdSrc,
|
||||
unsigned SrcAlign,
|
||||
bool IsMemset, bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const;
|
||||
|
||||
|
|
|
@ -6814,16 +6814,15 @@ PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|||
/// lowering. If DstAlign is zero that means it's safe to destination
|
||||
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
||||
/// means there isn't a need to check it against alignment requirement,
|
||||
/// probably because the source does not need to be loaded. If
|
||||
/// 'ZeroOrLdSrc' is true, that means it's safe to return a
|
||||
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
||||
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
||||
/// constant so it does not need to be loaded.
|
||||
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
||||
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
||||
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
||||
/// source is constant so it does not need to be loaded.
|
||||
/// It returns EVT::Other if the type should be determined using generic
|
||||
/// target-independent logic.
|
||||
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
|
||||
unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc,
|
||||
bool IsMemset, bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const {
|
||||
if (this->PPCSubTarget.isPPC64()) {
|
||||
|
|
|
@ -400,16 +400,15 @@ namespace llvm {
|
|||
/// lowering. If DstAlign is zero that means it's safe to destination
|
||||
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
||||
/// means there isn't a need to check it against alignment requirement,
|
||||
/// probably because the source does not need to be loaded. If
|
||||
/// 'ZeroOrLdSrc' is true, that means it's safe to return a
|
||||
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
||||
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
||||
/// constant so it does not need to be loaded.
|
||||
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
||||
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
||||
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
||||
/// source is constant so it does not need to be loaded.
|
||||
/// It returns EVT::Other if the type should be determined using generic
|
||||
/// target-independent logic.
|
||||
virtual EVT
|
||||
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc, bool MemcpyStrSrc,
|
||||
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
||||
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const;
|
||||
|
||||
/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
|
||||
|
|
|
@ -1369,21 +1369,20 @@ unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
|
|||
/// lowering. If DstAlign is zero that means it's safe to destination
|
||||
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
||||
/// means there isn't a need to check it against alignment requirement,
|
||||
/// probably because the source does not need to be loaded. If
|
||||
/// 'ZeroOrLdSrc' is true, that means it's safe to return a
|
||||
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
||||
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
||||
/// constant so it does not need to be loaded.
|
||||
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
||||
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
||||
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
||||
/// source is constant so it does not need to be loaded.
|
||||
/// It returns EVT::Other if the type should be determined using generic
|
||||
/// target-independent logic.
|
||||
EVT
|
||||
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
|
||||
unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc,
|
||||
bool IsMemset, bool ZeroMemset,
|
||||
bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const {
|
||||
const Function *F = MF.getFunction();
|
||||
if (ZeroOrLdSrc &&
|
||||
if ((!IsMemset || ZeroMemset) &&
|
||||
!F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
|
||||
if (Size >= 16 &&
|
||||
(Subtarget->isUnalignedMemAccessFast() ||
|
||||
|
|
|
@ -494,16 +494,15 @@ namespace llvm {
|
|||
/// lowering. If DstAlign is zero that means it's safe to destination
|
||||
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
||||
/// means there isn't a need to check it against alignment requirement,
|
||||
/// probably because the source does not need to be loaded. If
|
||||
/// 'ZeroOrLdSrc' is true, that means it's safe to return a
|
||||
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
||||
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
||||
/// constant so it does not need to be loaded.
|
||||
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
||||
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
||||
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
||||
/// source is constant so it does not need to be loaded.
|
||||
/// It returns EVT::Other if the type should be determined using generic
|
||||
/// target-independent logic.
|
||||
virtual EVT
|
||||
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
||||
bool ZeroOrLdSrc, bool MemcpyStrSrc,
|
||||
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
||||
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
||||
MachineFunction &MF) const;
|
||||
|
||||
/// isSafeMemOpType - Returns true if it's safe to use load / store of the
|
||||
|
|
Loading…
Reference in New Issue