[IDF] Generalize IDFCalculator to be used with Clang's CFG

I'm currently working on a GSoC project that aims to improve the the bug reports
of the analyzer. The main heuristic I plan to use is to explain values that are
a control dependency of the bug location better.

01 bool b = messyComputation();
02 int i = 0;
03 if (b) // control dependency of the bug site, let's explain why we assume val
04        // to be true
05   10 / i; // warn: division by zero

Because of this, I'd like to generalize IDFCalculator so that I could use it for
Clang's CFG: D62883.

In detail:

* Rename IDFCalculator to IDFCalculatorBase, make it take a general CFG node
  type as a template argument rather then strictly BasicBlock (but preserve
  ForwardIDFCalculator and ReverseIDFCalculator)
* Move IDFCalculatorBase from llvm/include/llvm/Analysis to
  llvm/include/llvm/Support (but leave the BasicBlock variants in
  llvm/include/llvm/Analysis)
* clang-format the file since this patch messes up git blame anyways
* Change typedef to using
* Add the new type ChildrenGetterTy, and store an instance of it in
  IDFCalculatorBase. This is important because I'll have to specialize it for
  Clang's CFG to filter out nullpointer successors, similarly to D62507.

Differential Revision: https://reviews.llvm.org/D63389

llvm-svn: 364911
This commit is contained in:
Kristof Umann 2019-07-02 11:30:12 +00:00
parent bffd099d15
commit 9353421ecd
4 changed files with 279 additions and 181 deletions

View File

@ -5,96 +5,89 @@
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Compute iterated dominance frontiers using a linear time algorithm.
///
/// The algorithm used here is based on:
///
/// Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
/// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
/// Programming Languages
/// POPL '95. ACM, New York, NY, 62-73.
///
/// It has been modified to not explicitly use the DJ graph data structure and
/// to directly compute pruned SSA using per-variable liveness information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_IDF_H
#define LLVM_ANALYSIS_IDF_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFGDiff.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Support/GenericIteratedDominanceFrontier.h"
namespace llvm {
/// Determine the iterated dominance frontier, given a set of defining
/// blocks, and optionally, a set of live-in blocks.
///
/// In turn, the results can be used to place phi nodes.
///
/// This algorithm is a linear time computation of Iterated Dominance Frontiers,
/// pruned using the live-in set.
/// By default, liveness is not used to prune the IDF computation.
/// The template parameters should be either BasicBlock* or Inverse<BasicBlock
/// *>, depending on if you want the forward or reverse IDF.
template <class NodeTy, bool IsPostDom>
class IDFCalculator {
public:
IDFCalculator(DominatorTreeBase<BasicBlock, IsPostDom> &DT)
: DT(DT), GD(nullptr), useLiveIn(false) {}
class BasicBlock;
IDFCalculator(DominatorTreeBase<BasicBlock, IsPostDom> &DT,
const GraphDiff<BasicBlock *, IsPostDom> *GD)
: DT(DT), GD(GD), useLiveIn(false) {}
namespace IDFCalculatorDetail {
/// Give the IDF calculator the set of blocks in which the value is
/// defined. This is equivalent to the set of starting blocks it should be
/// calculating the IDF for (though later gets pruned based on liveness).
///
/// Note: This set *must* live for the entire lifetime of the IDF calculator.
void setDefiningBlocks(const SmallPtrSetImpl<BasicBlock *> &Blocks) {
DefBlocks = &Blocks;
}
/// Specialization for BasicBlock for the optional use of GraphDiff.
template <bool IsPostDom> struct ChildrenGetterTy<BasicBlock, IsPostDom> {
using NodeRef = BasicBlock *;
using ChildrenTy = SmallVector<BasicBlock *, 8>;
/// Give the IDF calculator the set of blocks in which the value is
/// live on entry to the block. This is used to prune the IDF calculation to
/// not include blocks where any phi insertion would be dead.
///
/// Note: This set *must* live for the entire lifetime of the IDF calculator.
void setLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &Blocks) {
LiveInBlocks = &Blocks;
useLiveIn = true;
ChildrenGetterTy() = default;
ChildrenGetterTy(const GraphDiff<BasicBlock *, IsPostDom> *GD) : GD(GD) {
assert(GD);
}
/// Reset the live-in block set to be empty, and tell the IDF
/// calculator to not use liveness anymore.
void resetLiveInBlocks() {
LiveInBlocks = nullptr;
useLiveIn = false;
}
ChildrenTy get(const NodeRef &N);
/// Calculate iterated dominance frontiers
///
/// This uses the linear-time phi algorithm based on DJ-graphs mentioned in
/// the file-level comment. It performs DF->IDF pruning using the live-in
/// set, to avoid computing the IDF for blocks where an inserted PHI node
/// would be dead.
void calculate(SmallVectorImpl<BasicBlock *> &IDFBlocks);
private:
DominatorTreeBase<BasicBlock, IsPostDom> &DT;
const GraphDiff<BasicBlock *, IsPostDom> *GD;
bool useLiveIn;
const SmallPtrSetImpl<BasicBlock *> *LiveInBlocks;
const SmallPtrSetImpl<BasicBlock *> *DefBlocks;
const GraphDiff<BasicBlock *, IsPostDom> *GD = nullptr;
};
typedef IDFCalculator<BasicBlock *, false> ForwardIDFCalculator;
typedef IDFCalculator<Inverse<BasicBlock *>, true> ReverseIDFCalculator;
} // end of namespace IDFCalculatorDetail
template <bool IsPostDom>
class IDFCalculator final : public IDFCalculatorBase<BasicBlock, IsPostDom> {
public:
using IDFCalculatorBase =
typename llvm::IDFCalculatorBase<BasicBlock, IsPostDom>;
using ChildrenGetterTy = typename IDFCalculatorBase::ChildrenGetterTy;
IDFCalculator(DominatorTreeBase<BasicBlock, IsPostDom> &DT)
: IDFCalculatorBase(DT) {}
IDFCalculator(DominatorTreeBase<BasicBlock, IsPostDom> &DT,
const GraphDiff<BasicBlock *, IsPostDom> *GD)
: IDFCalculatorBase(DT, ChildrenGetterTy(GD)) {
assert(GD);
}
};
using ForwardIDFCalculator = IDFCalculator<false>;
using ReverseIDFCalculator = IDFCalculator<true>;
//===----------------------------------------------------------------------===//
// Implementation.
//===----------------------------------------------------------------------===//
namespace IDFCalculatorDetail {
template <bool IsPostDom>
using BBChildrenGetterTy = ChildrenGetterTy<BasicBlock, IsPostDom>;
template <bool IsPostDom>
typename BBChildrenGetterTy<IsPostDom>::ChildrenTy
BBChildrenGetterTy<IsPostDom>::get(
const BBChildrenGetterTy<IsPostDom>::NodeRef &N) {
using OrderedNodeTy =
typename IDFCalculatorBase<BasicBlock, IsPostDom>::OrderedNodeTy;
if (!GD) {
auto Children = children<OrderedNodeTy>(N);
return {Children.begin(), Children.end()};
}
using SnapShotBBPairTy =
std::pair<const GraphDiff<BasicBlock *, IsPostDom> *, OrderedNodeTy>;
ChildrenTy Ret;
for (const auto &SnapShotBBPair : children<SnapShotBBPairTy>({GD, N}))
Ret.emplace_back(SnapShotBBPair.second);
return Ret;
}
} // end of namespace IDFCalculatorDetail
} // end of namespace llvm
#endif

View File

@ -0,0 +1,210 @@
//===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Compute iterated dominance frontiers using a linear time algorithm.
///
/// The algorithm used here is based on:
///
/// Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
/// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
/// Programming Languages
/// POPL '95. ACM, New York, NY, 62-73.
///
/// It has been modified to not explicitly use the DJ graph data structure and
/// to directly compute pruned SSA using per-variable liveness information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERIC_IDF_H
#define LLVM_SUPPORT_GENERIC_IDF_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/GenericDomTree.h"
#include <queue>
namespace llvm {
namespace IDFCalculatorDetail {
/// Generic utility class used for getting the children of a basic block.
/// May be specialized if, for example, one wouldn't like to return nullpointer
/// successors.
template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy {
using NodeRef = typename GraphTraits<NodeTy>::NodeRef;
using ChildrenTy = SmallVector<NodeRef, 8>;
ChildrenTy get(const NodeRef &N);
};
} // end of namespace IDFCalculatorDetail
/// Determine the iterated dominance frontier, given a set of defining
/// blocks, and optionally, a set of live-in blocks.
///
/// In turn, the results can be used to place phi nodes.
///
/// This algorithm is a linear time computation of Iterated Dominance Frontiers,
/// pruned using the live-in set.
/// By default, liveness is not used to prune the IDF computation.
/// The template parameters should be of a CFG block type.
template <class NodeTy, bool IsPostDom> class IDFCalculatorBase {
public:
using OrderedNodeTy =
typename std::conditional<IsPostDom, Inverse<NodeTy *>, NodeTy *>::type;
using ChildrenGetterTy =
IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>;
IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {}
IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT,
const ChildrenGetterTy &C)
: DT(DT), ChildrenGetter(C) {}
/// Give the IDF calculator the set of blocks in which the value is
/// defined. This is equivalent to the set of starting blocks it should be
/// calculating the IDF for (though later gets pruned based on liveness).
///
/// Note: This set *must* live for the entire lifetime of the IDF calculator.
void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
DefBlocks = &Blocks;
}
/// Give the IDF calculator the set of blocks in which the value is
/// live on entry to the block. This is used to prune the IDF calculation to
/// not include blocks where any phi insertion would be dead.
///
/// Note: This set *must* live for the entire lifetime of the IDF calculator.
void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
LiveInBlocks = &Blocks;
useLiveIn = true;
}
/// Reset the live-in block set to be empty, and tell the IDF
/// calculator to not use liveness anymore.
void resetLiveInBlocks() {
LiveInBlocks = nullptr;
useLiveIn = false;
}
/// Calculate iterated dominance frontiers
///
/// This uses the linear-time phi algorithm based on DJ-graphs mentioned in
/// the file-level comment. It performs DF->IDF pruning using the live-in
/// set, to avoid computing the IDF for blocks where an inserted PHI node
/// would be dead.
void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks);
private:
DominatorTreeBase<NodeTy, IsPostDom> &DT;
ChildrenGetterTy ChildrenGetter;
bool useLiveIn = false;
const SmallPtrSetImpl<NodeTy *> *LiveInBlocks;
const SmallPtrSetImpl<NodeTy *> *DefBlocks;
};
//===----------------------------------------------------------------------===//
// Implementation.
//===----------------------------------------------------------------------===//
namespace IDFCalculatorDetail {
template <class NodeTy, bool IsPostDom>
typename ChildrenGetterTy<NodeTy, IsPostDom>::ChildrenTy
ChildrenGetterTy<NodeTy, IsPostDom>::get(
const ChildrenGetterTy<NodeTy, IsPostDom>::NodeRef &N) {
using OrderedNodeTy =
typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy;
auto Children = children<OrderedNodeTy>(N);
return {Children.begin(), Children.end()};
};
} // end of namespace IDFCalculatorDetail
template <class NodeTy, bool IsPostDom>
void IDFCalculatorBase<NodeTy, IsPostDom>::calculate(
SmallVectorImpl<NodeTy *> &PHIBlocks) {
// Use a priority queue keyed on dominator tree level so that inserted nodes
// are handled from the bottom of the dominator tree upwards. We also augment
// the level with a DFS number to ensure that the blocks are ordered in a
// deterministic way.
using DomTreeNodePair =
std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>;
using IDFPriorityQueue =
std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
less_second>;
IDFPriorityQueue PQ;
DT.updateDFSNumbers();
for (NodeTy *BB : *DefBlocks) {
if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB))
PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())});
}
SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist;
SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedPQ;
SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedWorklist;
while (!PQ.empty()) {
DomTreeNodePair RootPair = PQ.top();
PQ.pop();
DomTreeNodeBase<NodeTy> *Root = RootPair.first;
unsigned RootLevel = RootPair.second.first;
// Walk all dominator tree children of Root, inspecting their CFG edges with
// targets elsewhere on the dominator tree. Only targets whose level is at
// most Root's level are added to the iterated dominance frontier of the
// definition set.
Worklist.clear();
Worklist.push_back(Root);
VisitedWorklist.insert(Root);
while (!Worklist.empty()) {
DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val();
NodeTy *BB = Node->getBlock();
// Succ is the successor in the direction we are calculating IDF, so it is
// successor for IDF, and predecessor for Reverse IDF.
auto DoWork = [&](NodeTy *Succ) {
DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ);
const unsigned SuccLevel = SuccNode->getLevel();
if (SuccLevel > RootLevel)
return;
if (!VisitedPQ.insert(SuccNode).second)
return;
NodeTy *SuccBB = SuccNode->getBlock();
if (useLiveIn && !LiveInBlocks->count(SuccBB))
return;
PHIBlocks.emplace_back(SuccBB);
if (!DefBlocks->count(SuccBB))
PQ.push(std::make_pair(
SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn())));
};
for (auto Succ : ChildrenGetter.get(BB))
DoWork(Succ);
for (auto DomChild : *Node) {
if (VisitedWorklist.insert(DomChild).second)
Worklist.push_back(DomChild);
}
}
}
}
} // end of namespace llvm
#endif

View File

@ -41,7 +41,6 @@ add_llvm_library(LLVMAnalysis
InstructionSimplify.cpp
Interval.cpp
IntervalPartition.cpp
IteratedDominanceFrontier.cpp
LazyBranchProbabilityInfo.cpp
LazyBlockFrequencyInfo.cpp
LazyCallGraph.cpp

View File

@ -1,104 +0,0 @@
//===- IteratedDominanceFrontier.cpp - Compute IDF ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Compute iterated dominance frontiers using a linear time algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include <queue>
namespace llvm {
template <class NodeTy, bool IsPostDom>
void IDFCalculator<NodeTy, IsPostDom>::calculate(
SmallVectorImpl<BasicBlock *> &PHIBlocks) {
// Use a priority queue keyed on dominator tree level so that inserted nodes
// are handled from the bottom of the dominator tree upwards. We also augment
// the level with a DFS number to ensure that the blocks are ordered in a
// deterministic way.
typedef std::pair<DomTreeNode *, std::pair<unsigned, unsigned>>
DomTreeNodePair;
typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
less_second> IDFPriorityQueue;
IDFPriorityQueue PQ;
DT.updateDFSNumbers();
for (BasicBlock *BB : *DefBlocks) {
if (DomTreeNode *Node = DT.getNode(BB))
PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())});
}
SmallVector<DomTreeNode *, 32> Worklist;
SmallPtrSet<DomTreeNode *, 32> VisitedPQ;
SmallPtrSet<DomTreeNode *, 32> VisitedWorklist;
while (!PQ.empty()) {
DomTreeNodePair RootPair = PQ.top();
PQ.pop();
DomTreeNode *Root = RootPair.first;
unsigned RootLevel = RootPair.second.first;
// Walk all dominator tree children of Root, inspecting their CFG edges with
// targets elsewhere on the dominator tree. Only targets whose level is at
// most Root's level are added to the iterated dominance frontier of the
// definition set.
Worklist.clear();
Worklist.push_back(Root);
VisitedWorklist.insert(Root);
while (!Worklist.empty()) {
DomTreeNode *Node = Worklist.pop_back_val();
BasicBlock *BB = Node->getBlock();
// Succ is the successor in the direction we are calculating IDF, so it is
// successor for IDF, and predecessor for Reverse IDF.
auto DoWork = [&](BasicBlock *Succ) {
DomTreeNode *SuccNode = DT.getNode(Succ);
const unsigned SuccLevel = SuccNode->getLevel();
if (SuccLevel > RootLevel)
return;
if (!VisitedPQ.insert(SuccNode).second)
return;
BasicBlock *SuccBB = SuccNode->getBlock();
if (useLiveIn && !LiveInBlocks->count(SuccBB))
return;
PHIBlocks.emplace_back(SuccBB);
if (!DefBlocks->count(SuccBB))
PQ.push(std::make_pair(
SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn())));
};
if (GD) {
for (auto Pair : children<
std::pair<const GraphDiff<BasicBlock *, IsPostDom> *, NodeTy>>(
{GD, BB}))
DoWork(Pair.second);
} else {
for (auto *Succ : children<NodeTy>(BB))
DoWork(Succ);
}
for (auto DomChild : *Node) {
if (VisitedWorklist.insert(DomChild).second)
Worklist.push_back(DomChild);
}
}
}
}
template class IDFCalculator<BasicBlock *, false>;
template class IDFCalculator<Inverse<BasicBlock *>, true>;
}