[mlir][tosa] Rework tosa.apply_scale lowering for 32-bit

Added handling rounding behavior in 32-bits for when possible. This
avoids kernel compilation generating scalarized code on platforms where
64-bit vectors are not available.

As the 48-bit lowering requires 64-bit anyway, we added a full 64-bit
solution simplifying the old path.

Reviewed By: dcaballe, mravishankar

Differential Revision: https://reviews.llvm.org/D125583
This commit is contained in:
Robert Suderman 2022-05-17 16:00:04 -07:00 committed by Rob Suderman
parent d4545e6fa0
commit 9294a1e9a8
5 changed files with 271 additions and 164 deletions

View File

@ -756,7 +756,10 @@ def TosaToArith : Pass<"tosa-to-arith"> {
let options = [
Option<"includeApplyRescale", "include-apply-rescale",
"bool", /*default=*/"false",
"Whether to include the lowering for tosa.apply_rescale to arith">
"Whether to include the lowering for tosa.apply_rescale to arith">,
Option<"use32Bit", "use-32-bit",
"bool", /*default=*/"false",
"Whether to prioritze lowering to 32-bit operations">
];
let constructor = "tosa::createTosaToArith()";

View File

@ -22,7 +22,8 @@ std::unique_ptr<Pass> createTosaToArith();
void populateTosaToArithConversionPatterns(RewritePatternSet *patterns);
void populateTosaRescaleToArithConversionPatterns(RewritePatternSet *patterns);
void populateTosaRescaleToArithConversionPatterns(RewritePatternSet *patterns,
bool include32Bit = false);
} // namespace tosa
} // namespace mlir

View File

@ -14,6 +14,7 @@
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
@ -49,103 +50,194 @@ Attribute getConstantAttr(Type type, int64_t value, PatternRewriter &rewriter) {
return rewriter.getIntegerAttr(type, value);
}
Value getConstantValue(Location loc, Type type, int64_t value,
PatternRewriter &rewriter) {
return rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(type, value, rewriter));
}
// This converts the TOSA ApplyScale operator to a set of arithmetic ops,
// using 64-bit operations to perform the necessary multiply, bias, and shift.
// Multiple types are used to use minimal bit width operations.
class ApplyScaleOpConverter : public OpRewritePattern<tosa::ApplyScaleOp> {
class ApplyScaleGenericOpConverter
: public OpRewritePattern<tosa::ApplyScaleOp> {
public:
using OpRewritePattern<tosa::ApplyScaleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ApplyScaleOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Value value32 = op.value();
Value value = op.value();
Value multiplier32 = op.multiplier();
Value shift8 = op.shift();
bool doubleRound = op.double_round();
Type inType = op.value().getType();
Type resultTy = op.getType();
Type i8Ty = matchContainerType(rewriter.getIntegerType(8), resultTy);
Type valueTy = value.getType();
Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy);
Type i64Ty = matchContainerType(rewriter.getI64Type(), resultTy);
Value one8 = rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(i8Ty, 1, rewriter));
Value one64 = rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(i64Ty, 1, rewriter));
Value zero = getConstantValue(loc, valueTy, 0, rewriter);
Value one64 = getConstantValue(loc, i64Ty, 1, rewriter);
Value thirtyOne32 = getConstantValue(loc, i32Ty, 31, rewriter);
Value shiftSubOne8 = rewriter.create<arith::SubIOp>(loc, shift8, one8);
Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.shift());
// The rounding value semantics below equate to the following code:
// int64_t round = 1 << (shift - 1);
// if (double_round) {
// if (shift > 31 && value >= 0) round += 1<<30;
// if (shift > 31 && value < 0) round -= 1<<30;
// }
//
// Note that minimal bitwidth operators are used throughout the block.
// Compute the multiplication in 64-bits then select the high / low parts.
Value value64 = rewriter.create<arith::ExtSIOp>(loc, i64Ty, value);
Value multiplier64 =
rewriter.create<arith::ExtSIOp>(loc, i64Ty, multiplier32);
Value multiply64 =
rewriter.create<arith::MulIOp>(loc, value64, multiplier64);
Value round64 = rewriter.create<arith::ShLIOp>(
loc, one64, rewriter.create<arith::ExtSIOp>(loc, i64Ty, shiftSubOne8));
// Apply normal rounding.
Value shift64 = rewriter.create<arith::ExtUIOp>(loc, i64Ty, shift32);
Value round = rewriter.create<arith::ShLIOp>(loc, one64, shift64);
round = rewriter.create<arith::ShRUIOp>(loc, round, one64);
multiply64 = rewriter.create<arith::AddIOp>(loc, multiply64, round);
// Double rounding is performing a round operation before the shift
if (doubleRound) {
Value one32 = rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(i32Ty, 1, rewriter));
Value shift32 = rewriter.create<arith::ExtSIOp>(loc, i32Ty, shift8);
Value thirty32 = rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(i32Ty, 30, rewriter));
Value shiftThirty32 =
rewriter.create<arith::ShLIOp>(loc, one32, thirty32);
Value shiftThirty64 =
rewriter.create<arith::ExtSIOp>(loc, i64Ty, shiftThirty32);
// Round value needs to with be added or subtracted depending on the sign
// of the input value.
Value roundAdd64 =
rewriter.create<arith::AddIOp>(loc, round64, shiftThirty64);
Value roundSub64 =
rewriter.create<arith::SubIOp>(loc, round64, shiftThirty64);
Value zero32 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(inType));
Value valueGreaterThanZero = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, value32, zero32);
Value doubleRound64 = rewriter.create<arith::SelectOp>(
loc, valueGreaterThanZero, roundAdd64, roundSub64);
// We only perform double rounding if the shift value is greater than 32.
Value thirtyTwo32 = rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(i32Ty, 32, rewriter));
Value shiftGreaterThanThirtyTwo = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, shift32, thirtyTwo32);
round64 = rewriter.create<arith::SelectOp>(loc, shiftGreaterThanThirtyTwo,
doubleRound64, round64);
// Apply double rounding if necessary.
if (op.double_round()) {
int64_t roundInt = 1 << 30;
Value roundUp = getConstantValue(loc, i64Ty, roundInt, rewriter);
Value roundDown = getConstantValue(loc, i64Ty, -roundInt, rewriter);
Value positive = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, value, zero);
Value dir =
rewriter.create<arith::SelectOp>(loc, positive, roundUp, roundDown);
Value val = rewriter.create<arith::AddIOp>(loc, dir, multiply64);
Value valid = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sgt, shift32, thirtyOne32);
multiply64 =
rewriter.create<arith::SelectOp>(loc, valid, val, multiply64);
}
// The computation below equates to the following pseudocode:
// int64_t result = (int64_t)value * multiplier + round;
// result = result >> shift;
//
// Note that multiply and shift need to be perform in i64 to preserve bits.
Value result64 = rewriter.create<arith::ShRSIOp>(loc, multiply64, shift64);
Value result32 = rewriter.create<arith::TruncIOp>(loc, i32Ty, result64);
rewriter.replaceOp(op, result32);
return success();
}
};
class ApplyScale32BitOpConverter : public OpRewritePattern<tosa::ApplyScaleOp> {
public:
using OpRewritePattern<tosa::ApplyScaleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ApplyScaleOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Type resultTy = op.getType();
Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy);
Type i64Ty = matchContainerType(rewriter.getI64Type(), resultTy);
Value value = op.value();
if (getElementTypeOrSelf(value.getType()).getIntOrFloatBitWidth() > 32) {
return failure();
}
Value value32 = op.value();
Value multiplier32 = op.multiplier();
Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.shift());
// Constants used during the scaling operation.
Value zero32 = getConstantValue(loc, i32Ty, 0, rewriter);
Value one32 = getConstantValue(loc, i32Ty, 1, rewriter);
Value two32 = getConstantValue(loc, i32Ty, 2, rewriter);
Value thirty32 = getConstantValue(loc, i32Ty, 30, rewriter);
Value thirtyTwo32 = getConstantValue(loc, i32Ty, 32, rewriter);
Value thirtyTwo64 = getConstantValue(loc, i64Ty, 32, rewriter);
// Compute the multiplication in 64-bits then select the high / low parts.
Value value64 = rewriter.create<arith::ExtSIOp>(loc, i64Ty, value32);
Value multiplier64 =
rewriter.create<arith::ExtSIOp>(loc, i64Ty, multiplier32);
Value shift64 = rewriter.create<arith::ExtSIOp>(loc, i64Ty, shift8);
Value multiply64 =
rewriter.create<arith::MulIOp>(loc, value64, multiplier64);
// Multiply as a pair of i64 values to guarantee the end value fits.
Value result64 = rewriter.create<arith::MulIOp>(loc, value64, multiplier64);
result64 = rewriter.create<arith::AddIOp>(loc, result64, round64);
result64 = rewriter.create<arith::ShRSIOp>(loc, result64, shift64);
// Grab out the high/low of the computation
Value high64 =
rewriter.create<arith::ShRUIOp>(loc, multiply64, thirtyTwo64);
Value high32 = rewriter.create<arith::TruncIOp>(loc, i32Ty, high64);
Value low32 = rewriter.create<arith::MulIOp>(loc, value32, multiplier32);
Value result32 = rewriter.create<arith::TruncIOp>(loc, resultTy, result64);
// Determine the direction and amount to shift the high bits.
Value shiftOver32 = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, shift32, thirtyTwo32);
Value roundHighBits = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sgt, shift32, thirtyTwo32);
rewriter.replaceOp(op, result32);
Value shiftHighL =
rewriter.create<arith::SubIOp>(loc, thirtyTwo32, shift32);
Value shiftHighR =
rewriter.create<arith::SubIOp>(loc, shift32, thirtyTwo32);
shiftHighL =
rewriter.create<arith::SelectOp>(loc, shiftOver32, zero32, shiftHighL);
shiftHighR =
rewriter.create<arith::SelectOp>(loc, shiftOver32, shiftHighR, zero32);
// Conditionally perform our double round.
if (op.double_round()) {
Value negOne32 = getConstantValue(loc, i32Ty, -1, rewriter);
Value valuePositive = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, value32, zero32);
Value roundDir =
rewriter.create<arith::SelectOp>(loc, valuePositive, one32, negOne32);
roundDir =
rewriter.create<arith::SelectOp>(loc, shiftOver32, roundDir, zero32);
Value shiftLow = rewriter.create<arith::ShRUIOp>(loc, low32, thirty32);
Value rounded = rewriter.create<arith::AddIOp>(loc, shiftLow, roundDir);
Value carry = rewriter.create<arith::ShRSIOp>(loc, rounded, two32);
Value shiftRound =
rewriter.create<arith::ShLIOp>(loc, roundDir, thirty32);
low32 = rewriter.create<arith::AddIOp>(loc, low32, shiftRound);
high32 = rewriter.create<arith::AddIOp>(loc, high32, carry);
}
// Conditionally apply rounding in the low bits.
{
Value shiftSubOne = rewriter.create<arith::SubIOp>(loc, shift32, one32);
Value roundBit = rewriter.create<arith::ShLIOp>(loc, one32, shiftSubOne);
roundBit = rewriter.create<arith::SelectOp>(loc, roundHighBits, zero32,
roundBit);
Value newLow32 = rewriter.create<arith::AddIOp>(loc, low32, roundBit);
Value wasRounded = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ugt, low32, newLow32);
low32 = newLow32;
Value rounded32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, wasRounded);
high32 = rewriter.create<arith::AddIOp>(loc, high32, rounded32);
}
// Conditionally apply rounding in the high bits.
{
Value shiftSubOne =
rewriter.create<arith::SubIOp>(loc, shiftHighR, one32);
Value roundBit = rewriter.create<arith::ShLIOp>(loc, one32, shiftSubOne);
roundBit = rewriter.create<arith::SelectOp>(loc, roundHighBits, roundBit,
zero32);
high32 = rewriter.create<arith::AddIOp>(loc, high32, roundBit);
}
// Combine the correct high/low bits into the final rescale result.
high32 = rewriter.create<arith::ShLIOp>(loc, high32, shiftHighL);
high32 = rewriter.create<arith::ShRSIOp>(loc, high32, shiftHighR);
low32 = rewriter.create<arith::ShRUIOp>(loc, low32, shift32);
low32 = rewriter.create<arith::SelectOp>(loc, shiftOver32, zero32, low32);
// Apply the rounding behavior and shift to the final alignment.
Value result = rewriter.create<arith::AddIOp>(loc, low32, high32);
// Truncate if necessary.
if (!getElementTypeOrSelf(resultTy).isInteger(32)) {
result = rewriter.create<arith::TruncIOp>(loc, resultTy, result);
}
rewriter.replaceOp(op, result);
return success();
}
};
@ -158,6 +250,9 @@ void mlir::tosa::populateTosaToArithConversionPatterns(
}
void mlir::tosa::populateTosaRescaleToArithConversionPatterns(
RewritePatternSet *patterns) {
patterns->add<ApplyScaleOpConverter>(patterns->getContext());
RewritePatternSet *patterns, bool include32Bit) {
patterns->add<ApplyScaleGenericOpConverter>(patterns->getContext(), 100);
if (include32Bit) {
patterns->add<ApplyScale32BitOpConverter>(patterns->getContext(), 200);
}
}

View File

@ -36,7 +36,8 @@ public:
mlir::tosa::populateTosaToArithConversionPatterns(&patterns);
if (this->includeApplyRescale) {
mlir::tosa::populateTosaRescaleToArithConversionPatterns(&patterns);
mlir::tosa::populateTosaRescaleToArithConversionPatterns(&patterns,
this->use32Bit);
target.addIllegalOp<tosa::ApplyScaleOp>();
}

View File

@ -1,119 +1,126 @@
// RUN: mlir-opt --split-input-file --tosa-to-arith="include-apply-rescale=true" %s -verify-diagnostics -o -| FileCheck %s
// RUN: mlir-opt --split-input-file --tosa-to-arith="include-apply-rescale=true use-32-bit=true" %s -verify-diagnostics -o -| FileCheck %s
// RUN: mlir-opt --split-input-file --tosa-to-arith="include-apply-rescale=false" %s -verify-diagnostics -o -| FileCheck --check-prefix="SCALE" %s
// CHECK-LABEL: func @const_test
func.func @const_test() -> (tensor<i32>) {
// CHECK: [[C3:%.+]] = arith.constant dense<3> : tensor<i32>
%0 = "tosa.const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
%result = "tosa.const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK: return [[C3]]
return %0 : tensor<i32>
return %result : tensor<i32>
}
// -----
// CHECK-LABEL: @apply_scale_test_i32
// SCALE: "tosa.apply_scale"
func.func @apply_scale_test_i32(%arg0 : i32, %arg1 : i32, %arg2 : i8) -> (i32) {
// CHECK-DAG: [[C1_8:%.+]] = arith.constant 1 : i8
// CHECK-DAG: [[C1_32:%.+]] = arith.constant 1 : i32
// CHECK-DAG: [[C1_64:%.+]] = arith.constant 1 : i64
// CHECK-DAG: [[SHIFT_MINUS_ONE_8:%.+]] = arith.subi %arg2, [[C1_8]]
// CHECK-DAG: %[[S32:.+]] = arith.extui %arg2 : i8 to i32
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : i32
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : i32
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : i32
// CHECK-DAG: %[[C30:.+]] = arith.constant 30 : i32
// CHECK-DAG: %[[C32:.+]] = arith.constant 32 : i32
// CHECK-DAG: %[[C32L:.+]] = arith.constant 32 : i64
// CHECK-DAG: [[SHIFT_32:%.+]] = arith.extsi %arg2 : i8 to i32
// CHECK-DAG: [[SHIFT_MINUS_ONE_64:%.+]] = arith.extsi [[SHIFT_MINUS_ONE_8]] : i8 to i64
// CHECK-DAG: [[SHIFTED_64:%.+]] = arith.shli [[C1_64]], [[SHIFT_MINUS_ONE_64]]
// Compute the high-low values of the matmul in 64-bits.
// CHECK-DAG: %[[V64:.+]] = arith.extsi %arg0 : i32 to i64
// CHECK-DAG: %[[M64:.+]] = arith.extsi %arg1 : i32 to i64
// CHECK-DAG: %[[MUL64:.+]] = arith.muli %[[V64]], %[[M64]]
// CHECK-DAG: %[[HI64:.+]] = arith.shrui %[[MUL64]], %[[C32L]]
// CHECK-DAG: %[[HI:.+]] = arith.trunci %[[HI64]] : i64 to i32
// CHECK-DAG: %[[LOW:.+]] = arith.muli %arg0, %arg1
// CHECK-DAG: [[C0_32:%.+]] = arith.constant 0 : i32
// CHECK-DAG: [[C30_32:%.+]] = arith.constant 30 : i32
// CHECK-DAG: [[SECOND_BIAS:%.+]] = arith.shli [[C1_32]], [[C30_32]]
// CHECK-DAG: [[SECOND_BIAS_64:%.+]] = arith.extsi [[SECOND_BIAS]] : i32 to i64
// CHECK-DAG: [[POSITIVE_ROUND:%.+]] = arith.addi [[SHIFTED_64]], [[SECOND_BIAS_64]]
// CHECK-DAG: [[NEGATIVE_ROUND:%.+]] = arith.subi [[SHIFTED_64]], [[SECOND_BIAS_64]]
// CHECK-DAG: [[VALUE_NEGATIVE:%.+]] = arith.cmpi sge, %arg0, [[C0_32]] : i32
// CHECK-DAG: [[DOUBLE_ROUNDED:%.+]] = arith.select [[VALUE_NEGATIVE]], [[POSITIVE_ROUND]], [[NEGATIVE_ROUND]] : i64
// CHECK-DAG: [[C32_32:%.+]] = arith.constant 32 : i32
// CHECK-DAG: [[IS_32BIT_SHIFT:%.+]] = arith.cmpi sge, [[SHIFT_32]], [[C32_32]]
// CHECK-DAG: [[ROUND:%.+]] = arith.select [[IS_32BIT_SHIFT]], [[DOUBLE_ROUNDED]], [[SHIFTED_64]]
// Determine whether the high bits need to shift left or right and by how much.
// CHECK-DAG: %[[OVER31:.+]] = arith.cmpi sge, %[[S32]], %[[C32]]
// CHECK-DAG: %[[OVER32:.+]] = arith.cmpi sgt, %[[S32]], %[[C32]]
// CHECK-DAG: %[[HISHLN:.+]] = arith.subi %[[C32]], %[[S32]]
// CHECK-DAG: %[[HISHRN:.+]] = arith.subi %[[S32]], %[[C32]]
// CHECK-DAG: %[[HISHL:.+]] = arith.select %[[OVER31]], %[[C0]], %[[HISHLN]]
// CHECK-DAG: %[[HISHR:.+]] = arith.select %[[OVER31]], %[[HISHRN]], %[[C0]]
// CHECK-DAG: [[VAL_64:%.+]] = arith.extsi %arg0 : i32 to i64
// CHECK-DAG: [[MULTIPLY_64:%.+]] = arith.extsi %arg1 : i32 to i64
// CHECK-DAG: [[SHIFT_64:%.+]] = arith.extsi %arg2 : i8 to i64
// CHECK-DAG: [[SCALED:%.+]] = arith.muli [[VAL_64]], [[MULTIPLY_64]]
// CHECK-DAG: [[BIASED:%.+]] = arith.addi [[SCALED]], [[ROUND]]
// CHECK-DAG: [[DOWNSHIFTED:%.+]] = arith.shrsi [[BIASED]], [[SHIFT_64]]
// CHECK: [[TRUNCATED:%.+]] = arith.trunci [[DOWNSHIFTED]]
// Apply double rounding.
// CHECK-DAG: %[[CN1:.+]] = arith.constant -1
// CHECK-DAG: %[[POS:.+]] = arith.cmpi sge, %arg0, %[[C0]]
// CHECK-DAG: %[[DIR:.+]] = arith.select %[[POS]], %[[C1]], %[[CN1]]
// CHECK-DAG: %[[DRND:.+]] = arith.select %[[OVER31]], %[[DIR]], %[[C0]]
// CHECK-DAG: %[[DSHFTR:.+]] = arith.shrui %[[LOW]], %[[C30]]
// CHECK-DAG: %[[DRNDED:.+]] = arith.addi %[[DSHFTR]], %[[DRND]]
// CHECK-DAG: %[[DCARRY:.+]] = arith.shrsi %[[DRNDED]], %[[C2:.+]]
// CHECK-DAG: %[[DBIT:.+]] = arith.shli %[[DRND]], %[[C30]]
// CHECK-DAG: %[[DLOW:.+]] = arith.addi %[[LOW]], %[[DBIT]]
// CHECK-DAG: %[[DHI:.+]] = arith.addi %[[HI]], %[[DCARRY]]
// SCALE: "tosa.apply_scale"
%0 = "tosa.apply_scale"(%arg0, %arg1, %arg2) {double_round = true} : (i32, i32, i8) -> i32
return %0 : i32
// Apply low-bit rounding.
// CHECK-DAG: %[[SHFTM1:.+]] = arith.subi %[[S32]], %[[C1]]
// CHECK-DAG: %[[LBIT:.+]] = arith.shli %[[C1]], %[[SHFTM1]]
// CHECK-DAG: %[[HALF:.+]] = arith.select %[[OVER32]], %[[C0]], %[[LBIT]]
// CHECK-DAG: %[[LADD:.+]] = arith.addi %[[DLOW]], %[[HALF]]
// CHECK-DAG: %[[LLO:.+]] = arith.cmpi ugt, %[[DLOW]], %[[LADD]]
// CHECK-DAG: %[[LCARRY:.+]] = arith.extui %[[LLO]] : i1 to i32
// CHECK-DAG: %[[LRNDED:.+]] = arith.addi %[[DHI]], %[[LCARRY]]
// Apply high-bit rounding.
// CHECK-DAG: %[[HISHRM1:.+]] = arith.subi %[[HISHR]], %[[C1]]
// CHECK-DAG: %[[LHISHFT:.+]] = arith.shli %[[C1]], %[[HISHRM1]]
// CHECK-DAG: %[[LHI:.+]] = arith.select %[[OVER32]], %[[LHISHFT]], %[[C0]]
// CHECK-DAG: %[[FHI:.+]] = arith.addi %[[LRNDED]], %[[LHI]]
// Combine hi-low into the final result.
// CHECK-DAG: %[[HIL:.+]] = arith.shli %[[FHI]], %[[HISHL]]
// CHECK-DAG: %[[HIALIGN:.+]] = arith.shrsi %[[HIL:.+]], %[[HISHR]]
// CHECK-DAG: %[[LOR:.+]] = arith.shrui %[[LADD]], %[[S32]]
// CHECK-DAG: %[[LOWALIGN:.+]] = arith.select %[[OVER31]], %[[C0]], %[[LOR]]
// CHECK-DAG: %[[RESULT:.+]] = arith.addi %[[LOWALIGN]], %[[HIALIGN]]
// CHECK: return %[[RESULT]]
%res = "tosa.apply_scale"(%arg0, %arg1, %arg2) {double_round = true} : (i32, i32, i8) -> i32
return %res : i32
}
// -----
// CHECK-LABEL: @apply_scale_test_vector
// SCALE: "tosa.apply_scale"
func.func @apply_scale_test_vector(%arg0 : vector<4xi32>, %arg1 : vector<4xi32>, %arg2 : vector<4xi8>) -> (vector<4xi32>) {
// CHECK-DAG: [[C1_8:%.+]] = arith.constant dense<1> : vector<4xi8>
// CHECK-DAG: [[C1_32:%.+]] = arith.constant dense<1> : vector<4xi32>
// CHECK-DAG: [[C1_64:%.+]] = arith.constant dense<1> : vector<4xi64>
// CHECK-DAG: [[SHIFT_MINUS_ONE_8:%.+]] = arith.subi %arg2, [[C1_8]]
// CHECK-DAG: [[SHIFT_32:%.+]] = arith.extsi %arg2 : vector<4xi8> to vector<4xi32>
// CHECK-DAG: [[SHIFT_MINUS_ONE_64:%.+]] = arith.extsi [[SHIFT_MINUS_ONE_8]] : vector<4xi8> to vector<4xi64>
// CHECK-DAG: [[SHIFTED_64:%.+]] = arith.shli [[C1_64]], [[SHIFT_MINUS_ONE_64]]
// CHECK-DAG: [[C0_32:%.+]] = arith.constant dense<0> : vector<4xi32>
// CHECK-DAG: [[C30_32:%.+]] = arith.constant dense<30> : vector<4xi32>
// CHECK-DAG: [[SECOND_BIAS:%.+]] = arith.shli [[C1_32]], [[C30_32]]
// CHECK-DAG: [[SECOND_BIAS_64:%.+]] = arith.extsi [[SECOND_BIAS]] : vector<4xi32> to vector<4xi64>
// CHECK-DAG: [[POSITIVE_ROUND:%.+]] = arith.addi [[SHIFTED_64]], [[SECOND_BIAS_64]]
// CHECK-DAG: [[NEGATIVE_ROUND:%.+]] = arith.subi [[SHIFTED_64]], [[SECOND_BIAS_64]]
// CHECK-DAG: [[VALUE_NEGATIVE:%.+]] = arith.cmpi sge, %arg0, [[C0_32]] : vector<4xi32>
// CHECK-DAG: [[DOUBLE_ROUNDED:%.+]] = arith.select [[VALUE_NEGATIVE]], [[POSITIVE_ROUND]], [[NEGATIVE_ROUND]] : vector<4xi1>, vector<4xi64>
// CHECK-DAG: [[C32_32:%.+]] = arith.constant dense<32> : vector<4xi32>
// CHECK-DAG: [[IS_32BIT_SHIFT:%.+]] = arith.cmpi sge, [[SHIFT_32]], [[C32_32]]
// CHECK-DAG: [[ROUND:%.+]] = arith.select [[IS_32BIT_SHIFT]], [[DOUBLE_ROUNDED]], [[SHIFTED_64]]
// CHECK-DAG: [[VAL_64:%.+]] = arith.extsi %arg0 : vector<4xi32> to vector<4xi64>
// CHECK-DAG: [[MULTIPLY_64:%.+]] = arith.extsi %arg1 : vector<4xi32> to vector<4xi64>
// CHECK-DAG: [[SHIFT_64:%.+]] = arith.extsi %arg2 : vector<4xi8> to vector<4xi64>
// CHECK-DAG: [[SCALED:%.+]] = arith.muli [[VAL_64]], [[MULTIPLY_64]]
// CHECK-DAG: [[BIASED:%.+]] = arith.addi [[SCALED]], [[ROUND]]
// CHECK-DAG: [[DOWNSHIFTED:%.+]] = arith.shrsi [[BIASED]], [[SHIFT_64]]
// CHECK: [[TRUNCATED:%.+]] = arith.trunci [[DOWNSHIFTED]]
%0 = "tosa.apply_scale"(%arg0, %arg1, %arg2) {double_round = true} : (vector<4xi32>, vector<4xi32>, vector<4xi8>) -> vector<4xi32>
return %0 : vector<4xi32>
// CHECK-NOT: "tosa.apply_scale"
%res = "tosa.apply_scale"(%arg0, %arg1, %arg2) {double_round = true} : (vector<4xi32>, vector<4xi32>, vector<4xi8>) -> vector<4xi32>
return %res : vector<4xi32>
}
// -----
// CHECK-LABEL: @apply_scale_test_i48
// SCALE: "tosa.apply_scale"
func.func @apply_scale_test_i48(%arg0 : i48, %arg1 : i32, %arg2 : i8) -> (i32) {
// CHECK-DAG: [[C1_8:%.+]] = arith.constant 1 : i8
// CHECK-DAG: [[C1_32:%.+]] = arith.constant 1 : i32
// CHECK-DAG: [[C1_64:%.+]] = arith.constant 1 : i64
// CHECK-DAG: [[C30_32:%.+]] = arith.constant 30 : i32
// CHECK-DAG: [[C0_32:%.+]] = arith.constant 0 : i48
// CHECK-DAG: [[C32_32:%.+]] = arith.constant 32 : i32
// CHECK-DAG: [[SHIFT_MINUS_ONE_8:%.+]] = arith.subi %arg2, [[C1_8]]
// CHECK-DAG: [[SHIFT_32:%.+]] = arith.extsi %arg2 : i8 to i32
// CHECK-DAG: [[SHIFT_MINUS_ONE_64:%.+]] = arith.extsi [[SHIFT_MINUS_ONE_8]] : i8 to i64
// CHECK-DAG: [[SHIFTED_64:%.+]] = arith.shli [[C1_64]], [[SHIFT_MINUS_ONE_64]]
// CHECK-DAG: [[SECOND_BIAS:%.+]] = arith.shli [[C1_32]], [[C30_32]]
// CHECK-DAG: [[SECOND_BIAS_64:%.+]] = arith.extsi [[SECOND_BIAS]] : i32 to i64
// CHECK-DAG: [[POSITIVE_ROUND:%.+]] = arith.addi [[SHIFTED_64]], [[SECOND_BIAS_64]]
// CHECK-DAG: [[NEGATIVE_ROUND:%.+]] = arith.subi [[SHIFTED_64]], [[SECOND_BIAS_64]]
// CHECK-DAG: [[VALUE_NEGATIVE:%.+]] = arith.cmpi sge, %arg0, [[C0_32]] : i48
// CHECK-DAG: [[DOUBLE_ROUNDED:%.+]] = arith.select [[VALUE_NEGATIVE]], [[POSITIVE_ROUND]], [[NEGATIVE_ROUND]] : i64
// CHECK-DAG: [[IS_32BIT_SHIFT:%.+]] = arith.cmpi sge, [[SHIFT_32]], [[C32_32]]
// CHECK-DAG: [[ROUND:%.+]] = arith.select [[IS_32BIT_SHIFT]], [[DOUBLE_ROUNDED]], [[SHIFTED_64]]
// CHECK-DAG: [[VAL_64:%.+]] = arith.extsi %arg0 : i48 to i64
// CHECK-DAG: [[MULTIPLY_64:%.+]] = arith.extsi %arg1 : i32 to i64
// CHECK-DAG: [[SHIFT_64:%.+]] = arith.extsi %arg2 : i8 to i64
// CHECK-DAG: [[SCALED:%.+]] = arith.muli [[VAL_64]], [[MULTIPLY_64]]
// CHECK-DAG: [[BIASED:%.+]] = arith.addi [[SCALED]], [[ROUND]]
// CHECK-DAG: [[DOWNSHIFTED:%.+]] = arith.shrsi [[BIASED]], [[SHIFT_64]]
// CHECK: [[TRUNCATED:%.+]] = arith.trunci [[DOWNSHIFTED]]
%0 = "tosa.apply_scale"(%arg0, %arg1, %arg2) {double_round = true} : (i48, i32, i8) -> i32
return %0 : i32
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : i48
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : i64
// CHECK-DAG: %[[C31:.+]] = arith.constant 31 : i32
// Multiply in 64 bits.
// CHECK-DAG: %[[V64:.+]] = arith.extsi %arg0 : i48 to i64
// CHECK-DAG: %[[M64:.+]] = arith.extsi %arg1 : i32 to i64
// CHECK-DAG: %[[MUL:.+]] = arith.muli %[[V64]], %[[M64]]
// Round normally.
// CHECK-DAG: %[[S32:.+]] = arith.extui %arg2 : i8 to i32
// CHECK-DAG: %[[S64:.+]] = arith.extui %[[S32]] : i32 to i64
// CHECK-DAG: %[[ONEL:.+]] = arith.shli %[[C1]], %[[S64]] : i64
// CHECK-DAG: %[[ONER:.+]] = arith.shrui %[[ONEL]], %[[C1]]
// CHECK-DAG: %[[ROUND:.+]] = arith.addi %[[MUL]], %[[ONER]]
// Apply double rounding.
// CHECK-DAG: %[[DUP:.+]] = arith.constant 1073741824 : i64
// CHECK-DAG: %[[DDOWN:.+]] = arith.constant -1073741824 : i64
// CHECK-DAG: %[[POS:.+]] = arith.cmpi sge, %arg0, %[[C0]]
// CHECK-DAG: %[[DBIT:.+]] = arith.select %[[POS]], %[[DUP]], %[[DDOWN]]
// CHECK-DAG: %[[DRND:.+]] = arith.addi %[[DBIT]], %[[ROUND]]
// CHECK-DAG: %[[USED:.+]] = arith.cmpi sgt, %[[S32]], %[[C31]] : i32
// CHECK-DAG: %[[RES64:.+]] = arith.select %[[USED]], %[[DRND]], %[[ROUND]] : i64
// Shift and truncate final answer.
// CHECK-DAG: %[[SHR:.+]] = arith.shrsi %[[RES64]], %[[S64]]
// CHECK-DAG: %[[TRUNC:.+]] = arith.trunci %[[SHR]] : i64 to i32
// CHECK: return %[[TRUNC]]
%res = "tosa.apply_scale"(%arg0, %arg1, %arg2) {double_round = true} : (i48, i32, i8) -> i32
return %res : i32
}