forked from OSchip/llvm-project
NFC: Fix remaining usages of MulOp as matrix multiplication.
MulOp now represents an element-wise multiplication instead of a matrix multiplication. PiperOrigin-RevId: 275886774
This commit is contained in:
parent
b74af4aa5c
commit
941a1c4332
|
@ -177,26 +177,7 @@ static void buildMulOp(mlir::Builder *builder, mlir::OperationState &state,
|
|||
|
||||
/// Infer the output shape of the MulOp, this is required by the shape inference
|
||||
/// interface.
|
||||
void MulOp::inferShapes() {
|
||||
auto lhs = getOperand(0)->getType().cast<RankedTensorType>();
|
||||
auto rhs = getOperand(1)->getType().cast<RankedTensorType>();
|
||||
auto lhsRank = lhs.getShape().size();
|
||||
auto rhsRank = rhs.getShape().size();
|
||||
if (lhsRank != rhsRank)
|
||||
return;
|
||||
|
||||
SmallVector<int64_t, 2> dims;
|
||||
if (lhsRank == 1) {
|
||||
// dot product, result shape is <1>
|
||||
dims.push_back(1);
|
||||
} else if (lhsRank == 2) {
|
||||
dims.push_back(lhs.getShape()[0]);
|
||||
dims.push_back(rhs.getShape()[1]);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
getResult()->setType(RankedTensorType::get(dims, lhs.getElementType()));
|
||||
}
|
||||
void MulOp::inferShapes() { getResult()->setType(getOperand(0)->getType()); }
|
||||
|
||||
static mlir::LogicalResult verify(ReturnOp op) {
|
||||
// We know that the parent operation is a function, because of the 'HasParent'
|
||||
|
|
|
@ -177,26 +177,7 @@ static void buildMulOp(mlir::Builder *builder, mlir::OperationState &state,
|
|||
|
||||
/// Infer the output shape of the MulOp, this is required by the shape inference
|
||||
/// interface.
|
||||
void MulOp::inferShapes() {
|
||||
auto lhs = getOperand(0)->getType().cast<RankedTensorType>();
|
||||
auto rhs = getOperand(1)->getType().cast<RankedTensorType>();
|
||||
auto lhsRank = lhs.getShape().size();
|
||||
auto rhsRank = rhs.getShape().size();
|
||||
if (lhsRank != rhsRank)
|
||||
return;
|
||||
|
||||
SmallVector<int64_t, 2> dims;
|
||||
if (lhsRank == 1) {
|
||||
// dot product, result shape is <1>
|
||||
dims.push_back(1);
|
||||
} else if (lhsRank == 2) {
|
||||
dims.push_back(lhs.getShape()[0]);
|
||||
dims.push_back(rhs.getShape()[1]);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
getResult()->setType(RankedTensorType::get(dims, lhs.getElementType()));
|
||||
}
|
||||
void MulOp::inferShapes() { getResult()->setType(getOperand(0)->getType()); }
|
||||
|
||||
static mlir::LogicalResult verify(ReturnOp op) {
|
||||
// We know that the parent operation is a function, because of the 'HasParent'
|
||||
|
|
|
@ -177,26 +177,7 @@ static void buildMulOp(mlir::Builder *builder, mlir::OperationState &state,
|
|||
|
||||
/// Infer the output shape of the MulOp, this is required by the shape inference
|
||||
/// interface.
|
||||
void MulOp::inferShapes() {
|
||||
auto lhs = getOperand(0)->getType().cast<RankedTensorType>();
|
||||
auto rhs = getOperand(1)->getType().cast<RankedTensorType>();
|
||||
auto lhsRank = lhs.getShape().size();
|
||||
auto rhsRank = rhs.getShape().size();
|
||||
if (lhsRank != rhsRank)
|
||||
return;
|
||||
|
||||
SmallVector<int64_t, 2> dims;
|
||||
if (lhsRank == 1) {
|
||||
// dot product, result shape is <1>
|
||||
dims.push_back(1);
|
||||
} else if (lhsRank == 2) {
|
||||
dims.push_back(lhs.getShape()[0]);
|
||||
dims.push_back(rhs.getShape()[1]);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
getResult()->setType(RankedTensorType::get(dims, lhs.getElementType()));
|
||||
}
|
||||
void MulOp::inferShapes() { getResult()->setType(getOperand(0)->getType()); }
|
||||
|
||||
static mlir::LogicalResult verify(ReturnOp op) {
|
||||
// We know that the parent operation is a function, because of the 'HasParent'
|
||||
|
|
|
@ -51,7 +51,7 @@ def main() {
|
|||
|
||||
# transpose() and print() are the only builtin, the following will transpose
|
||||
# b and perform an element-wise multiplication before printing the result.
|
||||
print(a * transpose(b));
|
||||
print(transpose(a) * transpose(b));
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -65,7 +65,7 @@ the previous example by adding a user-defined function:
|
|||
```Toy {.toy}
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -102,10 +102,12 @@ Module:
|
|||
Args: [a, b]
|
||||
Block {
|
||||
Return
|
||||
BinOp: * @test/ast.toy:6:12
|
||||
var: a @test/ast.toy:6:10
|
||||
Call 'transpose' [ @test/ast.toy:6:14
|
||||
var: b @test/ast.toy:6:24
|
||||
BinOp: * @test/ast.toy:6:25
|
||||
Call 'transpose' [ @test/ast.toy:6:10
|
||||
var: a @test/ast.toy:6:20
|
||||
]
|
||||
Call 'transpose' [ @test/ast.toy:6:25
|
||||
var: b @test/ast.toy:6:35
|
||||
]
|
||||
} // Block
|
||||
Function
|
||||
|
|
|
@ -502,7 +502,7 @@ example:
|
|||
```.toy
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -518,23 +518,23 @@ Results in the following IR:
|
|||
|
||||
```mlir
|
||||
module {
|
||||
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64>
|
||||
attributes {toy.generic} {
|
||||
%0 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64> loc("test/codegen.toy":3:14)
|
||||
%1 = "toy.mul"(%arg0, %0) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64> loc("test/codegen.toy":3:14)
|
||||
"toy.return"(%1) : (tensor<*xf64>) -> () loc("test/codegen.toy":3:3)
|
||||
} loc("test/codegen.toy":2:1)
|
||||
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
|
||||
%0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64> loc("test/codegen.toy":5:10)
|
||||
%1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64> loc("test/codegen.toy":5:25)
|
||||
%2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64> loc("test/codegen.toy":5:25)
|
||||
"toy.return"(%2) : (tensor<*xf64>) -> () loc("test/codegen.toy":5:3)
|
||||
} loc("test/codegen.toy":4:1)
|
||||
func @main() {
|
||||
%0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64> loc("test/codegen.toy":7:17)
|
||||
%1 = "toy.reshape"(%0) : (tensor<2x3xf64>) -> tensor<2x3xf64> loc("test/codegen.toy":7:3)
|
||||
%2 = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64> loc("test/codegen.toy":8:17)
|
||||
%3 = "toy.reshape"(%2) : (tensor<6xf64>) -> tensor<2x3xf64> loc("test/codegen.toy":8:3)
|
||||
%4 = "toy.generic_call"(%1, %3) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/codegen.toy":9:11)
|
||||
%5 = "toy.generic_call"(%3, %1) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/codegen.toy":10:11)
|
||||
"toy.print"(%5) : (tensor<*xf64>) -> () loc("test/codegen.toy":11:3)
|
||||
"toy.return"() : () -> () loc("test/codegen.toy":6:1)
|
||||
} loc("test/codegen.toy":6:1)
|
||||
} loc("test/codegen.toy"0:0)
|
||||
%0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64> loc("test/codegen.toy":9:17)
|
||||
%1 = "toy.reshape"(%0) : (tensor<2x3xf64>) -> tensor<2x3xf64> loc("test/codegen.toy":9:3)
|
||||
%2 = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64> loc("test/codegen.toy":10:17)
|
||||
%3 = "toy.reshape"(%2) : (tensor<6xf64>) -> tensor<2x3xf64> loc("test/codegen.toy":10:3)
|
||||
%4 = "toy.generic_call"(%1, %3) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/codegen.toy":11:11)
|
||||
%5 = "toy.generic_call"(%3, %1) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/codegen.toy":12:11)
|
||||
"toy.print"(%5) : (tensor<*xf64>) -> () loc("test/codegen.toy":13:3)
|
||||
"toy.return"() : () -> () loc("test/codegen.toy":8:1)
|
||||
} loc("test/codegen.toy":8:1)
|
||||
} loc("test/codegen.toy":0:0)
|
||||
```
|
||||
|
||||
You can build `toyc-ch2` and try yourself: `toyc-ch2 test/codegen.toy -emit=mlir
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -35,10 +35,12 @@ def main() {
|
|||
# CHECK-NEXT: Params: [a, b]
|
||||
# CHECK-NEXT: Block {
|
||||
# CHECK-NEXT: Return
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:24
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:20
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:35
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: } // Block
|
||||
# CHECK-NEXT: Function
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -35,10 +35,12 @@ def main() {
|
|||
# CHECK-NEXT: Params: [a, b]
|
||||
# CHECK-NEXT: Block {
|
||||
# CHECK-NEXT: Return
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:24
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:20
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:35
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: } // Block
|
||||
# CHECK-NEXT: Function
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -14,18 +14,18 @@ def main() {
|
|||
}
|
||||
|
||||
# CHECK-LABEL: func @multiply_transpose(
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>)
|
||||
# CHECK-NEXT: attributes {toy.generic} {
|
||||
# CHECK-NEXT: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.mul"([[VAL_0]], [[VAL_2]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_3]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_4]]) : (tensor<*xf64>) -> ()
|
||||
|
||||
# CHECK-LABEL: func @main() {
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.reshape"([[VAL_4]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.reshape"([[VAL_6]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.generic_call"([[VAL_5]], [[VAL_7]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_7]], [[VAL_5]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_9]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-LABEL: func @main()
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.reshape"([[VAL_5]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.reshape"([[VAL_7]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_6]], [[VAL_8]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_10:%.*]] = "toy.generic_call"([[VAL_8]], [[VAL_6]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_10]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-NEXT: "toy.return"() : () -> ()
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -35,10 +35,12 @@ def main() {
|
|||
# CHECK-NEXT: Params: [a, b]
|
||||
# CHECK-NEXT: Block {
|
||||
# CHECK-NEXT: Return
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:24
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:20
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:35
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: } // Block
|
||||
# CHECK-NEXT: Function
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -14,18 +14,18 @@ def main() {
|
|||
}
|
||||
|
||||
# CHECK-LABEL: func @multiply_transpose(
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>)
|
||||
# CHECK-NEXT: attributes {toy.generic} {
|
||||
# CHECK-NEXT: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.mul"([[VAL_0]], [[VAL_2]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_3]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_4]]) : (tensor<*xf64>) -> ()
|
||||
|
||||
# CHECK-LABEL: func @main() {
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.reshape"([[VAL_4]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.reshape"([[VAL_6]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.generic_call"([[VAL_5]], [[VAL_7]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_7]], [[VAL_5]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_9]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-LABEL: func @main()
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.reshape"([[VAL_5]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.reshape"([[VAL_7]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_6]], [[VAL_8]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_10:%.*]] = "toy.generic_call"([[VAL_8]], [[VAL_6]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_10]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-NEXT: "toy.return"() : () -> ()
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -35,10 +35,12 @@ def main() {
|
|||
# CHECK-NEXT: Params: [a, b]
|
||||
# CHECK-NEXT: Block {
|
||||
# CHECK-NEXT: Return
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:24
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:20
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:35
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: } // Block
|
||||
# CHECK-NEXT: Function
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -14,18 +14,18 @@ def main() {
|
|||
}
|
||||
|
||||
# CHECK-LABEL: func @multiply_transpose(
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>)
|
||||
# CHECK-NEXT: attributes {toy.generic} {
|
||||
# CHECK-NEXT: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.mul"([[VAL_0]], [[VAL_2]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_3]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_4]]) : (tensor<*xf64>) -> ()
|
||||
|
||||
# CHECK-LABEL: func @main() {
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.reshape"([[VAL_4]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.reshape"([[VAL_6]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.generic_call"([[VAL_5]], [[VAL_7]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_7]], [[VAL_5]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_9]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-LABEL: func @main()
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.reshape"([[VAL_5]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.reshape"([[VAL_7]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_6]], [[VAL_8]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_10:%.*]] = "toy.generic_call"([[VAL_8]], [[VAL_6]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_10]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-NEXT: "toy.return"() : () -> ()
|
||||
|
|
|
@ -3,9 +3,10 @@
|
|||
// Check the result of inlining+shape inference on an input module.
|
||||
|
||||
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
|
||||
%0 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%1 = "toy.mul"(%arg0, %0) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
"toy.return"(%1) : (tensor<*xf64>) -> ()
|
||||
%0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
"toy.return"(%2) : (tensor<*xf64>) -> ()
|
||||
}
|
||||
func @main() {
|
||||
%0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
|
@ -21,10 +22,11 @@ func @main() {
|
|||
// CHECK-NOT: func @multiply_transpose
|
||||
// CHECK-NOT: tensor<*xf64>
|
||||
|
||||
// CHECK-LABEL: func @main() {
|
||||
// CHECK-LABEL: func @main()
|
||||
// CHECK: [[VAL_0:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
// CHECK: [[VAL_1:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
// CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_3:%.*]] = "toy.mul"([[VAL_1]], [[VAL_2]]) : (tensor<2x3xf64>, tensor<3x2xf64>) -> tensor<2x2xf64>
|
||||
// CHECK: "toy.print"([[VAL_3]]) : (tensor<2x2xf64>) -> ()
|
||||
// CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_3:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: "toy.print"([[VAL_4]]) : (tensor<3x2xf64>) -> ()
|
||||
// CHECK: "toy.return"() : () -> ()
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -35,10 +35,12 @@ def main() {
|
|||
# CHECK-NEXT: Params: [a, b]
|
||||
# CHECK-NEXT: Block {
|
||||
# CHECK-NEXT: Return
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:24
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:20
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:35
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: } // Block
|
||||
# CHECK-NEXT: Function
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -14,18 +14,18 @@ def main() {
|
|||
}
|
||||
|
||||
# CHECK-LABEL: func @multiply_transpose(
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>)
|
||||
# CHECK-NEXT: attributes {toy.generic} {
|
||||
# CHECK-NEXT: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.mul"([[VAL_0]], [[VAL_2]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_3]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_4]]) : (tensor<*xf64>) -> ()
|
||||
|
||||
# CHECK-LABEL: func @main() {
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.reshape"([[VAL_4]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.reshape"([[VAL_6]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.generic_call"([[VAL_5]], [[VAL_7]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_7]], [[VAL_5]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_9]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-LABEL: func @main()
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.reshape"([[VAL_5]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.reshape"([[VAL_7]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_6]], [[VAL_8]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_10:%.*]] = "toy.generic_call"([[VAL_8]], [[VAL_6]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_10]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-NEXT: "toy.return"() : () -> ()
|
||||
|
|
|
@ -3,9 +3,10 @@
|
|||
// Check the result of inlining+shape inference on an input module.
|
||||
|
||||
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
|
||||
%0 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%1 = "toy.mul"(%arg0, %0) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
"toy.return"(%1) : (tensor<*xf64>) -> ()
|
||||
%0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
"toy.return"(%2) : (tensor<*xf64>) -> ()
|
||||
}
|
||||
func @main() {
|
||||
%0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
|
@ -21,10 +22,11 @@ func @main() {
|
|||
// CHECK-NOT: func @multiply_transpose
|
||||
// CHECK-NOT: tensor<*xf64>
|
||||
|
||||
// CHECK-LABEL: func @main() {
|
||||
// CHECK-LABEL: func @main()
|
||||
// CHECK: [[VAL_0:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
// CHECK: [[VAL_1:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
// CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_3:%.*]] = "toy.mul"([[VAL_1]], [[VAL_2]]) : (tensor<2x3xf64>, tensor<3x2xf64>) -> tensor<2x2xf64>
|
||||
// CHECK: "toy.print"([[VAL_3]]) : (tensor<2x2xf64>) -> ()
|
||||
// CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_3:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: "toy.print"([[VAL_4]]) : (tensor<3x2xf64>) -> ()
|
||||
// CHECK: "toy.return"() : () -> ()
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments.
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -35,10 +35,12 @@ def main() {
|
|||
# CHECK-NEXT: Params: [a, b]
|
||||
# CHECK-NEXT: Block {
|
||||
# CHECK-NEXT: Return
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:14
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:24
|
||||
# CHECK-NEXT: BinOp: * @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:10
|
||||
# CHECK-NEXT: var: a @{{.*}}ast.toy:5:20
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: Call 'transpose' [ @{{.*}}ast.toy:5:25
|
||||
# CHECK-NEXT: var: b @{{.*}}ast.toy:5:35
|
||||
# CHECK-NEXT: ]
|
||||
# CHECK-NEXT: } // Block
|
||||
# CHECK-NEXT: Function
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
# User defined generic function that operates on unknown shaped arguments
|
||||
def multiply_transpose(a, b) {
|
||||
return a * transpose(b);
|
||||
return transpose(a) * transpose(b);
|
||||
}
|
||||
|
||||
def main() {
|
||||
|
@ -14,18 +14,18 @@ def main() {
|
|||
}
|
||||
|
||||
# CHECK-LABEL: func @multiply_transpose(
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>)
|
||||
# CHECK-NEXT: attributes {toy.generic} {
|
||||
# CHECK-NEXT: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.mul"([[VAL_0]], [[VAL_2]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_3]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-SAME: [[VAL_0:%.*]]: tensor<*xf64>, [[VAL_1:%.*]]: tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.return"([[VAL_4]]) : (tensor<*xf64>) -> ()
|
||||
|
||||
# CHECK-LABEL: func @main() {
|
||||
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.reshape"([[VAL_4]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.reshape"([[VAL_6]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.generic_call"([[VAL_5]], [[VAL_7]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_7]], [[VAL_5]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_9]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-LABEL: func @main()
|
||||
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.reshape"([[VAL_5]]) : (tensor<2x3xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64>
|
||||
# CHECK-NEXT: [[VAL_8:%.*]] = "toy.reshape"([[VAL_7]]) : (tensor<6xf64>) -> tensor<2x3xf64>
|
||||
# CHECK-NEXT: [[VAL_9:%.*]] = "toy.generic_call"([[VAL_6]], [[VAL_8]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: [[VAL_10:%.*]] = "toy.generic_call"([[VAL_8]], [[VAL_6]]) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
||||
# CHECK-NEXT: "toy.print"([[VAL_10]]) : (tensor<*xf64>) -> ()
|
||||
# CHECK-NEXT: "toy.return"() : () -> ()
|
||||
|
|
|
@ -3,9 +3,10 @@
|
|||
// Check the result of inlining+shape inference on an input module.
|
||||
|
||||
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
|
||||
%0 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%1 = "toy.mul"(%arg0, %0) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
"toy.return"(%1) : (tensor<*xf64>) -> ()
|
||||
%0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
|
||||
%2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
|
||||
"toy.return"(%2) : (tensor<*xf64>) -> ()
|
||||
}
|
||||
func @main() {
|
||||
%0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
|
@ -21,10 +22,11 @@ func @main() {
|
|||
// CHECK-NOT: func @multiply_transpose
|
||||
// CHECK-NOT: tensor<*xf64>
|
||||
|
||||
// CHECK-LABEL: func @main() {
|
||||
// CHECK-LABEL: func @main()
|
||||
// CHECK: [[VAL_0:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
// CHECK: [[VAL_1:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
|
||||
// CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_3:%.*]] = "toy.mul"([[VAL_1]], [[VAL_2]]) : (tensor<2x3xf64>, tensor<3x2xf64>) -> tensor<2x2xf64>
|
||||
// CHECK: "toy.print"([[VAL_3]]) : (tensor<2x2xf64>) -> ()
|
||||
// CHECK: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_3:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: [[VAL_4:%.*]] = "toy.mul"([[VAL_2]], [[VAL_3]]) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
|
||||
// CHECK: "toy.print"([[VAL_4]]) : (tensor<3x2xf64>) -> ()
|
||||
// CHECK: "toy.return"() : () -> ()
|
||||
|
|
Loading…
Reference in New Issue