[mlir][bufferize] Fix missing copies when writing to a buffer in a loop

Writes into tensors that are definied outside of a repetitive region, but with the write happening inside of the repetitive region were previously not considered conflicts. This was incorrect.

E.g.:
```
%0 = ... : tensor<?xf32>
scf.for ... {
  "reading_op"(%0) : tensor<?xf32>
  %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
  ...
}
```

In the above example, "writing_op" should be out-of-place.

This commit fixes the bufferization for any op that declares its repetitive semantics via RegionBranchOpInterface.
This commit is contained in:
Matthias Springer 2022-04-20 18:43:49 +09:00
parent b402ea55a8
commit 9235e597a4
2 changed files with 133 additions and 5 deletions

View File

@ -325,6 +325,20 @@ static bool happensBefore(Operation *a, Operation *b,
return false;
}
/// For each given value, find the closest enclosing repetitive region. If this
/// is the same region for each value, return it. Otherwise return None.
/// Note: If there is no enclosing repetitive region, return nullptr.
static Optional<Region *>
getCommonEnclosingRepetitiveRegion(ArrayRef<Value> values) {
if (values.empty())
return None;
Region *r = getEnclosingRepetitiveRegion(values.front());
for (Value value : values.drop_front())
if (getEnclosingRepetitiveRegion(value) != r)
return None;
return r;
}
/// Annotate IR with details about the detected RaW conflict.
static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite,
Value lastWrite) {
@ -371,6 +385,15 @@ static bool hasReadAfterWriteInterference(
AnalysisState &state, const BufferizationAliasInfo &aliasInfo) {
const BufferizationOptions &options = state.getOptions();
// Gather all written aliases.
SmallVector<Value> writtenAliases;
for (OpOperand *uWrite : usesWrite)
writtenAliases.push_back(uWrite->get());
// Find the inner-most enclosing repetitive region of each alias. If this is
// the same region for every alias, save it in `repetitiveRegionOfWrites`.
Optional<Region *> repetitiveRegionOfWrites =
getCommonEnclosingRepetitiveRegion(writtenAliases);
for (OpOperand *uRead : usesRead) {
Operation *readingOp = uRead->getOwner();
@ -393,15 +416,60 @@ static bool hasReadAfterWriteInterference(
// met for uConflictingWrite to be an actual conflict.
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
// Check if conflictingWritingOp is in the same repetitive region as all
// written aliases. If this is not the case, there is no meaningful
// `happensBefore` relationship because conflictingWritingOp may be
// executed multiple times. E.g.:
//
// %0 = ... : tensor<?xf32>
// scf.for ... {
// "reading_op"(%0) : tensor<?xf32>
// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
// ...
// }
//
// In the above example, reading_op happens before writing_op according to
// op dominance. However, both ops may happen multiple times; in
// particular, the second execution of reading_op happens after the first
// execution of writing_op. This is problematic if the tensor they operate
// on (%0) is defined outside of the loop.
//
// Counter example:
//
// scf.for ... {
// %0 = ... : tensor<?xf32>
// "reading_op"(%0) : tensor<?xf32>
// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
// ...
// }
//
// In this example, %0 is in the same repetitive region as
// conflictingWritingOp, so op dominance can be used to compute the
// `happensBefore` relationship.
//
// Note: iter_args of loops are not aliases of their respective block
// arguments, so op domanice can be used when analyzing ops that operate
// on them.
bool canUseOpDominance =
repetitiveRegionOfWrites ==
getEnclosingRepetitiveRegion(conflictingWritingOp);
// No conflict if the readingOp dominates conflictingWritingOp, i.e., the
// write is not visible when reading.
if (happensBefore(readingOp, conflictingWritingOp, domInfo))
//
// Note: If ops are executed multiple times (e.g., because they are inside
// a loop), there may be no meaningful `happensBefore` relationship.
if (canUseOpDominance &&
happensBefore(readingOp, conflictingWritingOp, domInfo))
continue;
// No conflict if the reading use equals the use of the conflicting write.
// A use cannot conflict with itself. Note: Just being the same op is not
// enough. It has to be the same use.
if (uConflictingWrite == uRead)
// A use cannot conflict with itself.
//
// Note: Just being the same op is not enough. It has to be the same use.
// Note: If the op is executed multiple times (e.g., because it is inside
// a loop), it may be conflicting with itself.
if (canUseOpDominance && uConflictingWrite == uRead)
continue;
// No conflict if the op interface says so.
@ -416,7 +484,12 @@ static bool hasReadAfterWriteInterference(
continue;
// Ops are not conflicting if they are in mutually exclusive regions.
if (insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp))
//
// Note: If ops are executed multiple times (e.g., because they are inside
// a loop), mutually exclusive regions may be executed multiple
// times.
if (canUseOpDominance &&
insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp))
continue;
// Check all possible last writes.

View File

@ -1786,3 +1786,58 @@ func @write_after_select_no_conflict(
return %f, %w : f32, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @write_to_same_tensor_in_loop_out_of_place(
func @write_to_same_tensor_in_loop_out_of_place(
%A : tensor<?xf32> {linalg.inplaceable = true},
%B : tensor<?xf32> {linalg.inplaceable = true},
%lb : index, %ub : index, %step : index, %sz: index)
-> (tensor<?xf32>)
{
// CHECK: scf.for {{.*}} {
%r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) {
%i2 = arith.index_cast %i : index to i32
%i3 = arith.sitofp %i2 : i32 to f32
// The tensor.insert is out-of-place because the %B is written multiple
// times inside a loop.
// CHECK: tensor.insert
// CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]}
%B2 = tensor.insert %i3 into %B[%i] : tensor<?xf32>
// CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]}
%A2 = tensor.insert_slice %B2 into %t[%i][%sz][1] : tensor<?xf32> into tensor<?xf32>
scf.yield %A2 : tensor<?xf32>
}
// CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]}
return %r0 : tensor<?xf32>
}
// -----
// CHECK-LABEL: func @write_to_same_tensor_in_loop_in_place(
func @write_to_same_tensor_in_loop_in_place(
%A : tensor<?xf32> {linalg.inplaceable = true},
%lb : index, %ub : index, %step : index, %sz: index)
-> (tensor<?xf32>)
{
// CHECK: scf.for {{.*}} {
%r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) {
%B = linalg.init_tensor [%sz] : tensor<?xf32>
%i2 = arith.index_cast %i : index to i32
%i3 = arith.sitofp %i2 : i32 to f32
// The tensor.insert is in-place because the %B is defined inside the loop.
// CHECK: tensor.insert
// CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]}
%B2 = tensor.insert %i3 into %B[%i] : tensor<?xf32>
// CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]}
%A2 = tensor.insert_slice %B2 into %t[%i][%sz][1] : tensor<?xf32> into tensor<?xf32>
scf.yield %A2 : tensor<?xf32>
}
// CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]}
return %r0 : tensor<?xf32>
}