[mlir] Add DivOp lowering from Complex dialect to Standard/Math dialect.

Differential Revision: https://reviews.llvm.org/D103507
This commit is contained in:
Adrian Kuegel 2021-06-02 10:34:18 +02:00
parent a67a234ec7
commit 942be7cb4d
2 changed files with 322 additions and 3 deletions

View File

@ -77,14 +77,223 @@ struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> {
return success();
}
};
struct DivOpConversion : public OpConversionPattern<complex::DivOp> {
using OpConversionPattern<complex::DivOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::DivOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
complex::DivOp::Adaptor transformed(operands);
auto loc = op.getLoc();
auto type = transformed.lhs().getType().template cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value lhsReal =
rewriter.create<complex::ReOp>(loc, elementType, transformed.lhs());
Value lhsImag =
rewriter.create<complex::ImOp>(loc, elementType, transformed.lhs());
Value rhsReal =
rewriter.create<complex::ReOp>(loc, elementType, transformed.rhs());
Value rhsImag =
rewriter.create<complex::ImOp>(loc, elementType, transformed.rhs());
// Smith's algorithm to divide complex numbers. It is just a bit smarter
// way to compute the following formula:
// (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i)
// = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) /
// ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i))
// = ((lhsReal * rhsReal + lhsImag * rhsImag) +
// (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2
//
// Depending on whether |rhsReal| < |rhsImag| we compute either
// rhsRealImagRatio = rhsReal / rhsImag
// rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio
// resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom
// resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom
//
// or
//
// rhsImagRealRatio = rhsImag / rhsReal
// rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio
// resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom
// resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom
//
// See https://dl.acm.org/citation.cfm?id=368661 for more details.
Value rhsRealImagRatio = rewriter.create<DivFOp>(loc, rhsReal, rhsImag);
Value rhsRealImagDenom = rewriter.create<AddFOp>(
loc, rhsImag, rewriter.create<MulFOp>(loc, rhsRealImagRatio, rhsReal));
Value realNumerator1 = rewriter.create<AddFOp>(
loc, rewriter.create<MulFOp>(loc, lhsReal, rhsRealImagRatio), lhsImag);
Value resultReal1 =
rewriter.create<DivFOp>(loc, realNumerator1, rhsRealImagDenom);
Value imagNumerator1 = rewriter.create<SubFOp>(
loc, rewriter.create<MulFOp>(loc, lhsImag, rhsRealImagRatio), lhsReal);
Value resultImag1 =
rewriter.create<DivFOp>(loc, imagNumerator1, rhsRealImagDenom);
Value rhsImagRealRatio = rewriter.create<DivFOp>(loc, rhsImag, rhsReal);
Value rhsImagRealDenom = rewriter.create<AddFOp>(
loc, rhsReal, rewriter.create<MulFOp>(loc, rhsImagRealRatio, rhsImag));
Value realNumerator2 = rewriter.create<AddFOp>(
loc, lhsReal, rewriter.create<MulFOp>(loc, lhsImag, rhsImagRealRatio));
Value resultReal2 =
rewriter.create<DivFOp>(loc, realNumerator2, rhsImagRealDenom);
Value imagNumerator2 = rewriter.create<SubFOp>(
loc, lhsImag, rewriter.create<MulFOp>(loc, lhsReal, rhsImagRealRatio));
Value resultImag2 =
rewriter.create<DivFOp>(loc, imagNumerator2, rhsImagRealDenom);
// Consider corner cases.
// Case 1. Zero denominator, numerator contains at most one NaN value.
Value zero = rewriter.create<ConstantOp>(loc, elementType,
rewriter.getZeroAttr(elementType));
Value rhsRealAbs = rewriter.create<AbsFOp>(loc, rhsReal);
Value rhsRealIsZero =
rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsRealAbs, zero);
Value rhsImagAbs = rewriter.create<AbsFOp>(loc, rhsImag);
Value rhsImagIsZero =
rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsImagAbs, zero);
Value lhsRealIsNotNaN =
rewriter.create<CmpFOp>(loc, CmpFPredicate::ORD, lhsReal, zero);
Value lhsImagIsNotNaN =
rewriter.create<CmpFOp>(loc, CmpFPredicate::ORD, lhsImag, zero);
Value lhsContainsNotNaNValue =
rewriter.create<OrOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN);
Value resultIsInfinity = rewriter.create<AndOp>(
loc, lhsContainsNotNaNValue,
rewriter.create<AndOp>(loc, rhsRealIsZero, rhsImagIsZero));
Value inf = rewriter.create<ConstantOp>(
loc, elementType,
rewriter.getFloatAttr(
elementType, APFloat::getInf(elementType.getFloatSemantics())));
Value infWithSignOfRhsReal = rewriter.create<CopySignOp>(loc, inf, rhsReal);
Value infinityResultReal =
rewriter.create<MulFOp>(loc, infWithSignOfRhsReal, lhsReal);
Value infinityResultImag =
rewriter.create<MulFOp>(loc, infWithSignOfRhsReal, lhsImag);
// Case 2. Infinite numerator, finite denominator.
Value rhsRealFinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, rhsRealAbs, inf);
Value rhsImagFinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, rhsImagAbs, inf);
Value rhsFinite = rewriter.create<AndOp>(loc, rhsRealFinite, rhsImagFinite);
Value lhsRealAbs = rewriter.create<AbsFOp>(loc, lhsReal);
Value lhsRealInfinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagAbs = rewriter.create<AbsFOp>(loc, lhsImag);
Value lhsImagInfinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsInfinite =
rewriter.create<OrOp>(loc, lhsRealInfinite, lhsImagInfinite);
Value infNumFiniteDenom =
rewriter.create<AndOp>(loc, lhsInfinite, rhsFinite);
Value one = rewriter.create<ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 1));
Value lhsRealIsInfWithSign = rewriter.create<CopySignOp>(
loc, rewriter.create<SelectOp>(loc, lhsRealInfinite, one, zero),
lhsReal);
Value lhsImagIsInfWithSign = rewriter.create<CopySignOp>(
loc, rewriter.create<SelectOp>(loc, lhsImagInfinite, one, zero),
lhsImag);
Value lhsRealIsInfWithSignTimesRhsReal =
rewriter.create<MulFOp>(loc, lhsRealIsInfWithSign, rhsReal);
Value lhsImagIsInfWithSignTimesRhsImag =
rewriter.create<MulFOp>(loc, lhsImagIsInfWithSign, rhsImag);
Value resultReal3 = rewriter.create<MulFOp>(
loc, inf,
rewriter.create<AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal,
lhsImagIsInfWithSignTimesRhsImag));
Value lhsRealIsInfWithSignTimesRhsImag =
rewriter.create<MulFOp>(loc, lhsRealIsInfWithSign, rhsImag);
Value lhsImagIsInfWithSignTimesRhsReal =
rewriter.create<MulFOp>(loc, lhsImagIsInfWithSign, rhsReal);
Value resultImag3 = rewriter.create<MulFOp>(
loc, inf,
rewriter.create<SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal,
lhsRealIsInfWithSignTimesRhsImag));
// Case 3: Finite numerator, infinite denominator.
Value lhsRealFinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, lhsRealAbs, inf);
Value lhsImagFinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, lhsImagAbs, inf);
Value lhsFinite = rewriter.create<AndOp>(loc, lhsRealFinite, lhsImagFinite);
Value rhsRealInfinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagInfinite =
rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsInfinite =
rewriter.create<OrOp>(loc, rhsRealInfinite, rhsImagInfinite);
Value finiteNumInfiniteDenom =
rewriter.create<AndOp>(loc, lhsFinite, rhsInfinite);
Value rhsRealIsInfWithSign = rewriter.create<CopySignOp>(
loc, rewriter.create<SelectOp>(loc, rhsRealInfinite, one, zero),
rhsReal);
Value rhsImagIsInfWithSign = rewriter.create<CopySignOp>(
loc, rewriter.create<SelectOp>(loc, rhsImagInfinite, one, zero),
rhsImag);
Value rhsRealIsInfWithSignTimesLhsReal =
rewriter.create<MulFOp>(loc, lhsReal, rhsRealIsInfWithSign);
Value rhsImagIsInfWithSignTimesLhsImag =
rewriter.create<MulFOp>(loc, lhsImag, rhsImagIsInfWithSign);
Value resultReal4 = rewriter.create<MulFOp>(
loc, zero,
rewriter.create<AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal,
rhsImagIsInfWithSignTimesLhsImag));
Value rhsRealIsInfWithSignTimesLhsImag =
rewriter.create<MulFOp>(loc, lhsImag, rhsRealIsInfWithSign);
Value rhsImagIsInfWithSignTimesLhsReal =
rewriter.create<MulFOp>(loc, lhsReal, rhsImagIsInfWithSign);
Value resultImag4 = rewriter.create<MulFOp>(
loc, zero,
rewriter.create<SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag,
rhsImagIsInfWithSignTimesLhsReal));
Value realAbsSmallerThanImagAbs = rewriter.create<CmpFOp>(
loc, CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs);
Value resultReal = rewriter.create<SelectOp>(loc, realAbsSmallerThanImagAbs,
resultReal1, resultReal2);
Value resultImag = rewriter.create<SelectOp>(loc, realAbsSmallerThanImagAbs,
resultImag1, resultImag2);
Value resultRealSpecialCase3 = rewriter.create<SelectOp>(
loc, finiteNumInfiniteDenom, resultReal4, resultReal);
Value resultImagSpecialCase3 = rewriter.create<SelectOp>(
loc, finiteNumInfiniteDenom, resultImag4, resultImag);
Value resultRealSpecialCase2 = rewriter.create<SelectOp>(
loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3);
Value resultImagSpecialCase2 = rewriter.create<SelectOp>(
loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3);
Value resultRealSpecialCase1 = rewriter.create<SelectOp>(
loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2);
Value resultImagSpecialCase1 = rewriter.create<SelectOp>(
loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2);
Value resultRealIsNaN =
rewriter.create<CmpFOp>(loc, CmpFPredicate::UNO, resultReal, zero);
Value resultImagIsNaN =
rewriter.create<CmpFOp>(loc, CmpFPredicate::UNO, resultImag, zero);
Value resultIsNaN =
rewriter.create<AndOp>(loc, resultRealIsNaN, resultImagIsNaN);
Value resultRealWithSpecialCases = rewriter.create<SelectOp>(
loc, resultIsNaN, resultRealSpecialCase1, resultReal);
Value resultImagWithSpecialCases = rewriter.create<SelectOp>(
loc, resultIsNaN, resultImagSpecialCase1, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(
op, type, resultRealWithSpecialCases, resultImagWithSpecialCases);
return success();
}
};
} // namespace
void mlir::populateComplexToStandardConversionPatterns(
RewritePatternSet &patterns) {
patterns.add<AbsOpConversion,
ComparisonOpConversion<complex::EqualOp, CmpFPredicate::OEQ>,
ComparisonOpConversion<complex::NotEqualOp, CmpFPredicate::UNE>>(
patterns.getContext());
ComparisonOpConversion<complex::NotEqualOp, CmpFPredicate::UNE>,
DivOpConversion>(patterns.getContext());
}
namespace {
@ -103,7 +312,8 @@ void ConvertComplexToStandardPass::runOnFunction() {
ConversionTarget target(getContext());
target.addLegalDialect<StandardOpsDialect, math::MathDialect,
complex::ComplexDialect>();
target.addIllegalOp<complex::AbsOp, complex::EqualOp, complex::NotEqualOp>();
target.addIllegalOp<complex::AbsOp, complex::DivOp, complex::EqualOp,
complex::NotEqualOp>();
if (failed(applyPartialConversion(function, target, std::move(patterns))))
signalPassFailure();
}

View File

@ -14,6 +14,115 @@ func @complex_abs(%arg: complex<f32>) -> f32 {
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32
// CHECK-LABEL: func @complex_div
// CHECK-SAME: (%[[LHS:.*]]: complex<f32>, %[[RHS:.*]]: complex<f32>)
func @complex_div(%lhs: complex<f32>, %rhs: complex<f32>) -> complex<f32> {
%div = complex.div %lhs, %rhs : complex<f32>
return %div : complex<f32>
}
// CHECK: %[[LHS_REAL:.*]] = complex.re %[[LHS]] : complex<f32>
// CHECK: %[[LHS_IMAG:.*]] = complex.im %[[LHS]] : complex<f32>
// CHECK: %[[RHS_REAL:.*]] = complex.re %[[RHS]] : complex<f32>
// CHECK: %[[RHS_IMAG:.*]] = complex.im %[[RHS]] : complex<f32>
// CHECK: %[[RHS_REAL_IMAG_RATIO:.*]] = divf %[[RHS_REAL]], %[[RHS_IMAG]] : f32
// CHECK: %[[RHS_REAL_TIMES_RHS_REAL_IMAG_RATIO:.*]] = mulf %[[RHS_REAL_IMAG_RATIO]], %[[RHS_REAL]] : f32
// CHECK: %[[RHS_REAL_IMAG_DENOM:.*]] = addf %[[RHS_IMAG]], %[[RHS_REAL_TIMES_RHS_REAL_IMAG_RATIO]] : f32
// CHECK: %[[LHS_REAL_TIMES_RHS_REAL_IMAG_RATIO:.*]] = mulf %[[LHS_REAL]], %[[RHS_REAL_IMAG_RATIO]] : f32
// CHECK: %[[REAL_NUMERATOR_1:.*]] = addf %[[LHS_REAL_TIMES_RHS_REAL_IMAG_RATIO]], %[[LHS_IMAG]] : f32
// CHECK: %[[RESULT_REAL_1:.*]] = divf %[[REAL_NUMERATOR_1]], %[[RHS_REAL_IMAG_DENOM]] : f32
// CHECK: %[[LHS_IMAG_TIMES_RHS_REAL_IMAG_RATIO:.*]] = mulf %[[LHS_IMAG]], %[[RHS_REAL_IMAG_RATIO]] : f32
// CHECK: %[[IMAG_NUMERATOR_1:.*]] = subf %[[LHS_IMAG_TIMES_RHS_REAL_IMAG_RATIO]], %[[LHS_REAL]] : f32
// CHECK: %[[RESULT_IMAG_1:.*]] = divf %[[IMAG_NUMERATOR_1]], %[[RHS_REAL_IMAG_DENOM]] : f32
// CHECK: %[[RHS_IMAG_REAL_RATIO:.*]] = divf %[[RHS_IMAG]], %[[RHS_REAL]] : f32
// CHECK: %[[RHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO:.*]] = mulf %[[RHS_IMAG_REAL_RATIO]], %[[RHS_IMAG]] : f32
// CHECK: %[[RHS_IMAG_REAL_DENOM:.*]] = addf %[[RHS_REAL]], %[[RHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO]] : f32
// CHECK: %[[LHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO:.*]] = mulf %[[LHS_IMAG]], %[[RHS_IMAG_REAL_RATIO]] : f32
// CHECK: %[[REAL_NUMERATOR_2:.*]] = addf %[[LHS_REAL]], %[[LHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO]] : f32
// CHECK: %[[RESULT_REAL_2:.*]] = divf %[[REAL_NUMERATOR_2]], %[[RHS_IMAG_REAL_DENOM]] : f32
// CHECK: %[[LHS_REAL_TIMES_RHS_IMAG_REAL_RATIO:.*]] = mulf %[[LHS_REAL]], %[[RHS_IMAG_REAL_RATIO]] : f32
// CHECK: %[[IMAG_NUMERATOR_2:.*]] = subf %[[LHS_IMAG]], %[[LHS_REAL_TIMES_RHS_IMAG_REAL_RATIO]] : f32
// CHECK: %[[RESULT_IMAG_2:.*]] = divf %[[IMAG_NUMERATOR_2]], %[[RHS_IMAG_REAL_DENOM]] : f32
// Case 1. Zero denominator, numerator contains at most one NaN value.
// CHECK: %[[ZERO:.*]] = constant 0.000000e+00 : f32
// CHECK: %[[RHS_REAL_ABS:.*]] = absf %[[RHS_REAL]] : f32
// CHECK: %[[RHS_REAL_ABS_IS_ZERO:.*]] = cmpf oeq, %[[RHS_REAL_ABS]], %[[ZERO]] : f32
// CHECK: %[[RHS_IMAG_ABS:.*]] = absf %[[RHS_IMAG]] : f32
// CHECK: %[[RHS_IMAG_ABS_IS_ZERO:.*]] = cmpf oeq, %[[RHS_IMAG_ABS]], %[[ZERO]] : f32
// CHECK: %[[LHS_REAL_IS_NOT_NAN:.*]] = cmpf ord, %[[LHS_REAL]], %[[ZERO]] : f32
// CHECK: %[[LHS_IMAG_IS_NOT_NAN:.*]] = cmpf ord, %[[LHS_IMAG]], %[[ZERO]] : f32
// CHECK: %[[LHS_CONTAINS_NOT_NAN_VALUE:.*]] = or %[[LHS_REAL_IS_NOT_NAN]], %[[LHS_IMAG_IS_NOT_NAN]] : i1
// CHECK: %[[RHS_IS_ZERO:.*]] = and %[[RHS_REAL_ABS_IS_ZERO]], %[[RHS_IMAG_ABS_IS_ZERO]] : i1
// CHECK: %[[RESULT_IS_INFINITY:.*]] = and %[[LHS_CONTAINS_NOT_NAN_VALUE]], %[[RHS_IS_ZERO]] : i1
// CHECK: %[[INF:.*]] = constant 0x7F800000 : f32
// CHECK: %[[INF_WITH_SIGN_OF_RHS_REAL:.*]] = copysign %[[INF]], %[[RHS_REAL]] : f32
// CHECK: %[[INFINITY_RESULT_REAL:.*]] = mulf %[[INF_WITH_SIGN_OF_RHS_REAL]], %[[LHS_REAL]] : f32
// CHECK: %[[INFINITY_RESULT_IMAG:.*]] = mulf %[[INF_WITH_SIGN_OF_RHS_REAL]], %[[LHS_IMAG]] : f32
// Case 2. Infinite numerator, finite denominator.
// CHECK: %[[RHS_REAL_FINITE:.*]] = cmpf one, %[[RHS_REAL_ABS]], %[[INF]] : f32
// CHECK: %[[RHS_IMAG_FINITE:.*]] = cmpf one, %[[RHS_IMAG_ABS]], %[[INF]] : f32
// CHECK: %[[RHS_IS_FINITE:.*]] = and %[[RHS_REAL_FINITE]], %[[RHS_IMAG_FINITE]] : i1
// CHECK: %[[LHS_REAL_ABS:.*]] = absf %[[LHS_REAL]] : f32
// CHECK: %[[LHS_REAL_INFINITE:.*]] = cmpf oeq, %[[LHS_REAL_ABS]], %[[INF]] : f32
// CHECK: %[[LHS_IMAG_ABS:.*]] = absf %[[LHS_IMAG]] : f32
// CHECK: %[[LHS_IMAG_INFINITE:.*]] = cmpf oeq, %[[LHS_IMAG_ABS]], %[[INF]] : f32
// CHECK: %[[LHS_IS_INFINITE:.*]] = or %[[LHS_REAL_INFINITE]], %[[LHS_IMAG_INFINITE]] : i1
// CHECK: %[[INF_NUM_FINITE_DENOM:.*]] = and %[[LHS_IS_INFINITE]], %[[RHS_IS_FINITE]] : i1
// CHECK: %[[ONE:.*]] = constant 1.000000e+00 : f32
// CHECK: %[[LHS_REAL_IS_INF:.*]] = select %[[LHS_REAL_INFINITE]], %[[ONE]], %[[ZERO]] : f32
// CHECK: %[[LHS_REAL_IS_INF_WITH_SIGN:.*]] = copysign %[[LHS_REAL_IS_INF]], %[[LHS_REAL]] : f32
// CHECK: %[[LHS_IMAG_IS_INF:.*]] = select %[[LHS_IMAG_INFINITE]], %[[ONE]], %[[ZERO]] : f32
// CHECK: %[[LHS_IMAG_IS_INF_WITH_SIGN:.*]] = copysign %[[LHS_IMAG_IS_INF]], %[[LHS_IMAG]] : f32
// CHECK: %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_REAL:.*]] = mulf %[[LHS_REAL_IS_INF_WITH_SIGN]], %[[RHS_REAL]] : f32
// CHECK: %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_IMAG:.*]] = mulf %[[LHS_IMAG_IS_INF_WITH_SIGN]], %[[RHS_IMAG]] : f32
// CHECK: %[[INF_MULTIPLICATOR_1:.*]] = addf %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_REAL]], %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_IMAG]] : f32
// CHECK: %[[RESULT_REAL_3:.*]] = mulf %[[INF]], %[[INF_MULTIPLICATOR_1]] : f32
// CHECK: %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_IMAG:.*]] = mulf %[[LHS_REAL_IS_INF_WITH_SIGN]], %[[RHS_IMAG]] : f32
// CHECK: %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_REAL:.*]] = mulf %[[LHS_IMAG_IS_INF_WITH_SIGN]], %[[RHS_REAL]] : f32
// CHECK: %[[INF_MULTIPLICATOR_2:.*]] = subf %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_REAL]], %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_IMAG]] : f32
// CHECK: %[[RESULT_IMAG_3:.*]] = mulf %[[INF]], %[[INF_MULTIPLICATOR_2]] : f32
// Case 3. Finite numerator, infinite denominator.
// CHECK: %[[LHS_REAL_FINITE:.*]] = cmpf one, %[[LHS_REAL_ABS]], %[[INF]] : f32
// CHECK: %[[LHS_IMAG_FINITE:.*]] = cmpf one, %[[LHS_IMAG_ABS]], %[[INF]] : f32
// CHECK: %[[LHS_IS_FINITE:.*]] = and %[[LHS_REAL_FINITE]], %[[LHS_IMAG_FINITE]] : i1
// CHECK: %[[RHS_REAL_INFINITE:.*]] = cmpf oeq, %[[RHS_REAL_ABS]], %[[INF]] : f32
// CHECK: %[[RHS_IMAG_INFINITE:.*]] = cmpf oeq, %[[RHS_IMAG_ABS]], %[[INF]] : f32
// CHECK: %[[RHS_IS_INFINITE:.*]] = or %[[RHS_REAL_INFINITE]], %[[RHS_IMAG_INFINITE]] : i1
// CHECK: %[[FINITE_NUM_INFINITE_DENOM:.*]] = and %[[LHS_IS_FINITE]], %[[RHS_IS_INFINITE]] : i1
// CHECK: %[[RHS_REAL_IS_INF:.*]] = select %[[RHS_REAL_INFINITE]], %[[ONE]], %[[ZERO]] : f32
// CHECK: %[[RHS_REAL_IS_INF_WITH_SIGN:.*]] = copysign %[[RHS_REAL_IS_INF]], %[[RHS_REAL]] : f32
// CHECK: %[[RHS_IMAG_IS_INF:.*]] = select %[[RHS_IMAG_INFINITE]], %[[ONE]], %[[ZERO]] : f32
// CHECK: %[[RHS_IMAG_IS_INF_WITH_SIGN:.*]] = copysign %[[RHS_IMAG_IS_INF]], %[[RHS_IMAG]] : f32
// CHECK: %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_REAL:.*]] = mulf %[[LHS_REAL]], %[[RHS_REAL_IS_INF_WITH_SIGN]] : f32
// CHECK: %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_IMAG:.*]] = mulf %[[LHS_IMAG]], %[[RHS_IMAG_IS_INF_WITH_SIGN]] : f32
// CHECK: %[[ZERO_MULTIPLICATOR_1:.*]] = addf %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_REAL]], %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_IMAG]] : f32
// CHECK: %[[RESULT_REAL_4:.*]] = mulf %[[ZERO]], %[[ZERO_MULTIPLICATOR_1]] : f32
// CHECK: %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_IMAG:.*]] = mulf %[[LHS_IMAG]], %[[RHS_REAL_IS_INF_WITH_SIGN]] : f32
// CHECK: %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_REAL:.*]] = mulf %[[LHS_REAL]], %[[RHS_IMAG_IS_INF_WITH_SIGN]] : f32
// CHECK: %[[ZERO_MULTIPLICATOR_2:.*]] = subf %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_IMAG]], %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_REAL]] : f32
// CHECK: %[[RESULT_IMAG_4:.*]] = mulf %[[ZERO]], %[[ZERO_MULTIPLICATOR_2]] : f32
// CHECK: %[[REAL_ABS_SMALLER_THAN_IMAG_ABS:.*]] = cmpf olt, %[[RHS_REAL_ABS]], %[[RHS_IMAG_ABS]] : f32
// CHECK: %[[RESULT_REAL:.*]] = select %[[REAL_ABS_SMALLER_THAN_IMAG_ABS]], %[[RESULT_REAL_1]], %[[RESULT_REAL_2]] : f32
// CHECK: %[[RESULT_IMAG:.*]] = select %[[REAL_ABS_SMALLER_THAN_IMAG_ABS]], %[[RESULT_IMAG_1]], %[[RESULT_IMAG_2]] : f32
// CHECK: %[[RESULT_REAL_SPECIAL_CASE_3:.*]] = select %[[FINITE_NUM_INFINITE_DENOM]], %[[RESULT_REAL_4]], %[[RESULT_REAL]] : f32
// CHECK: %[[RESULT_IMAG_SPECIAL_CASE_3:.*]] = select %[[FINITE_NUM_INFINITE_DENOM]], %[[RESULT_IMAG_4]], %[[RESULT_IMAG]] : f32
// CHECK: %[[RESULT_REAL_SPECIAL_CASE_2:.*]] = select %[[INF_NUM_FINITE_DENOM]], %[[RESULT_REAL_3]], %[[RESULT_REAL_SPECIAL_CASE_3]] : f32
// CHECK: %[[RESULT_IMAG_SPECIAL_CASE_2:.*]] = select %[[INF_NUM_FINITE_DENOM]], %[[RESULT_IMAG_3]], %[[RESULT_IMAG_SPECIAL_CASE_3]] : f32
// CHECK: %[[RESULT_REAL_SPECIAL_CASE_1:.*]] = select %[[RESULT_IS_INFINITY]], %[[INFINITY_RESULT_REAL]], %[[RESULT_REAL_SPECIAL_CASE_2]] : f32
// CHECK: %[[RESULT_IMAG_SPECIAL_CASE_1:.*]] = select %[[RESULT_IS_INFINITY]], %[[INFINITY_RESULT_IMAG]], %[[RESULT_IMAG_SPECIAL_CASE_2]] : f32
// CHECK: %[[RESULT_REAL_IS_NAN:.*]] = cmpf uno, %[[RESULT_REAL]], %[[ZERO]] : f32
// CHECK: %[[RESULT_IMAG_IS_NAN:.*]] = cmpf uno, %[[RESULT_IMAG]], %[[ZERO]] : f32
// CHECK: %[[RESULT_IS_NAN:.*]] = and %[[RESULT_REAL_IS_NAN]], %[[RESULT_IMAG_IS_NAN]] : i1
// CHECK: %[[RESULT_REAL_WITH_SPECIAL_CASES:.*]] = select %[[RESULT_IS_NAN]], %[[RESULT_REAL_SPECIAL_CASE_1]], %[[RESULT_REAL]] : f32
// CHECK: %[[RESULT_IMAG_WITH_SPECIAL_CASES:.*]] = select %[[RESULT_IS_NAN]], %[[RESULT_IMAG_SPECIAL_CASE_1]], %[[RESULT_IMAG]] : f32
// CHECK: %[[RESULT:.*]] = complex.create %[[RESULT_REAL_WITH_SPECIAL_CASES]], %[[RESULT_IMAG_WITH_SPECIAL_CASES]] : complex<f32>
// CHECK: return %[[RESULT]] : complex<f32>
// CHECK-LABEL: func @complex_eq
// CHECK-SAME: %[[LHS:.*]]: complex<f32>, %[[RHS:.*]]: complex<f32>
func @complex_eq(%lhs: complex<f32>, %rhs: complex<f32>) -> i1 {