[VE][NFC] re-write RR* isel class using null_frag

Summary: Re-write RR* using null_frag to avoid duplication in upcoming patches.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D73259
This commit is contained in:
Simon Moll 2020-01-23 15:17:19 +01:00
parent 98ea4b30c2
commit 9187073f3e
1 changed files with 43 additions and 55 deletions

View File

@ -225,7 +225,9 @@ def CC_AT : CC_VAL<21>; // Always true
//===----------------------------------------------------------------------===//
multiclass RMm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty, Operand immOp, Operand immOp2> {
RegisterClass RC, ValueType Ty,
Operand immOp, Operand immOp2,
SDPatternOperator OpNode=null_frag> {
def rri : RM<
opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, immOp2:$imm32),
!strconcat(opcStr, " $sx, ${imm32}($sy, ${sz})")> {
@ -235,7 +237,8 @@ multiclass RMm<string opcStr, bits<8>opc,
}
def rzi : RM<
opc, (outs RC:$sx), (ins RC:$sz, immOp2:$imm32),
!strconcat(opcStr, " $sx, ${imm32}(${sz})")> {
!strconcat(opcStr, " $sx, ${imm32}(${sz})"),
[(set Ty:$sx, (OpNode Ty:$sz, (Ty simm32:$imm32)))]> {
let cy = 0;
let sy = 0;
let cz = 1;
@ -254,26 +257,20 @@ multiclass RMm<string opcStr, bits<8>opc,
// Multiclass for RR type instructions
multiclass RRmrr<string opcStr, bits<8>opc, SDNode OpNode,
multiclass RRmrr<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi> {
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode=null_frag> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>
{ let cy = 1; let cz = 1; let hasSideEffects = 0; }
}
multiclass RRNDmrr<string opcStr, bits<8>opc,
multiclass RRmri<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz")>
{ let cy = 1; let cz = 1; let hasSideEffects = 0; }
}
multiclass RRmri<string opcStr, bits<8>opc, SDNode OpNode,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi, Operand immOp> {
RegisterClass RCi, ValueType Tyi, Operand immOp,
SDPatternOperator OpNode=null_frag> {
// VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
// in RHS, so we use following definition.
def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
@ -282,9 +279,10 @@ multiclass RRmri<string opcStr, bits<8>opc, SDNode OpNode,
{ let cy = 0; let cz = 1; let hasSideEffects = 0; }
}
multiclass RRmiz<string opcStr, bits<8>opc, SDNode OpNode,
multiclass RRmiz<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi, Operand immOp> {
RegisterClass RCi, ValueType Tyi, Operand immOp,
SDPatternOperator OpNode=null_frag> {
def zi : RR<opc, (outs RCo:$sx), (ins immOp:$sy),
!strconcat(opcStr, " $sx, $sy"),
[(set Tyo:$sx, (OpNode (Tyi simm7:$sy), 0))]>
@ -326,25 +324,15 @@ multiclass RRNDmim<string opcStr, bits<8>opc,
// Used by add, mul, div, and similar commutative instructions
// The order of operands are "$sx, $sy, $sz"
multiclass RRm<string opcStr, bits<8>opc, SDNode OpNode,
RegisterClass RC, ValueType Ty, Operand immOp, Operand immOp2> :
RRmrr<opcStr, opc, OpNode, RC, Ty, RC, Ty>,
RRmri<opcStr, opc, OpNode, RC, Ty, RC, Ty, immOp>,
RRmiz<opcStr, opc, OpNode, RC, Ty, RC, Ty, immOp>,
multiclass RRm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
Operand immOp, Operand immOp2,
SDPatternOperator OpNode=null_frag> :
RRmrr<opcStr, opc, RC, Ty, RC, Ty, OpNode>,
RRmri<opcStr, opc, RC, Ty, RC, Ty, immOp, OpNode>,
RRmiz<opcStr, opc, RC, Ty, RC, Ty, immOp, OpNode>,
RRNDmrm<opcStr, opc, RC, Ty, RC, Ty, immOp2>,
RRNDmim<opcStr, opc, RC, Ty, RC, Ty, immOp, immOp2>;
// Used by cmp instruction
// The order of operands are "$sx, $sy, $sz"
multiclass RRNDm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
Operand immOp, Operand immOp2> :
RRNDmrr<opcStr, opc, RC, Ty, RC, Ty>,
//RRNDmir<opcStr, opc, RC, Ty, RC, Ty, immOp>,
//RRNDmiz<opcStr, opc, RC, Ty, RC, Ty, immOp>,
RRNDmrm<opcStr, opc, RC, Ty, RC, Ty, immOp2>,
RRNDmim<opcStr, opc, RC, Ty, RC, Ty, immOp, immOp2>;
// Multiclass for RR type instructions
// Used by sra, sla, sll, and similar instructions
@ -432,53 +420,53 @@ defm LEA32 : RMm<"lea", 0x06, I32, i32, simm7Op32, simm32Op32>;
// ADS instruction
let cx = 0 in
defm ADS : RRm<"adds.w.sx", 0x4A, add, I32, i32, simm7Op32, uimm6Op32>;
defm ADS : RRm<"adds.w.sx", 0x4A, I32, i32, simm7Op32, uimm6Op32, add>;
let cx = 1 in
defm ADSU : RRm<"adds.w.zx", 0x4A, add, I32, i32, simm7Op32, uimm6Op32>;
defm ADSU : RRm<"adds.w.zx", 0x4A, I32, i32, simm7Op32, uimm6Op32, add>;
// ADX instruction
let cx = 0 in
defm ADX : RRm<"adds.l", 0x59, add, I64, i64, simm7Op64, uimm6Op64>;
defm ADX : RRm<"adds.l", 0x59, I64, i64, simm7Op64, uimm6Op64, add>;
// CMP instruction
let cx = 0 in
defm CMP : RRNDm<"cmpu.l", 0x55, I64, i64, simm7Op64, uimm6Op64>;
defm CMP : RRm<"cmpu.l", 0x55, I64, i64, simm7Op64, uimm6Op64>;
let cx = 1 in
defm CMPUW : RRNDm<"cmpu.w", 0x55, I32, i32, simm7Op32, uimm6Op32>;
defm CMPUW : RRm<"cmpu.w", 0x55, I32, i32, simm7Op32, uimm6Op32>;
// CPS instruction
let cx = 0 in
defm CPS : RRNDm<"cmps.w.sx", 0x7A, I32, i32, simm7Op32, uimm6Op32>;
defm CPS : RRm<"cmps.w.sx", 0x7A, I32, i32, simm7Op32, uimm6Op32>;
let cx = 1 in
defm CPSU : RRNDm<"cmps.w.zx", 0x7A, I32, i32, simm7Op32, uimm6Op32>;
defm CPSU : RRm<"cmps.w.zx", 0x7A, I32, i32, simm7Op32, uimm6Op32>;
// CPX instruction
let cx = 0 in
defm CPX : RRNDm<"cmps.l", 0x6A, I64, i64, simm7Op64, uimm6Op64>;
defm CPX : RRm<"cmps.l", 0x6A, I64, i64, simm7Op64, uimm6Op64>;
// cx: sx/zx, cw: max/min
let cw = 0 in defm CMXa :
RRNDm<"maxs.l", 0x68, I64, i64, simm7Op64, uimm6Op64>;
RRm<"maxs.l", 0x68, I64, i64, simm7Op64, uimm6Op64>;
let cx = 0, cw = 0 in defm CMSa :
RRNDm<"maxs.w.zx", 0x78, I32, i32, simm7Op32, uimm6Op32>;
RRm<"maxs.w.zx", 0x78, I32, i32, simm7Op32, uimm6Op32>;
let cw = 1 in defm CMXi :
RRNDm<"mins.l", 0x68, I64, i64, simm7Op64, uimm6Op64>;
RRm<"mins.l", 0x68, I64, i64, simm7Op64, uimm6Op64>;
let cx = 1, cw = 0 in defm CMSi :
RRNDm<"mins.w.zx", 0x78, I32, i32, simm7Op32, uimm6Op32>;
RRm<"mins.w.zx", 0x78, I32, i32, simm7Op32, uimm6Op32>;
// 5.3.2.3. Logical Arithmetic Operation Instructions
let cx = 0 in {
defm AND : RRm<"and", 0x44, and, I64, i64, simm7Op64, uimm6Op64>;
defm OR : RRm<"or", 0x45, or, I64, i64, simm7Op64, uimm6Op64>;
defm AND : RRm<"and", 0x44, I64, i64, simm7Op64, uimm6Op64, and>;
defm OR : RRm<"or", 0x45, I64, i64, simm7Op64, uimm6Op64, or>;
let isCodeGenOnly = 1 in {
defm AND32 : RRm<"and", 0x44, and, I32, i32, simm7Op32, uimm6Op32>;
defm OR32 : RRm<"or", 0x45, or, I32, i32, simm7Op32, uimm6Op32>;
defm XOR32 : RRm<"xor", 0x46, xor, I32, i32, simm7Op32, uimm6Op32>;
defm AND32 : RRm<"and", 0x44, I32, i32, simm7Op32, uimm6Op32, and>;
defm OR32 : RRm<"or", 0x45, I32, i32, simm7Op32, uimm6Op32, or>;
defm XOR32 : RRm<"xor", 0x46, I32, i32, simm7Op32, uimm6Op32, xor>;
}
}
@ -497,22 +485,22 @@ defm SLA : RRIm<"sla.w.sx", 0x66, shl, I32, i32, simm7Op32, uimm6Op32>;
// FCP instruction
let cx = 0 in
defm FCP : RRNDm<"fcmp.d", 0x7E, I64, f64, simm7Op64, uimm6Op64>;
defm FCP : RRm<"fcmp.d", 0x7E, I64, f64, simm7Op64, uimm6Op64>;
let cx = 1 in
defm FCPS : RRNDm<"fcmp.s", 0x7E, F32, f32, simm7Op32, uimm6Op32>;
defm FCPS : RRm<"fcmp.s", 0x7E, F32, f32, simm7Op32, uimm6Op32>;
// FCM
let cw = 0 in {
let cx = 0 in
defm FCMA : RRNDm<"fmax.d", 0x3E, I64, f64, simm7Op64, uimm6Op64>;
defm FCMA : RRm<"fmax.d", 0x3E, I64, f64, simm7Op64, uimm6Op64>;
let cx = 1 in
defm FCMAS : RRNDm<"fmax.s", 0x3E, F32, f32, simm7Op32, uimm6Op32>;
defm FCMAS : RRm<"fmax.s", 0x3E, F32, f32, simm7Op32, uimm6Op32>;
}
let cw = 1 in {
let cx = 0 in
defm FCMI : RRNDm<"fmin.d", 0x3E, I64, f64, simm7Op64, uimm6Op64>;
defm FCMI : RRm<"fmin.d", 0x3E, I64, f64, simm7Op64, uimm6Op64>;
let cx = 1 in
defm FCMIS : RRNDm<"fmin.s", 0x3E, F32, f32, simm7Op32, uimm6Op32>;
defm FCMIS : RRm<"fmin.s", 0x3E, F32, f32, simm7Op32, uimm6Op32>;
}
// Load and Store instructions