[clang][dataflow] Optimize flow condition representation

Enable efficient implementation of context-aware joining of distinct
boolean values. It can be used to join distinct boolean values while
preserving flow condition information.

Flow conditions are represented as Token <=> Clause iff formulas. To
perform context-aware joining, one can simply add the tokens of flow
conditions to the formula when joining distinct boolean values, e.g:
`makeOr(makeAnd(FC1, Val1), makeAnd(FC2, Val2))`. This significantly
simplifies the implementation of `Environment::join`.

This patch removes the `DataflowAnalysisContext::getSolver` method.
The `DataflowAnalysisContext::flowConditionImplies` method should be
used instead.

Reviewed-by: ymandel, xazax.hun

Differential Revision: https://reviews.llvm.org/D124395
This commit is contained in:
Stanislav Gatev 2022-04-25 15:23:42 +00:00
parent 980f41d7c4
commit 955a05a278
5 changed files with 213 additions and 102 deletions

View File

@ -21,6 +21,7 @@
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include <cassert>
#include <memory>
#include <type_traits>
@ -45,9 +46,6 @@ public:
assert(this->S != nullptr);
}
/// Returns the SAT solver instance that is available in this context.
Solver &getSolver() const { return *S; }
/// Takes ownership of `Loc` and returns a reference to it.
///
/// Requirements:
@ -151,7 +149,39 @@ public:
/// calls with the same argument will return the same result.
BoolValue &getOrCreateNegationValue(BoolValue &Val);
/// Creates a fresh flow condition and returns a token that identifies it. The
/// token can be used to perform various operations on the flow condition such
/// as adding constraints to it, forking it, joining it with another flow
/// condition, or checking implications.
AtomicBoolValue &makeFlowConditionToken();
/// Adds `Constraint` to the flow condition identified by `Token`.
void addFlowConditionConstraint(AtomicBoolValue &Token,
BoolValue &Constraint);
/// Creates a new flow condition with the same constraints as the flow
/// condition identified by `Token` and returns its token.
AtomicBoolValue &forkFlowCondition(AtomicBoolValue &Token);
/// Creates a new flow condition that represents the disjunction of the flow
/// conditions identified by `FirstToken` and `SecondToken`, and returns its
/// token.
AtomicBoolValue &joinFlowConditions(AtomicBoolValue &FirstToken,
AtomicBoolValue &SecondToken);
/// Returns true if and only if the constraints of the flow condition
/// identified by `Token` imply that `Val` is true.
bool flowConditionImplies(AtomicBoolValue &Token, BoolValue &Val);
private:
/// Adds all constraints of the flow condition identified by `Token` and all
/// of its transitive dependencies to `Constraints`. `VisitedTokens` is used
/// to track tokens of flow conditions that were already visited by recursive
/// calls.
void addTransitiveFlowConditionConstraints(
AtomicBoolValue &Token, llvm::DenseSet<BoolValue *> &Constraints,
llvm::DenseSet<AtomicBoolValue *> &VisitedTokens) const;
std::unique_ptr<Solver> S;
// Storage for the state of a program.
@ -178,6 +208,27 @@ private:
llvm::DenseMap<std::pair<BoolValue *, BoolValue *>, DisjunctionValue *>
DisjunctionVals;
llvm::DenseMap<BoolValue *, NegationValue *> NegationVals;
// Flow conditions are tracked symbolically: each unique flow condition is
// associated with a fresh symbolic variable (token), bound to the clause that
// defines the flow condition. Conceptually, each binding corresponds to an
// "iff" of the form `FC <=> (C1 ^ C2 ^ ...)` where `FC` is a flow condition
// token (an atomic boolean) and `Ci`s are the set of constraints in the flow
// flow condition clause. Internally, we do not record the formula directly as
// an "iff". Instead, a flow condition clause is encoded as conjuncts of the
// form `(FC v !C1 v !C2 v ...) ^ (C1 v !FC) ^ (C2 v !FC) ^ ...`. The first
// conjuct is stored in the `FlowConditionFirstConjuncts` map and the set of
// remaining conjuncts are stored in the `FlowConditionRemainingConjuncts`
// map, both keyed by the token of the flow condition.
//
// Flow conditions depend on other flow conditions if they are created using
// `forkFlowCondition` or `joinFlowConditions`. The graph of flow condition
// dependencies is stored in the `FlowConditionDeps` map.
llvm::DenseMap<AtomicBoolValue *, llvm::DenseSet<AtomicBoolValue *>>
FlowConditionDeps;
llvm::DenseMap<AtomicBoolValue *, BoolValue *> FlowConditionFirstConjuncts;
llvm::DenseMap<AtomicBoolValue *, llvm::DenseSet<BoolValue *>>
FlowConditionRemainingConjuncts;
};
} // namespace dataflow

View File

@ -111,7 +111,13 @@ public:
/// Creates an environment that uses `DACtx` to store objects that encompass
/// the state of a program.
explicit Environment(DataflowAnalysisContext &DACtx) : DACtx(&DACtx) {}
explicit Environment(DataflowAnalysisContext &DACtx);
Environment(const Environment &Other);
Environment &operator=(const Environment &Other);
Environment(Environment &&Other) = default;
Environment &operator=(Environment &&Other) = default;
/// Creates an environment that uses `DACtx` to store objects that encompass
/// the state of a program.
@ -297,9 +303,8 @@ public:
: makeAnd(makeImplication(LHS, RHS), makeImplication(RHS, LHS));
}
const llvm::DenseSet<BoolValue *> &getFlowConditionConstraints() const {
return FlowConditionConstraints;
}
/// Returns the token that identifies the flow condition of the environment.
AtomicBoolValue &getFlowConditionToken() const { return *FlowConditionToken; }
/// Adds `Val` to the set of clauses that constitute the flow condition.
void addToFlowCondition(BoolValue &Val);
@ -345,7 +350,7 @@ private:
std::pair<StructValue *, const ValueDecl *>>
MemberLocToStruct;
llvm::DenseSet<BoolValue *> FlowConditionConstraints;
AtomicBoolValue *FlowConditionToken;
};
} // namespace dataflow

View File

@ -64,5 +64,81 @@ BoolValue &DataflowAnalysisContext::getOrCreateNegationValue(BoolValue &Val) {
return *Res.first->second;
}
AtomicBoolValue &DataflowAnalysisContext::makeFlowConditionToken() {
AtomicBoolValue &Token = createAtomicBoolValue();
FlowConditionRemainingConjuncts[&Token] = {};
FlowConditionFirstConjuncts[&Token] = &Token;
return Token;
}
void DataflowAnalysisContext::addFlowConditionConstraint(
AtomicBoolValue &Token, BoolValue &Constraint) {
FlowConditionRemainingConjuncts[&Token].insert(&getOrCreateDisjunctionValue(
Constraint, getOrCreateNegationValue(Token)));
FlowConditionFirstConjuncts[&Token] =
&getOrCreateDisjunctionValue(*FlowConditionFirstConjuncts[&Token],
getOrCreateNegationValue(Constraint));
}
AtomicBoolValue &
DataflowAnalysisContext::forkFlowCondition(AtomicBoolValue &Token) {
auto &ForkToken = makeFlowConditionToken();
FlowConditionDeps[&ForkToken].insert(&Token);
addFlowConditionConstraint(ForkToken, Token);
return ForkToken;
}
AtomicBoolValue &
DataflowAnalysisContext::joinFlowConditions(AtomicBoolValue &FirstToken,
AtomicBoolValue &SecondToken) {
auto &Token = makeFlowConditionToken();
FlowConditionDeps[&Token].insert(&FirstToken);
FlowConditionDeps[&Token].insert(&SecondToken);
addFlowConditionConstraint(
Token, getOrCreateDisjunctionValue(FirstToken, SecondToken));
return Token;
}
bool DataflowAnalysisContext::flowConditionImplies(AtomicBoolValue &Token,
BoolValue &Val) {
// Returns true if and only if truth assignment of the flow condition implies
// that `Val` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `Val` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::DenseSet<BoolValue *> Constraints = {
&Token,
&getBoolLiteralValue(true),
&getOrCreateNegationValue(getBoolLiteralValue(false)),
&getOrCreateNegationValue(Val),
};
llvm::DenseSet<AtomicBoolValue *> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return S->solve(std::move(Constraints)) == Solver::Result::Unsatisfiable;
}
void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
AtomicBoolValue &Token, llvm::DenseSet<BoolValue *> &Constraints,
llvm::DenseSet<AtomicBoolValue *> &VisitedTokens) const {
auto Res = VisitedTokens.insert(&Token);
if (!Res.second)
return;
auto FirstConjunctIT = FlowConditionFirstConjuncts.find(&Token);
if (FirstConjunctIT != FlowConditionFirstConjuncts.end())
Constraints.insert(FirstConjunctIT->second);
auto RemainingConjunctsIT = FlowConditionRemainingConjuncts.find(&Token);
if (RemainingConjunctsIT != FlowConditionRemainingConjuncts.end())
Constraints.insert(RemainingConjunctsIT->second.begin(),
RemainingConjunctsIT->second.end());
auto DepsIT = FlowConditionDeps.find(&Token);
if (DepsIT != FlowConditionDeps.end()) {
for (AtomicBoolValue *DepToken : DepsIT->second)
addTransitiveFlowConditionConstraints(*DepToken, Constraints,
VisitedTokens);
}
}
} // namespace dataflow
} // namespace clang

View File

@ -77,33 +77,14 @@ static Value *mergeDistinctValues(QualType Type, Value *Val1,
Environment &MergedEnv,
Environment::ValueModel &Model) {
// Join distinct boolean values preserving information about the constraints
// in the respective path conditions. Note: this construction can, in
// principle, result in exponential growth in the size of boolean values.
// Potential optimizations may be worth considering. For example, represent
// the flow condition of each environment using a bool atom and store, in
// `DataflowAnalysisContext`, a mapping of bi-conditionals between flow
// condition atoms and flow condition constraints. Something like:
// \code
// FC1 <=> C1 ^ C2
// FC2 <=> C2 ^ C3 ^ C4
// FC3 <=> (FC1 v FC2) ^ C5
// \code
// Then, we can track dependencies between flow conditions (e.g. above `FC3`
// depends on `FC1` and `FC2`) and modify `flowConditionImplies` to construct
// a formula that includes the bi-conditionals for all flow condition atoms in
// the transitive set, before invoking the solver.
// in the respective path conditions.
//
// FIXME: Does not work for backedges, since the two (or more) paths will not
// have mutually exclusive conditions.
if (auto *Expr1 = dyn_cast<BoolValue>(Val1)) {
for (BoolValue *Constraint : Env1.getFlowConditionConstraints()) {
Expr1 = &MergedEnv.makeAnd(*Expr1, *Constraint);
}
auto *Expr2 = cast<BoolValue>(Val2);
for (BoolValue *Constraint : Env2.getFlowConditionConstraints()) {
Expr2 = &MergedEnv.makeAnd(*Expr2, *Constraint);
}
return &MergedEnv.makeOr(*Expr1, *Expr2);
return &Env1.makeOr(Env1.makeAnd(Env1.getFlowConditionToken(), *Expr1),
Env1.makeAnd(Env2.getFlowConditionToken(), *Expr2));
}
// FIXME: add unit tests that cover this statement.
@ -166,63 +147,6 @@ static void initGlobalVars(const Stmt &S, Environment &Env) {
}
}
/// Returns constraints that represent the disjunction of `Constraints1` and
/// `Constraints2`.
///
/// Requirements:
///
/// The elements of `Constraints1` and `Constraints2` must not be null.
llvm::DenseSet<BoolValue *>
joinConstraints(DataflowAnalysisContext *Context,
const llvm::DenseSet<BoolValue *> &Constraints1,
const llvm::DenseSet<BoolValue *> &Constraints2) {
// `(X ^ Y) v (X ^ Z)` is logically equivalent to `X ^ (Y v Z)`. Therefore, to
// avoid unnecessarily expanding the resulting set of constraints, we will add
// all common constraints of `Constraints1` and `Constraints2` directly and
// add a disjunction of the constraints that are not common.
llvm::DenseSet<BoolValue *> JoinedConstraints;
if (Constraints1.empty() || Constraints2.empty()) {
// Disjunction of empty set and non-empty set is represented as empty set.
return JoinedConstraints;
}
BoolValue *Val1 = nullptr;
for (BoolValue *Constraint : Constraints1) {
if (Constraints2.contains(Constraint)) {
// Add common constraints directly to `JoinedConstraints`.
JoinedConstraints.insert(Constraint);
} else if (Val1 == nullptr) {
Val1 = Constraint;
} else {
Val1 = &Context->getOrCreateConjunctionValue(*Val1, *Constraint);
}
}
BoolValue *Val2 = nullptr;
for (BoolValue *Constraint : Constraints2) {
// Common constraints are added to `JoinedConstraints` above.
if (Constraints1.contains(Constraint)) {
continue;
}
if (Val2 == nullptr) {
Val2 = Constraint;
} else {
Val2 = &Context->getOrCreateConjunctionValue(*Val2, *Constraint);
}
}
// An empty set of constraints (represented as a null value) is interpreted as
// `true` and `true v X` is logically equivalent to `true` so we need to add a
// constraint only if both `Val1` and `Val2` are not null.
if (Val1 != nullptr && Val2 != nullptr)
JoinedConstraints.insert(
&Context->getOrCreateDisjunctionValue(*Val1, *Val2));
return JoinedConstraints;
}
static void
getFieldsFromClassHierarchy(QualType Type, bool IgnorePrivateFields,
llvm::DenseSet<const FieldDecl *> &Fields) {
@ -259,6 +183,22 @@ getAccessibleObjectFields(QualType Type) {
return Fields;
}
Environment::Environment(DataflowAnalysisContext &DACtx)
: DACtx(&DACtx), FlowConditionToken(&DACtx.makeFlowConditionToken()) {}
Environment::Environment(const Environment &Other)
: DACtx(Other.DACtx), DeclToLoc(Other.DeclToLoc),
ExprToLoc(Other.ExprToLoc), LocToVal(Other.LocToVal),
MemberLocToStruct(Other.MemberLocToStruct),
FlowConditionToken(&DACtx->forkFlowCondition(*Other.FlowConditionToken)) {
}
Environment &Environment::operator=(const Environment &Other) {
Environment Copy(Other);
*this = std::move(Copy);
return *this;
}
Environment::Environment(DataflowAnalysisContext &DACtx,
const DeclContext &DeclCtx)
: Environment(DACtx) {
@ -343,8 +283,8 @@ LatticeJoinEffect Environment::join(const Environment &Other,
Effect = LatticeJoinEffect::Changed;
// FIXME: set `Effect` as needed.
JoinedEnv.FlowConditionConstraints = joinConstraints(
DACtx, FlowConditionConstraints, Other.FlowConditionConstraints);
JoinedEnv.FlowConditionToken = &DACtx->joinFlowConditions(
*FlowConditionToken, *Other.FlowConditionToken);
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
@ -610,22 +550,11 @@ const StorageLocation &Environment::skip(const StorageLocation &Loc,
}
void Environment::addToFlowCondition(BoolValue &Val) {
FlowConditionConstraints.insert(&Val);
DACtx->addFlowConditionConstraint(*FlowConditionToken, Val);
}
bool Environment::flowConditionImplies(BoolValue &Val) const {
// Returns true if and only if truth assignment of the flow condition implies
// that `Val` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `Val` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::DenseSet<BoolValue *> Constraints = {
&makeNot(Val), &getBoolLiteralValue(true),
&makeNot(getBoolLiteralValue(false))};
Constraints.insert(FlowConditionConstraints.begin(),
FlowConditionConstraints.end());
return DACtx->getSolver().solve(std::move(Constraints)) ==
Solver::Result::Unsatisfiable;
return DACtx->flowConditionImplies(*FlowConditionToken, Val);
}
} // namespace dataflow

View File

@ -90,4 +90,54 @@ TEST_F(DataflowAnalysisContextTest,
EXPECT_NE(&NotX1, &NotY);
}
TEST_F(DataflowAnalysisContextTest, EmptyFlowCondition) {
auto &FC = Context.makeFlowConditionToken();
auto &C = Context.createAtomicBoolValue();
EXPECT_FALSE(Context.flowConditionImplies(FC, C));
}
TEST_F(DataflowAnalysisContextTest, AddFlowConditionConstraint) {
auto &FC = Context.makeFlowConditionToken();
auto &C = Context.createAtomicBoolValue();
Context.addFlowConditionConstraint(FC, C);
EXPECT_TRUE(Context.flowConditionImplies(FC, C));
}
TEST_F(DataflowAnalysisContextTest, ForkFlowCondition) {
auto &FC1 = Context.makeFlowConditionToken();
auto &C1 = Context.createAtomicBoolValue();
Context.addFlowConditionConstraint(FC1, C1);
// Forked flow condition inherits the constraints of its parent flow
// condition.
auto &FC2 = Context.forkFlowCondition(FC1);
EXPECT_TRUE(Context.flowConditionImplies(FC2, C1));
// Adding a new constraint to the forked flow condition does not affect its
// parent flow condition.
auto &C2 = Context.createAtomicBoolValue();
Context.addFlowConditionConstraint(FC2, C2);
EXPECT_TRUE(Context.flowConditionImplies(FC2, C2));
EXPECT_FALSE(Context.flowConditionImplies(FC1, C2));
}
TEST_F(DataflowAnalysisContextTest, JoinFlowConditions) {
auto &C1 = Context.createAtomicBoolValue();
auto &C2 = Context.createAtomicBoolValue();
auto &C3 = Context.createAtomicBoolValue();
auto &FC1 = Context.makeFlowConditionToken();
Context.addFlowConditionConstraint(FC1, C1);
Context.addFlowConditionConstraint(FC1, C3);
auto &FC2 = Context.makeFlowConditionToken();
Context.addFlowConditionConstraint(FC2, C2);
Context.addFlowConditionConstraint(FC2, C3);
auto &FC3 = Context.joinFlowConditions(FC1, FC2);
EXPECT_FALSE(Context.flowConditionImplies(FC3, C1));
EXPECT_FALSE(Context.flowConditionImplies(FC3, C2));
EXPECT_TRUE(Context.flowConditionImplies(FC3, C3));
}
} // namespace