[Clang][RISCV] Add rvv vsetvl and vsetvlmax intrinsic functions.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D96843
This commit is contained in:
Zakk Chen 2021-02-25 00:15:14 -08:00
parent fca5d63aa8
commit 95c0125f2b
4 changed files with 891 additions and 12 deletions

View File

@ -159,7 +159,11 @@ class RVVBuiltin<string suffix, string prototype, string type_range,
// This builtin is valid for the given Log2LMULs.
list<int> Log2LMUL = [0, 1, 2, 3, -1, -2, -3];
// Emit the automatic clang codegen. It describes what types we have to use
// Manual code in clang codegen riscv_vector_builtin_cg.inc
code ManualCodegen = [{}];
code ManualCodegenMask = [{}];
// When emit the automatic clang codegen, it describes what types we have to use
// to obtain the specific LLVM intrinsic. -1 means the return type, otherwise,
// k >= 0 meaning the k-th operand (counting from zero) of the codegen'd
// parameter of the unmasked version. k can't be the mask operand's position.
@ -171,6 +175,11 @@ class RVVBuiltin<string suffix, string prototype, string type_range,
// If HasMask, this is the ID of the LLVM intrinsic we want to lower to.
string IRNameMask = NAME #"_mask";
// If non empty, this is the code emitted in the header, otherwise
// an automatic definition in header is emitted.
string HeaderCode = "";
}
//===----------------------------------------------------------------------===//
@ -195,6 +204,80 @@ multiclass RVVBinBuiltinSet<string intrinsic_name, string type_range,
}
}
// 6. Configuration-Setting Instructions
// 6.1. vsetvli/vsetvl instructions
let HasVL = false,
HasMask = false,
HasSideEffects = true,
HasGeneric = false,
Log2LMUL = [0],
ManualCodegen = [{IntrinsicTypes = {ResultType};}] in // Set XLEN type
{
// vsetvl is a macro because for it require constant integers in SEW and LMUL.
let HeaderCode =
[{
#define vsetvl_e8mf8(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 5)
#define vsetvl_e8mf4(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 6)
#define vsetvl_e8mf2(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 7)
#define vsetvl_e8m1(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 0)
#define vsetvl_e8m2(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 1)
#define vsetvl_e8m4(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 2)
#define vsetvl_e8m8(avl) __builtin_rvv_vsetvli((size_t)(avl), 0, 3)
#define vsetvl_e16mf4(avl) __builtin_rvv_vsetvli((size_t)(avl), 1, 6)
#define vsetvl_e16mf2(avl) __builtin_rvv_vsetvli((size_t)(avl), 1, 7)
#define vsetvl_e16m1(avl) __builtin_rvv_vsetvli((size_t)(avl), 1, 0)
#define vsetvl_e16m2(avl) __builtin_rvv_vsetvli((size_t)(avl), 1, 1)
#define vsetvl_e16m4(avl) __builtin_rvv_vsetvli((size_t)(avl), 1, 2)
#define vsetvl_e16m8(avl) __builtin_rvv_vsetvli((size_t)(avl), 1, 3)
#define vsetvl_e32mf2(avl) __builtin_rvv_vsetvli((size_t)(avl), 2, 7)
#define vsetvl_e32m1(avl) __builtin_rvv_vsetvli((size_t)(avl), 2, 0)
#define vsetvl_e32m2(avl) __builtin_rvv_vsetvli((size_t)(avl), 2, 1)
#define vsetvl_e32m4(avl) __builtin_rvv_vsetvli((size_t)(avl), 2, 2)
#define vsetvl_e32m8(avl) __builtin_rvv_vsetvli((size_t)(avl), 2, 3)
#define vsetvl_e64m1(avl) __builtin_rvv_vsetvli((size_t)(avl), 3, 0)
#define vsetvl_e64m2(avl) __builtin_rvv_vsetvli((size_t)(avl), 3, 1)
#define vsetvl_e64m4(avl) __builtin_rvv_vsetvli((size_t)(avl), 3, 2)
#define vsetvl_e64m8(avl) __builtin_rvv_vsetvli((size_t)(avl), 3, 3)
}] in
def vsetvli : RVVBuiltin<"", "zzKzKz", "i">;
let HeaderCode =
[{
#define vsetvlmax_e8mf8() __builtin_rvv_vsetvlimax(0, 5)
#define vsetvlmax_e8mf4() __builtin_rvv_vsetvlimax(0, 6)
#define vsetvlmax_e8mf2() __builtin_rvv_vsetvlimax(0, 7)
#define vsetvlmax_e8m1() __builtin_rvv_vsetvlimax(0, 0)
#define vsetvlmax_e8m2() __builtin_rvv_vsetvlimax(0, 1)
#define vsetvlmax_e8m4() __builtin_rvv_vsetvlimax(0, 2)
#define vsetvlmax_e8m8() __builtin_rvv_vsetvlimax(0, 3)
#define vsetvlmax_e16mf4() __builtin_rvv_vsetvlimax(1, 6)
#define vsetvlmax_e16mf2() __builtin_rvv_vsetvlimax(1, 7)
#define vsetvlmax_e16m1() __builtin_rvv_vsetvlimax(1, 0)
#define vsetvlmax_e16m2() __builtin_rvv_vsetvlimax(1, 1)
#define vsetvlmax_e16m4() __builtin_rvv_vsetvlimax(1, 2)
#define vsetvlmax_e16m8() __builtin_rvv_vsetvlimax(1, 3)
#define vsetvlmax_e32mf2() __builtin_rvv_vsetvlimax(2, 7)
#define vsetvlmax_e32m1() __builtin_rvv_vsetvlimax(2, 0)
#define vsetvlmax_e32m2() __builtin_rvv_vsetvlimax(2, 1)
#define vsetvlmax_e32m4() __builtin_rvv_vsetvlimax(2, 2)
#define vsetvlmax_e32m8() __builtin_rvv_vsetvlimax(2, 3)
#define vsetvlmax_e64m1() __builtin_rvv_vsetvlimax(3, 0)
#define vsetvlmax_e64m2() __builtin_rvv_vsetvlimax(3, 1)
#define vsetvlmax_e64m4() __builtin_rvv_vsetvlimax(3, 2)
#define vsetvlmax_e64m8() __builtin_rvv_vsetvlimax(3, 3)
}] in
def vsetvlimax : RVVBuiltin<"", "zKzKz", "i">;
}
// 12. Vector Integer Arithmetic Instructions
// 12.1. Vector Single-Width Integer Add and Subtract
defm vadd : RVVBinBuiltinSet<"vadd", "csil",

View File

@ -0,0 +1,451 @@
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 -triple riscv32 -target-feature +experimental-v -emit-llvm -o - %s \
// RUN: | FileCheck --check-prefix=CHECK-RV32 %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +experimental-v -emit-llvm -o - %s \
// RUN: | FileCheck --check-prefix=CHECK-RV64 %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +experimental-v -Werror -Wall -o - \
// RUN: %s > /dev/null 2>&1 | FileCheck --check-prefix=ASM --allow-empty %s
// ASM-NOT: warning
#include <riscv_vector.h>
// CHECK-RV32-LABEL: @test_vsetvl_e8m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8m1(size_t avl) {
return vsetvl_e8m1(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e8m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8m2(size_t avl) {
return vsetvl_e8m2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e8m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8m4(size_t avl) {
return vsetvl_e8m4(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e8m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8m8(size_t avl) {
return vsetvl_e8m8(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e8mf2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 7)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8mf2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 7)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8mf2(size_t avl) {
return vsetvl_e8mf2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e8mf4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 6)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8mf4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 6)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8mf4(size_t avl) {
return vsetvl_e8mf4(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e8mf8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 0, i32 5)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e8mf8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 0, i64 5)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e8mf8(size_t avl) {
return vsetvl_e8mf8(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e16m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 1, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e16m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 1, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e16m1(size_t avl) {
return vsetvl_e16m1(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e16m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 1, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e16m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 1, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e16m2(size_t avl) {
return vsetvl_e16m2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e16m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 1, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e16m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 1, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e16m4(size_t avl) {
return vsetvl_e16m4(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e16m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 1, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e16m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 1, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e16m8(size_t avl) {
return vsetvl_e16m8(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e16mf2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 1, i32 7)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e16mf2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 1, i64 7)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e16mf2(size_t avl) {
return vsetvl_e16mf2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e16mf4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 1, i32 6)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e16mf4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 1, i64 6)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e16mf4(size_t avl) {
return vsetvl_e16mf4(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e32m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 2, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e32m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 2, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e32m1(size_t avl) {
return vsetvl_e32m1(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e32m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 2, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e32m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 2, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e32m2(size_t avl) {
return vsetvl_e32m2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e32m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 2, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e32m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 2, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e32m4(size_t avl) {
return vsetvl_e32m4(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e32m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 2, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e32m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 2, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e32m8(size_t avl) {
return vsetvl_e32m8(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e32mf2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 2, i32 7)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e32mf2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 2, i64 7)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e32mf2(size_t avl) {
return vsetvl_e32mf2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e64m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 3, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e64m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 3, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e64m1(size_t avl) {
return vsetvl_e64m1(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e64m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 3, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e64m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 3, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e64m2(size_t avl) {
return vsetvl_e64m2(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e64m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 3, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e64m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 3, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e64m4(size_t avl) {
return vsetvl_e64m4(avl);
}
// CHECK-RV32-LABEL: @test_vsetvl_e64m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[AVL_ADDR:%.*]] = alloca i32, align 4
// CHECK-RV32-NEXT: store i32 [[AVL:%.*]], i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP0:%.*]] = load i32, i32* [[AVL_ADDR]], align 4
// CHECK-RV32-NEXT: [[TMP1:%.*]] = call i32 @llvm.riscv.vsetvli.i32(i32 [[TMP0]], i32 3, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP1]]
//
// CHECK-RV64-LABEL: @test_vsetvl_e64m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[AVL_ADDR:%.*]] = alloca i64, align 8
// CHECK-RV64-NEXT: store i64 [[AVL:%.*]], i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP0:%.*]] = load i64, i64* [[AVL_ADDR]], align 8
// CHECK-RV64-NEXT: [[TMP1:%.*]] = call i64 @llvm.riscv.vsetvli.i64(i64 [[TMP0]], i64 3, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP1]]
//
size_t test_vsetvl_e64m8(size_t avl) {
return vsetvl_e64m8(avl);
}

View File

@ -0,0 +1,319 @@
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 -triple riscv32 -target-feature +experimental-v -emit-llvm -o - %s \
// RUN: | FileCheck --check-prefix=CHECK-RV32 %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +experimental-v -emit-llvm -o - %s \
// RUN: | FileCheck --check-prefix=CHECK-RV64 %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +experimental-v -Werror -Wall -o - \
// RUN: %s > /dev/null 2>&1 | FileCheck --check-prefix=ASM --allow-empty %s
// ASM-NOT: warning
#include <riscv_vector.h>
// CHECK-RV32-LABEL: @test_vsetvlmax_e8m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8m1() {
return vsetvlmax_e8m1();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e8m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8m2() {
return vsetvlmax_e8m2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e8m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8m4() {
return vsetvlmax_e8m4();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e8m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8m8() {
return vsetvlmax_e8m8();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e8mf2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 7)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8mf2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 7)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8mf2() {
return vsetvlmax_e8mf2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e8mf4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 6)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8mf4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 6)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8mf4() {
return vsetvlmax_e8mf4();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e8mf8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 0, i32 5)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e8mf8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 0, i64 5)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e8mf8() {
return vsetvlmax_e8mf8();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e16m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 1, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e16m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 1, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e16m1() {
return vsetvlmax_e16m1();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e16m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 1, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e16m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 1, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e16m2() {
return vsetvlmax_e16m2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e16m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 1, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e16m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 1, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e16m4() {
return vsetvlmax_e16m4();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e16m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 1, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e16m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 1, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e16m8() {
return vsetvlmax_e16m8();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e16mf2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 1, i32 7)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e16mf2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 1, i64 7)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e16mf2() {
return vsetvlmax_e16mf2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e16mf4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 1, i32 6)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e16mf4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 1, i64 6)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e16mf4() {
return vsetvlmax_e16mf4();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e32m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 2, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e32m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 2, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e32m1() {
return vsetvlmax_e32m1();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e32m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 2, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e32m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 2, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e32m2() {
return vsetvlmax_e32m2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e32m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 2, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e32m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 2, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e32m4() {
return vsetvlmax_e32m4();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e32m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 2, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e32m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 2, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e32m8() {
return vsetvlmax_e32m8();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e32mf2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 2, i32 7)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e32mf2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 2, i64 7)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e32mf2() {
return vsetvlmax_e32mf2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e64m1(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 3, i32 0)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e64m1(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 3, i64 0)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e64m1() {
return vsetvlmax_e64m1();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e64m2(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 3, i32 1)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e64m2(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 3, i64 1)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e64m2() {
return vsetvlmax_e64m2();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e64m4(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 3, i32 2)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e64m4(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 3, i64 2)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e64m4() {
return vsetvlmax_e64m4();
}
// CHECK-RV32-LABEL: @test_vsetvlmax_e64m8(
// CHECK-RV32-NEXT: entry:
// CHECK-RV32-NEXT: [[TMP0:%.*]] = call i32 @llvm.riscv.vsetvlimax.i32(i32 3, i32 3)
// CHECK-RV32-NEXT: ret i32 [[TMP0]]
//
// CHECK-RV64-LABEL: @test_vsetvlmax_e64m8(
// CHECK-RV64-NEXT: entry:
// CHECK-RV64-NEXT: [[TMP0:%.*]] = call i64 @llvm.riscv.vsetvlimax.i64(i64 3, i64 3)
// CHECK-RV64-NEXT: ret i64 [[TMP0]]
//
size_t test_vsetvlmax_e64m8() {
return vsetvlmax_e64m8();
}

View File

@ -145,6 +145,8 @@ private:
bool HasMaskedOffOperand;
bool HasVL;
bool HasGeneric;
bool HasAutoDef; // There is automiatic definition in header
std::string ManualCodegen;
RVVTypePtr OutputType; // Builtin output type
RVVTypes InputTypes; // Builtin input types
// The types we use to obtain the specific LLVM intrinsic. They are index of
@ -159,8 +161,8 @@ public:
RVVIntrinsic(StringRef Name, StringRef Suffix, StringRef MangledName,
StringRef IRName, bool HasSideEffects, bool IsMask,
bool HasMaskedOffOperand, bool HasVL, bool HasGeneric,
const RVVTypes &Types,
const std::vector<int64_t> &RVVIntrinsicTypes);
bool HasAutoDef, StringRef ManualCodegen, const RVVTypes &Types,
const std::vector<int64_t> &IntrinsicTypes);
~RVVIntrinsic() = default;
StringRef getName() const { return Name; }
@ -169,6 +171,8 @@ public:
bool hasMaskedOffOperand() const { return HasMaskedOffOperand; }
bool hasVL() const { return HasVL; }
bool hasGeneric() const { return HasGeneric; }
bool hasManualCodegen() const { return !ManualCodegen.empty(); }
bool hasAutoDef() const { return HasAutoDef; }
size_t getNumOperand() const { return InputTypes.size(); }
StringRef getIRName() const { return IRName; }
uint8_t getRISCVExtensions() const { return RISCVExtensions; }
@ -190,6 +194,7 @@ public:
class RVVEmitter {
private:
RecordKeeper &Records;
std::string HeaderCode;
// Concat BasicType, LMUL and Proto as key
StringMap<RVVType> LegalTypes;
StringSet<> IllegalTypes;
@ -637,11 +642,13 @@ RVVIntrinsic::RVVIntrinsic(StringRef NewName, StringRef Suffix,
StringRef NewMangledName, StringRef IRName,
bool HasSideEffects, bool IsMask,
bool HasMaskedOffOperand, bool HasVL,
bool HasGeneric, const RVVTypes &OutInTypes,
bool HasGeneric, bool HasAutoDef,
StringRef ManualCodegen, const RVVTypes &OutInTypes,
const std::vector<int64_t> &NewIntrinsicTypes)
: IRName(IRName), HasSideEffects(HasSideEffects),
HasMaskedOffOperand(HasMaskedOffOperand), HasVL(HasVL),
HasGeneric(HasGeneric) {
HasGeneric(HasGeneric), HasAutoDef(HasAutoDef),
ManualCodegen(ManualCodegen.str()) {
// Init Name and MangledName
Name = NewName.str();
@ -702,7 +709,13 @@ std::string RVVIntrinsic::getBuiltinTypeStr() const {
}
void RVVIntrinsic::emitCodeGenSwitchBody(raw_ostream &OS) const {
OS << " ID = Intrinsic::riscv_" + getIRName() + ";\n";
if (hasManualCodegen()) {
OS << ManualCodegen;
OS << "break;\n";
return;
}
OS << " IntrinsicTypes = {";
ListSeparator LS;
for (const auto &Idx : IntrinsicTypes) {
@ -792,6 +805,11 @@ void RVVEmitter::createHeader(raw_ostream &OS) {
std::vector<std::unique_ptr<RVVIntrinsic>> Defs;
createRVVIntrinsics(Defs);
// Print header code
if (!HeaderCode.empty()) {
OS << HeaderCode;
}
auto printType = [&](auto T) {
OS << "typedef " << T->getClangBuiltinStr() << " " << T->getTypeStr()
<< ";\n";
@ -910,7 +928,6 @@ void RVVEmitter::createCodeGen(raw_ostream &OS) {
void RVVEmitter::createRVVIntrinsics(
std::vector<std::unique_ptr<RVVIntrinsic>> &Out) {
std::vector<Record *> RV = Records.getAllDerivedDefinitions("RVVBuiltin");
for (auto *R : RV) {
StringRef Name = R->getValueAsString("Name");
@ -924,11 +941,18 @@ void RVVEmitter::createRVVIntrinsics(
bool HasGeneric = R->getValueAsBit("HasGeneric");
bool HasSideEffects = R->getValueAsBit("HasSideEffects");
std::vector<int64_t> Log2LMULList = R->getValueAsListOfInts("Log2LMUL");
StringRef ManualCodegen = R->getValueAsString("ManualCodegen");
StringRef ManualCodegenMask = R->getValueAsString("ManualCodegenMask");
std::vector<int64_t> IntrinsicTypes =
R->getValueAsListOfInts("IntrinsicTypes");
StringRef IRName = R->getValueAsString("IRName");
StringRef IRNameMask = R->getValueAsString("IRNameMask");
StringRef HeaderCodeStr = R->getValueAsString("HeaderCode");
bool HasAutoDef = HeaderCodeStr.empty();
if (!HeaderCodeStr.empty()) {
HeaderCode += HeaderCodeStr.str();
}
// Parse prototype and create a list of primitive type with transformers
// (operand) in ProtoSeq. ProtoSeq[0] is output operand.
SmallVector<std::string, 8> ProtoSeq;
@ -955,7 +979,7 @@ void RVVEmitter::createRVVIntrinsics(
ProtoMaskSeq.push_back("z");
}
// Create intrinsics for each type and LMUL.
// Create Intrinsics for each type and LMUL.
for (char I : TypeRange) {
for (int Log2LMUL : Log2LMULList) {
Optional<RVVTypes> Types = computeTypes(I, Log2LMUL, ProtoSeq);
@ -965,11 +989,11 @@ void RVVEmitter::createRVVIntrinsics(
auto SuffixStr =
computeType(I, Log2LMUL, Suffix).getValue()->getShortStr();
// Create a non-mask intrinsic.
// Create a non-mask intrinsic
Out.push_back(std::make_unique<RVVIntrinsic>(
Name, SuffixStr, MangledName, IRName, HasSideEffects,
/*IsMask=*/false, /*HasMaskedOffOperand=*/false, HasVL, HasGeneric,
Types.getValue(), IntrinsicTypes));
HasAutoDef, ManualCodegen, Types.getValue(), IntrinsicTypes));
if (HasMask) {
// Create a mask intrinsic
Optional<RVVTypes> MaskTypes =
@ -977,9 +1001,10 @@ void RVVEmitter::createRVVIntrinsics(
Out.push_back(std::make_unique<RVVIntrinsic>(
Name, SuffixStr, MangledName, IRNameMask, HasSideEffects,
/*IsMask=*/true, HasMaskedOffOperand, HasVL, HasGeneric,
MaskTypes.getValue(), IntrinsicTypes));
HasAutoDef, ManualCodegenMask, MaskTypes.getValue(),
IntrinsicTypes));
}
} // end for Log2LMUL
} // end for Log2LMULList
} // end for TypeRange
}
}
@ -1039,7 +1064,8 @@ void RVVEmitter::emitArchMacroAndBody(
NeedEndif = emitExtDefStr(CurExt, OS);
PrevExt = CurExt;
}
PrintBody(OS, *Def);
if (Def->hasAutoDef())
PrintBody(OS, *Def);
}
if (NeedEndif)
OS << "#endif\n\n";