Generalize MaskedValueIsZero into a ComputeMaskedNonZeroBits function, which

is just as efficient as MVIZ and is also more general.

Fix a few minor bugs introduced in recent patches

llvm-svn: 26036
This commit is contained in:
Chris Lattner 2006-02-07 08:05:22 +00:00
parent c3ebf40031
commit 92a6865321
1 changed files with 53 additions and 44 deletions

View File

@ -405,65 +405,66 @@ static ConstantInt *SubOne(ConstantInt *C) {
ConstantInt::get(C->getType(), 1)));
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
/// ComputeMaskedNonZeroBits - Determine which of the bits specified in Mask are
/// not known to be zero and return them as a bitmask. The bits that we can
/// guarantee to be zero are returned as zero bits in the result.
static uint64_t ComputeMaskedNonZeroBits(Value *V, uint64_t Mask,
unsigned Depth = 0) {
// Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
// we cannot optimize based on the assumption that it is zero without changing
// it to be an explicit zero. If we don't change it to zero, other code could
// optimized based on the contradictory assumption that it is non-zero.
// Because instcombine aggressively folds operations with undef args anyway,
// this won't lose us code quality.
if (Mask == 0)
return true;
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V))
return (CI->getRawValue() & Mask) == 0;
if (Depth == 6) return false; // Limit search depth.
return CI->getRawValue() & Mask;
if (Depth == 6 || Mask == 0)
return Mask; // Limit search depth.
if (Instruction *I = dyn_cast<Instruction>(V)) {
switch (I->getOpcode()) {
case Instruction::And:
// (X & C1) & C2 == 0 iff C1 & C2 == 0.
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(I->getOperand(1)))
return MaskedValueIsZero(I->getOperand(0), CI->getRawValue() & Mask,
Depth+1);
return ComputeMaskedNonZeroBits(I->getOperand(0),
CI->getRawValue() & Mask, Depth+1);
// If either the LHS or the RHS are MaskedValueIsZero, the result is zero.
return MaskedValueIsZero(I->getOperand(1), Mask, Depth+1) ||
MaskedValueIsZero(I->getOperand(0), Mask, Depth+1);
Mask = ComputeMaskedNonZeroBits(I->getOperand(1), Mask, Depth+1);
Mask = ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
return Mask;
case Instruction::Or:
case Instruction::Xor:
// If the LHS and the RHS are MaskedValueIsZero, the result is also zero.
return MaskedValueIsZero(I->getOperand(1), Mask, Depth+1) &&
MaskedValueIsZero(I->getOperand(0), Mask, Depth+1);
// Any non-zero bits in the LHS or RHS are potentially non-zero in the
// result.
return ComputeMaskedNonZeroBits(I->getOperand(1), Mask, Depth+1) |
ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
case Instruction::Select:
// If the T and F values are MaskedValueIsZero, the result is also zero.
return MaskedValueIsZero(I->getOperand(2), Mask, Depth+1) &&
MaskedValueIsZero(I->getOperand(1), Mask, Depth+1);
// Any non-zero bits in the T or F values are potentially non-zero in the
// result.
return ComputeMaskedNonZeroBits(I->getOperand(2), Mask, Depth+1) |
ComputeMaskedNonZeroBits(I->getOperand(1), Mask, Depth+1);
case Instruction::Cast: {
const Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy == Type::BoolTy)
return (Mask & 1) == 0;
if (!SrcTy->isInteger()) return false;
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask & 1, Depth+1);
if (!SrcTy->isInteger()) return Mask;
// (cast <ty> X to int) & C2 == 0 iff <ty> could not have contained C2.
if (SrcTy->isUnsigned()) // Only handle zero ext.
return MaskedValueIsZero(I->getOperand(0),
Mask & SrcTy->getIntegralTypeMask(), Depth+1);
// If this is a noop or trunc cast, recurse.
if (SrcTy->getPrimitiveSizeInBits() >=
I->getType()->getPrimitiveSizeInBits())
return MaskedValueIsZero(I->getOperand(0),
Mask & SrcTy->getIntegralTypeMask(), Depth+1);
if (SrcTy->isUnsigned() || // Only handle zero ext/trunc/noop
SrcTy->getPrimitiveSizeInBits() >=
I->getType()->getPrimitiveSizeInBits()) {
Mask &= SrcTy->getIntegralTypeMask();
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
}
// FIXME: handle sext casts.
break;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
return MaskedValueIsZero(I->getOperand(0), Mask >> SA->getValue(),
Depth+1);
return ComputeMaskedNonZeroBits(I->getOperand(0),Mask >> SA->getValue(),
Depth+1);
break;
case Instruction::Shr:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
@ -471,13 +472,20 @@ static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
if (I->getType()->isUnsigned()) {
Mask <<= SA->getValue();
Mask &= I->getType()->getIntegralTypeMask();
return MaskedValueIsZero(I->getOperand(0), Mask, Depth+1);
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
}
break;
}
}
return false;
return Mask;
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
return ComputeMaskedNonZeroBits(V, Mask, Depth) == 0;
}
/// SimplifyDemandedBits - Look at V. At this point, we know that only the Mask
@ -493,7 +501,9 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t Mask,
// just set the Mask to all bits.
Mask = V->getType()->getIntegralTypeMask();
} else if (Mask == 0) { // Not demanding any bits from V.
return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
if (V != UndefValue::get(V->getType()))
return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
return false;
} else if (Depth == 6) { // Limit search depth.
return false;
}
@ -509,15 +519,14 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t Mask,
if (SimplifyDemandedBits(I->getOperand(0), RHS->getRawValue() & Mask,
Depth+1))
return true;
if (~Mask & RHS->getRawValue()) {
if (~Mask & RHS->getZExtValue()) {
// If this is producing any bits that are not needed, simplify the RHS.
if (I->getType()->isSigned()) {
int64_t Val = Mask & cast<ConstantSInt>(RHS)->getValue();
I->setOperand(1, ConstantSInt::get(I->getType(), Val));
} else {
uint64_t Val = Mask & cast<ConstantUInt>(RHS)->getValue();
I->setOperand(1, ConstantUInt::get(I->getType(), Val));
}
uint64_t Val = Mask & RHS->getZExtValue();
Constant *RHS =
ConstantUInt::get(I->getType()->getUnsignedVersion(), Val);
if (I->getType()->isSigned())
RHS = ConstantExpr::getCast(RHS, I->getType());
I->setOperand(1, RHS);
return UpdateValueUsesWith(I, I);
}
}
@ -833,7 +842,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// X + (signbit) --> X ^ signbit
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
uint64_t Val = CI->getRawValue() & CI->getType()->getIntegralTypeMask();
uint64_t Val = CI->getZExtValue();
if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
return BinaryOperator::createXor(LHS, RHS);
}