- Re-enable population count loop idiom recognization

- fix a bug which cause sigfault.
- add two testing cases which was causing crash

llvm-svn: 169687
This commit is contained in:
Shuxin Yang 2012-12-09 03:12:46 +00:00
parent 9f4328b173
commit 95de7c37e2
8 changed files with 699 additions and 40 deletions

View File

@ -26,7 +26,7 @@ class TargetLowering;
/// ScalarTargetTransformInfo interface. Different targets can implement
/// this interface differently.
class ScalarTargetTransformImpl : public ScalarTargetTransformInfo {
private:
protected:
const TargetLowering *TLI;
public:

View File

@ -75,6 +75,18 @@ public:
/// LSR, and LowerInvoke use this interface.
class ScalarTargetTransformInfo {
public:
/// PopcntHwSupport - Hardware support for population count. Compared to the
/// SW implementation, HW support is supposed to significantly boost the
/// performance when the population is dense, and it may or not may degrade
/// performance if the population is sparse. A HW support is considered as
/// "Fast" if it can outperform, or is on a par with, SW implementaion when
/// the population is sparse; otherwise, it is considered as "Slow".
enum PopcntHwSupport {
None,
Fast,
Slow
};
virtual ~ScalarTargetTransformInfo() {}
/// isLegalAddImmediate - Return true if the specified immediate is legal
@ -122,6 +134,11 @@ public:
virtual bool shouldBuildLookupTables() const {
return true;
}
/// getPopcntHwSupport - Return hardware support for population count.
virtual PopcntHwSupport getPopcntHwSupport(unsigned IntTyWidthInBit) const {
return None;
}
};
/// VectorTargetTransformInfo - This interface is used by the vectorizers

View File

@ -17679,6 +17679,17 @@ FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
return -1;
}
ScalarTargetTransformInfo::PopcntHwSupport
X86ScalarTargetTransformImpl::getPopcntHwSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>();
// TODO: Currently the __builtin_popcount() implementation using SSE3
// instructions is inefficient. Once the problem is fixed, we should
// call ST.hasSSE3() instead of ST.hasSSE4().
return ST.hasSSE41() ? Fast : None;
}
unsigned
X86VectorTargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
Type *Ty) const {

View File

@ -932,6 +932,14 @@ namespace llvm {
const TargetLibraryInfo *libInfo);
}
class X86ScalarTargetTransformImpl : public ScalarTargetTransformImpl {
public:
explicit X86ScalarTargetTransformImpl(const TargetLowering *TL) :
ScalarTargetTransformImpl(TL) {};
virtual PopcntHwSupport getPopcntHwSupport(unsigned TyWidth) const;
};
class X86VectorTargetTransformInfo : public VectorTargetTransformImpl {
public:
explicit X86VectorTargetTransformInfo(const TargetLowering *TL) :

View File

@ -118,7 +118,7 @@ class X86_64TargetMachine : public X86TargetMachine {
X86SelectionDAGInfo TSInfo;
X86TargetLowering TLInfo;
X86JITInfo JITInfo;
ScalarTargetTransformImpl STTI;
X86ScalarTargetTransformImpl STTI;
X86VectorTargetTransformInfo VTTI;
public:
X86_64TargetMachine(const Target &T, StringRef TT,

View File

@ -56,6 +56,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@ -63,16 +64,83 @@ STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
namespace {
class LoopIdiomRecognize;
/// This class defines some utility functions for loop idiom recognization.
class LIRUtil {
public:
/// Return true iff the block contains nothing but an uncondition branch
/// (aka goto instruction).
static bool isAlmostEmpty(BasicBlock *);
static BranchInst *getBranch(BasicBlock *BB) {
return dyn_cast<BranchInst>(BB->getTerminator());
}
/// Return the condition of the branch terminating the given basic block.
static Value *getBrCondtion(BasicBlock *);
/// Derive the precondition block (i.e the block that guards the loop
/// preheader) from the given preheader.
static BasicBlock *getPrecondBb(BasicBlock *PreHead);
};
/// This class is to recoginize idioms of population-count conducted in
/// a noncountable loop. Currently it only recognizes this pattern:
/// \code
/// while(x) {cnt++; ...; x &= x - 1; ...}
/// \endcode
class NclPopcountRecognize {
LoopIdiomRecognize &LIR;
Loop *CurLoop;
BasicBlock *PreCondBB;
typedef IRBuilder<> IRBuilderTy;
public:
explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
bool recognize();
private:
/// Take a glimpse of the loop to see if we need to go ahead recoginizing
/// the idiom.
bool preliminaryScreen();
/// Check if the given conditional branch is based on the comparison
/// beween a variable and zero, and if the variable is non-zero, the
/// control yeilds to the loop entry. If the branch matches the behavior,
/// the variable involved in the comparion is returned. This function will
/// be called to see if the precondition and postcondition of the loop
/// are in desirable form.
Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
/// Return true iff the idiom is detected in the loop. and 1) \p CntInst
/// is set to the instruction counting the pupulation bit. 2) \p CntPhi
/// is set to the corresponding phi node. 3) \p Var is set to the value
/// whose population bits are being counted.
bool detectIdiom
(Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
/// Insert ctpop intrinsic function and some obviously dead instructions.
void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
/// Create llvm.ctpop.* intrinsic function.
CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
};
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
const DataLayout *TD;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
const ScalarTargetTransformInfo *STTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
TD = 0; DT = 0; SE = 0; TLI = 0; STTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@ -110,6 +178,36 @@ namespace {
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
}
const DataLayout *getDataLayout() {
return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
}
DominatorTree *getDominatorTree() {
return DT ? DT : (DT=&getAnalysis<DominatorTree>());
}
ScalarEvolution *getScalarEvolution() {
return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
}
TargetLibraryInfo *getTargetLibraryInfo() {
return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
}
const ScalarTargetTransformInfo *getScalarTargetTransformInfo() {
if (!STTI) {
TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>();
if (TTI) STTI = TTI->getScalarTargetTransformInfo();
}
return STTI;
}
Loop *getLoop() const { return CurLoop; }
private:
bool runOnNoncountableLoop();
bool runOnCountableLoop();
};
}
@ -172,6 +270,440 @@ static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
deleteDeadInstruction(I, SE, TLI);
}
//===----------------------------------------------------------------------===//
//
// Implementation of LIRUtil
//
//===----------------------------------------------------------------------===//
// This fucntion will return true iff the given block contains nothing but goto.
// A typical usage of this function is to check if the preheader fucntion is
// "almost" empty such that generated intrinsic function can be moved across
// preheader and to be placed at the end of the preconditiona block without
// concerning of breaking data dependence.
bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
if (BranchInst *Br = getBranch(BB)) {
return Br->isUnconditional() && BB->size() == 1;
}
return false;
}
Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
BranchInst *Br = getBranch(BB);
return Br ? Br->getCondition() : 0;
}
BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
BranchInst *Br = getBranch(BB);
return Br && Br->isConditional() ? BB : 0;
}
return 0;
}
//===----------------------------------------------------------------------===//
//
// Implementation of NclPopcountRecognize
//
//===----------------------------------------------------------------------===//
NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
}
bool NclPopcountRecognize::preliminaryScreen() {
const ScalarTargetTransformInfo *STTI = LIR.getScalarTargetTransformInfo();
if (STTI->getPopcntHwSupport(32) != ScalarTargetTransformInfo::Fast)
return false;
// Counting population are usually conducted by few arithmetic instrutions.
// Such instructions can be easilly "absorbed" by vacant slots in a
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
// in a compact loop.
// Give up if the loop has multiple blocks or multiple backedges.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
return false;
BasicBlock *LoopBody = *(CurLoop->block_begin());
if (LoopBody->size() >= 20) {
// The loop is too big, bail out.
return false;
}
// It should have a preheader containing nothing but a goto instruction.
BasicBlock *PreHead = CurLoop->getLoopPreheader();
if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
return false;
// It should have a precondition block where the generated popcount instrinsic
// function will be inserted.
PreCondBB = LIRUtil::getPrecondBb(PreHead);
if (!PreCondBB)
return false;
return true;
}
Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
BasicBlock *LoopEntry) const {
if (!Br || !Br->isConditional())
return 0;
ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
if (!Cond)
return 0;
ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
if (!CmpZero || !CmpZero->isZero())
return 0;
ICmpInst::Predicate Pred = Cond->getPredicate();
if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
(Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
return Cond->getOperand(0);
return 0;
}
bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
PHINode *&CntPhi,
Value *&Var) const {
// Following code tries to detect this idiom:
//
// if (x0 != 0)
// goto loop-exit // the precondition of the loop
// cnt0 = init-val;
// do {
// x1 = phi (x0, x2);
// cnt1 = phi(cnt0, cnt2);
//
// cnt2 = cnt1 + 1;
// ...
// x2 = x1 & (x1 - 1);
// ...
// } while(x != 0);
//
// loop-exit:
//
// step 1: Check to see if the look-back branch match this pattern:
// "if (a!=0) goto loop-entry".
BasicBlock *LoopEntry;
Instruction *DefX2, *CountInst;
Value *VarX1, *VarX0;
PHINode *PhiX, *CountPhi;
DefX2 = CountInst = 0;
VarX1 = VarX0 = 0;
PhiX = CountPhi = 0;
LoopEntry = *(CurLoop->block_begin());
// step 1: Check if the loop-back branch is in desirable form.
{
if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
DefX2 = dyn_cast<Instruction>(T);
else
return false;
}
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
{
if (DefX2->getOpcode() != Instruction::And)
return false;
BinaryOperator *SubOneOp;
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
VarX1 = DefX2->getOperand(1);
else {
VarX1 = DefX2->getOperand(0);
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
}
if (!SubOneOp)
return false;
Instruction *SubInst = cast<Instruction>(SubOneOp);
ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
if (!Dec ||
!((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
(SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
return false;
}
}
// step 3: Check the recurrence of variable X
{
PhiX = dyn_cast<PHINode>(VarX1);
if (!PhiX ||
(PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
return false;
}
}
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
{
CountInst = NULL;
for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
IterE = LoopEntry->end(); Iter != IterE; Iter++) {
Instruction *Inst = Iter;
if (Inst->getOpcode() != Instruction::Add)
continue;
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
if (!Inc || !Inc->isOne())
continue;
PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
if (!Phi || Phi->getParent() != LoopEntry)
continue;
// Check if the result of the instruction is live of the loop.
bool LiveOutLoop = false;
for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
I != E; I++) {
if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
LiveOutLoop = true; break;
}
}
if (LiveOutLoop) {
CountInst = Inst;
CountPhi = Phi;
break;
}
}
if (!CountInst)
return false;
}
// step 5: check if the precondition is in this form:
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
{
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
return false;
CntInst = CountInst;
CntPhi = CountPhi;
Var = T;
}
return true;
}
void NclPopcountRecognize::transform(Instruction *CntInst,
PHINode *CntPhi, Value *Var) {
ScalarEvolution *SE = LIR.getScalarEvolution();
TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
BasicBlock *PreHead = CurLoop->getLoopPreheader();
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
const DebugLoc DL = CntInst->getDebugLoc();
// Assuming before transformation, the loop is following:
// if (x) // the precondition
// do { cnt++; x &= x - 1; } while(x);
// Step 1: Insert the ctpop instruction at the end of the precondition block
IRBuilderTy Builder(PreCondBr);
Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
{
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
NewCount = PopCntZext =
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
if (NewCount != PopCnt)
(cast<Instruction>(NewCount))->setDebugLoc(DL);
// TripCnt is exactly the number of iterations the loop has
TripCnt = NewCount;
// If the popoulation counter's initial value is not zero, insert Add Inst.
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
if (!InitConst || !InitConst->isZero()) {
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
(cast<Instruction>(NewCount))->setDebugLoc(DL);
}
}
// Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
// "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
// function would be partial dead code, and downstream passes will drag
// it back from the precondition block to the preheader.
{
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
Value *Opnd0 = PopCntZext;
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
if (PreCond->getOperand(0) != Var)
std::swap(Opnd0, Opnd1);
ICmpInst *NewPreCond =
cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
PreCond->replaceAllUsesWith(NewPreCond);
deleteDeadInstruction(PreCond, *SE, TLI);
}
// Step 3: Note that the population count is exactly the trip count of the
// loop in question, which enble us to to convert the loop from noncountable
// loop into a countable one. The benefit is twofold:
//
// - If the loop only counts population, the entire loop become dead after
// the transformation. It is lots easier to prove a countable loop dead
// than to prove a noncountable one. (In some C dialects, a infite loop
// isn't dead even if it computes nothing useful. In general, DCE needs
// to prove a noncountable loop finite before safely delete it.)
//
// - If the loop also performs something else, it remains alive.
// Since it is transformed to countable form, it can be aggressively
// optimized by some optimizations which are in general not applicable
// to a noncountable loop.
//
// After this step, this loop (conceptually) would look like following:
// newcnt = __builtin_ctpop(x);
// t = newcnt;
// if (x)
// do { cnt++; x &= x-1; t--) } while (t > 0);
BasicBlock *Body = *(CurLoop->block_begin());
{
BranchInst *LbBr = LIRUtil::getBranch(Body);
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
Type *Ty = TripCnt->getType();
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
Builder.SetInsertPoint(LbCond);
Value *Opnd1 = cast<Value>(TcPhi);
Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
Instruction *TcDec =
cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
TcPhi->addIncoming(TripCnt, PreHead);
TcPhi->addIncoming(TcDec, Body);
CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
LbCond->setPredicate(Pred);
LbCond->setOperand(0, TcDec);
LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
}
// Step 4: All the references to the original population counter outside
// the loop are replaced with the NewCount -- the value returned from
// __builtin_ctpop().
{
SmallVector<Value *, 4> CntUses;
for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
I != E; I++) {
if (cast<Instruction>(*I)->getParent() != Body)
CntUses.push_back(*I);
}
for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
(cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
}
}
// step 5: Forget the "non-computable" trip-count SCEV associated with the
// loop. The loop would otherwise not be deleted even if it becomes empty.
SE->forgetLoop(CurLoop);
}
CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
Value *Val, DebugLoc DL) {
Value *Ops[] = { Val };
Type *Tys[] = { Val->getType() };
Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
CI->setDebugLoc(DL);
return CI;
}
/// recognize - detect population count idiom in a non-countable loop. If
/// detected, transform the relevant code to popcount intrinsic function
/// call, and return true; otherwise, return false.
bool NclPopcountRecognize::recognize() {
if (!LIR.getScalarTargetTransformInfo())
return false;
LIR.getScalarEvolution();
if (!preliminaryScreen())
return false;
Instruction *CntInst;
PHINode *CntPhi;
Value *Val;
if (!detectIdiom(CntInst, CntPhi, Val))
return false;
transform(CntInst, CntPhi, Val);
return true;
}
//===----------------------------------------------------------------------===//
//
// Implementation of LoopIdiomRecognize
//
//===----------------------------------------------------------------------===//
bool LoopIdiomRecognize::runOnCountableLoop() {
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// If this loop executes exactly one time, then it should be peeled, not
// optimized by this pass.
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
if (BECst->getValue()->getValue() == 0)
return false;
// We require target data for now.
if (!getDataLayout())
return false;
getDominatorTree();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
getTargetLibraryInfo();
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
<< CurLoop->getHeader()->getParent()->getName()
<< "] Loop %" << CurLoop->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
for (Loop::block_iterator BI = CurLoop->block_begin(),
E = CurLoop->block_end(); BI != E; ++BI) {
// Ignore blocks in subloops.
if (LI.getLoopFor(*BI) != CurLoop)
continue;
MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
}
return MadeChange;
}
bool LoopIdiomRecognize::runOnNoncountableLoop() {
NclPopcountRecognize Popcount(*this);
if (Popcount.recognize())
return true;
return false;
}
bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
CurLoop = L;
@ -185,45 +717,10 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
if (Name == "memset" || Name == "memcpy")
return false;
// The trip count of the loop must be analyzable.
SE = &getAnalysis<ScalarEvolution>();
if (!SE->hasLoopInvariantBackedgeTakenCount(L))
return false;
const SCEV *BECount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// If this loop executes exactly one time, then it should be peeled, not
// optimized by this pass.
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
if (BECst->getValue()->getValue() == 0)
return false;
// We require target data for now.
TD = getAnalysisIfAvailable<DataLayout>();
if (TD == 0) return false;
DT = &getAnalysis<DominatorTree>();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
<< L->getHeader()->getParent()->getName()
<< "] Loop %" << L->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
++BI) {
// Ignore blocks in subloops.
if (LI.getLoopFor(*BI) != CurLoop)
continue;
MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
}
return MadeChange;
if (SE->hasLoopInvariantBackedgeTakenCount(L))
return runOnCountableLoop();
return runOnNoncountableLoop();
}
/// runOnLoopBlock - Process the specified block, which lives in a counted loop

View File

@ -0,0 +1,6 @@
config.suffixes = ['.ll', '.c', '.cpp']
targets = set(config.root.targets_to_build.split())
if not 'X86' in targets:
config.unsupported = True

View File

@ -0,0 +1,120 @@
; RUN: opt -loop-idiom < %s -mtriple=x86_64-apple-darwin -mcpu=corei7 -S | FileCheck %s
;To recognize this pattern:
;int popcount(unsigned long long a) {
; int c = 0;
; while (a) {
; c++;
; a &= a - 1;
; }
; return c;
;}
;
; CHECK: entry
; CHECK: llvm.ctpop.i64
; CHECK: ret
define i32 @popcount(i64 %a) nounwind uwtable readnone ssp {
entry:
%tobool3 = icmp eq i64 %a, 0
br i1 %tobool3, label %while.end, label %while.body
while.body: ; preds = %entry, %while.body
%c.05 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
%a.addr.04 = phi i64 [ %and, %while.body ], [ %a, %entry ]
%inc = add nsw i32 %c.05, 1
%sub = add i64 %a.addr.04, -1
%and = and i64 %sub, %a.addr.04
%tobool = icmp eq i64 %and, 0
br i1 %tobool, label %while.end, label %while.body
while.end: ; preds = %while.body, %entry
%c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
ret i32 %c.0.lcssa
}
; To recognize this pattern:
;int popcount(unsigned long long a, int mydata1, int mydata2) {
; int c = 0;
; while (a) {
; c++;
; a &= a - 1;
; mydata1 *= c;
; mydata2 *= (int)a;
; }
; return c + mydata1 + mydata2;
;}
; CHECK: entry
; CHECK: llvm.ctpop.i64
; CHECK: ret
define i32 @popcount2(i64 %a, i32 %mydata1, i32 %mydata2) nounwind uwtable readnone ssp {
entry:
%tobool9 = icmp eq i64 %a, 0
br i1 %tobool9, label %while.end, label %while.body
while.body: ; preds = %entry, %while.body
%c.013 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
%mydata2.addr.012 = phi i32 [ %mul1, %while.body ], [ %mydata2, %entry ]
%mydata1.addr.011 = phi i32 [ %mul, %while.body ], [ %mydata1, %entry ]
%a.addr.010 = phi i64 [ %and, %while.body ], [ %a, %entry ]
%inc = add nsw i32 %c.013, 1
%sub = add i64 %a.addr.010, -1
%and = and i64 %sub, %a.addr.010
%mul = mul nsw i32 %inc, %mydata1.addr.011
%conv = trunc i64 %and to i32
%mul1 = mul nsw i32 %conv, %mydata2.addr.012
%tobool = icmp eq i64 %and, 0
br i1 %tobool, label %while.end, label %while.body
while.end: ; preds = %while.body, %entry
%c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
%mydata2.addr.0.lcssa = phi i32 [ %mydata2, %entry ], [ %mul1, %while.body ]
%mydata1.addr.0.lcssa = phi i32 [ %mydata1, %entry ], [ %mul, %while.body ]
%add = add i32 %mydata2.addr.0.lcssa, %mydata1.addr.0.lcssa
%add2 = add i32 %add, %c.0.lcssa
ret i32 %add2
}
; Some variants once cause crash
target triple = "x86_64-apple-macosx10.8.0"
define i32 @PopCntCrash1(i64 %a) nounwind uwtable readnone ssp {
entry:
%tobool3 = icmp eq i64 %a, 0
br i1 %tobool3, label %while.end, label %while.body
while.body: ; preds = %entry, %while.body
%c.05 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
%a.addr.04 = phi i64 [ %and, %while.body ], [ %a, %entry ]
%t = add i32 %c.05, %c.05
%inc = add nsw i32 %t, 1
%sub = add i64 %a.addr.04, -1
%and = and i64 %sub, %a.addr.04
%tobool = icmp eq i64 %and, 0
br i1 %tobool, label %while.end, label %while.body
while.end: ; preds = %while.body, %entry
%c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
ret i32 %c.0.lcssa
; CHECK: entry
; CHECK: ret
}
define i32 @PopCntCrash2(i64 %a, i32 %b) nounwind uwtable readnone ssp {
entry:
%tobool3 = icmp eq i64 %a, 0
br i1 %tobool3, label %while.end, label %while.body
while.body: ; preds = %entry, %while.body
%c.05 = phi i32 [ %inc, %while.body ], [ %b, %entry ]
%a.addr.04 = phi i64 [ %and, %while.body ], [ %a, %entry ]
%inc = add nsw i32 %c.05, 1
%sub = add i64 %a.addr.04, -1
%and = and i64 %sub, %a.addr.04
%tobool = icmp eq i64 %and, 0
br i1 %tobool, label %while.end, label %while.body
while.end: ; preds = %while.body, %entry
%c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
ret i32 %c.0.lcssa
}